Modular curves, forms, Elliptic curves, and symbols - Exercises 2

Lecturer: John Cremona

1. Show that for $g \in \Gamma_{0}(N)$ the modular symbol $\{\alpha, g(\alpha)\} \in H(N)$ is independent of $\alpha \in \mathbb{P}^{1}(\mathbf{Q})$.
2. If $\alpha=a / b \in \mathbb{P}^{1}(\mathbf{Q})$, show that, as cusps of $X_{0}(p)$,

$$
[\alpha]= \begin{cases}{[\infty]} & \text { iff } p \mid b \\ {[0]} & \text { iff } p \nmid b\end{cases}
$$

3. (a) Show that $(c: d) \in \mathbb{P}^{1}(\mathbf{Z} / N \mathbf{Z})$ is fixed by $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ iff $c^{2}+d^{2} \equiv 0 \bmod N$, and is fixed by $T S=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ iff $c^{2}+c d+d^{2} \equiv 0 \bmod N$.
(b) Let $N=p \geq 5$. Count the number of 2-term relations and the number of 3-term relations in $H(p)$ (which depend on $p \bmod 4$ and $p \bmod 3$ respectively). Hence show that the system of relations has rank

$$
\begin{cases}\frac{1}{6}(5 p+13) & \text { if } p \equiv 1 \bmod 12 \\ \frac{1}{6}(5 p+5) & \text { if } p \equiv 5 \bmod 12 \\ \frac{1}{6}(5 p+7) & \text { if } p \equiv 7 \bmod 12 \\ \frac{1}{6}(5 p-1) & \text { if } p \equiv 11 \bmod 12\end{cases}
$$

and hence that the dimension of $H(p)$ is

$$
\frac{1}{6}(p-13), \frac{1}{6}(p-5), \frac{1}{6}(p-7), \frac{1}{6}(p+1)
$$

respectively. Compare with the formula for $g\left(X_{0}(p)\right)$.
4. (a) Compute $T_{3}\left\{0, \frac{1}{2}\right\}$ using continued fractions and hence find the Hecke eigenvalues a_{3} for $N=11$.
(b) Write down the extended CH-matrices for $p=3$ and $p=5$.
(c) Recompute a_{3} and compute a_{5} using (b) for $N=11$.
5. (a) Compute $H(17), H^{+}(17)$ and the eigenvalues of T_{2}, T_{3}. Hence find the BSD ratios $L(E, 1) / \Omega$ for the elliptic curves $X_{0}(17)$.
(b) If you enjoyed that, repeat with $H(19)$.

