Modular curves, forms, elliptic curves, and symbols – Exercises 1

LECTURER: JOHN CREMONA

1. Convince yourself that

$$[\operatorname{SL}_2(\mathbf{Z}):\Gamma_0(N)] = N \prod_{p|N} \left(1 + \frac{1}{p}\right);$$

or at least that $\Gamma_0(p)$ has index p+1.

- 2. Prove the genus formula for $\Gamma_0(p)$ by showing that:
 - above ∞ there are two cusps: 0 with width p, and ∞ with width 1.
 - $\bullet\,$ above i there are

$$\begin{cases} \frac{1}{2}(p+1) \text{ points of multiplicity } 2, \text{ if } p \equiv 3 \mod 4 \\ \frac{1}{2}(p-1) \text{ points of multiplicity } 2, \text{ and } 2 \text{ of multiplicity } 1, \text{ if } p \equiv 1 \mod 4 \end{cases}$$

• above ρ there are

 $\begin{cases} \frac{1}{3}(p+1) \text{ points of multiplicity 3, if } p \equiv 2 \mod 3 \\ \frac{1}{3}(p-1) \text{ points of multiplicity 3, and 2 of multiplicity 1, if } p \equiv 1 \mod 3 \end{cases}$

- 3. Check that $(t+a)^3 = 1728t + (t+b)^2(t+c)$ (as an identity in t) forces $(a, b, c) = \pm (16, -8, 64)$.
- 4. For p = 3,5 verify the formula for the map $X_0(p) \to X(1)$ given in lectures. If possible, derive it yourself.
- 5. Find all imaginary quadratic algebraic integers α of norm 2 (up to multiplication by units). [Hint: The answer is 1 + i, $\sqrt{-2}$, $(1 \pm \sqrt{-7})/2$.] What are the associated *j*-invariants?
- 6. Find the genus of $X_0(p)$ for primes p < 20. How could you determine the genus of $X_0^+(p)$? [Hint: It is 0 for just 10 primes p s.t. $g(X_0(p)) \ge 1$].