Modular curves, forms, elliptic curves, and symbols – Exercises 2

LECTURER: JOHN CREMONA

- 1. Show that for $g \in \Gamma_0(N)$ the modular symbol $\{\alpha, g(\alpha)\} \in H(N)$ is independent of $\alpha \in \mathbb{P}^1(\mathbf{Q})$.
- 2. If $\alpha = a/b \in \mathbb{P}^1(\mathbf{Q})$, show that, as cusps of $X_0(p)$,

$$[\alpha] = \begin{cases} [\infty] & \text{ iff } p \mid b, \\ [0] & \text{ iff } p \nmid b. \end{cases}$$

- 3. (a) Show that $(c:d) \in \mathbb{P}^1(\mathbb{Z}/N\mathbb{Z})$ is fixed by $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ iff $c^2 + d^2 \equiv 0 \mod N$, and is fixed by $TS = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ iff $c^2 + cd + d^2 \equiv 0 \mod N$.
 - (b) Let $N = p \ge 5$. Count the number of 2-term relations and the number of 3-term relations in H(p) (which depend on $p \mod 4$ and $p \mod 3$ respectively). Hence show that the system of relations has rank

$$\begin{cases} \frac{1}{6}(5p+13) & \text{if } p \equiv 1 \mod 12\\ \frac{1}{6}(5p+5) & \text{if } p \equiv 5 \mod 12\\ \frac{1}{6}(5p+7) & \text{if } p \equiv 7 \mod 12\\ \frac{1}{6}(5p-1) & \text{if } p \equiv 11 \mod 12 \end{cases}$$

and hence that the dimension of H(p) is

$$\frac{1}{6}(p-13), \frac{1}{6}(p-5), \frac{1}{6}(p-7), \frac{1}{6}(p+1)$$

respectively. Compare with the formula for $g(X_0(p))$.

- 4. (a) Compute $T_3\left\{0,\frac{1}{2}\right\}$ using continued fractions and hence find the Hecke eigenvalues a_3 for N = 11.
 - (b) Write down the extended CH-matrices for p = 3 and p = 5.
 - (c) Recompute a_3 and compute a_5 using (b) for N = 11.
- 5. (a) Compute H(17), $H^+(17)$ and the eigenvalues of T_2, T_3 . Hence find the BSD ratios $L(E, 1)/\Omega$ for the elliptic curves $X_0(17)$.
 - (b) If you enjoyed that, repeat with H(19).