Modular curves, forms, elliptic curves, and symbols - Exercises 1

Lecturer: John Cremona

1. Convince yourself that

$$
\left[\mathrm{SL}_{2}(\mathbf{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+\frac{1}{p}\right)
$$

or at least that $\Gamma_{0}(p)$ has index $p+1$.
2. Prove the genus formula for $\Gamma_{0}(p)$ by showing that:

- above ∞ there are two cusps: 0 with width p, and ∞ with width 1 .
- above i there are

$$
\left\{\begin{array}{l}
\frac{1}{2}(p+1) \text { points of multiplicity } 2, \text { if } p \equiv 3 \bmod 4 \\
\frac{1}{2}(p-1) \text { points of multiplicity } 2, \text { and } 2 \text { of multiplicity } 1, \text { if } p \equiv 1 \bmod 4
\end{array}\right.
$$

- above ρ there are

$$
\left\{\begin{array}{l}
\frac{1}{3}(p+1) \text { points of multiplicity } 3, \text { if } p \equiv 2 \bmod 3 \\
\frac{1}{3}(p-1) \text { points of multiplicity } 3, \text { and } 2 \text { of multiplicty } 1, \text { if } p \equiv 1 \bmod 3
\end{array}\right.
$$

3. Check that $(t+a)^{3}=1728 t+(t+b)^{2}(t+c)$ (as an identity in t) forces $(a, b, c)= \pm(16,-8,64)$.
4. For $p=3,5$ verify the formula for the map $X_{0}(p) \rightarrow X(1)$ given in lectures. If possible, derive it yourself.
5. Find all imaginary quadratic algebraic integers α of norm 2 (up to multiplication by units). [Hint: The answer is $1+i, \sqrt{-2},(1 \pm \sqrt{-7}) / 2$.] What are the associated j-invariants?
6. Find the genus of $X_{0}(p)$ for primes $p<20$. How could you determine the genus of $X_{0}^{+}(p)$? [Hint: It is 0 for just 10 primes p s.t. $\left.g\left(X_{0}(p)\right) \geq 1\right]$.
