
Modular curves, forms, elliptic curves, and symbols

Lectured by John Cremona
Notes by Martin Dickson

Abstract. Lecture notes from the LMS-CMI Research School “Building Bridges” held at
the University of Bristol in June/July 2014. Please email any comments or corrections to
martin.dickson@bristol.ac.uk.

1 Outline

There are two different relationships between modular curves (e.g. X0(N)) and elliptic curves. In
the first lecture, we discuss how modular curves parameterise elliptic curves with level structure
(over any field). In lecture 2, we discuss how modular curves are themselves a source of elliptic
curves (over Q).

References for lecture 1.

• Diamond–Shurman GTM 228, “A first course in modular forms” for background on modular
curves and modular forms

• Shimura, “Introduction to the arithmetic theory of automorphic functions” (a classic, again
for the background)

• Elkies, “Elliptic and modular curves over finite fields” in “Computational perspectives in
number thery” 1995 Atkin conference, AMS (for the X0(11) example) .

References for lecture 2.

• Stein, “Modular forms: A computational approach”

• Cremona, “Algorithms for modular elliptic curves”

2 Lecture 1

Modular curves. The upper half plane H = {z = x + iy; y > 0} comes with an action of
GL+

2 (R) (the matrices in GL2(R) with positive determinant); and hence also an action of the
subgroups

GL+
2 (R) ⊃ SL2(R) ⊃ SL2(Z) ⊃ Γ,
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where Γ denotes a subgroup of finite index in SL2(Z). We are particularly interested in

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z); N | c

}
Γ1(N) =

{(
a b
c d

)
∈ Γ0(N); d ≡ 1 mod N

}

= ker

 Γ0(N) → (Z/NZ)∗(
a b
c d

)
7→ d


Γ(N) = ker(SL2(Z)→ SL2(Z/NZ)

= ker

 Γ1(N) → (Z/NZ)(
a b
c d

)
7→ b


Note that

[Γ0(N) : Γ1(N)] = ϕ(N)

[Γ1(N) : Γ(N)] = N

In the exercises we show that

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

Now let Γ ≤ SL2(Z) be a subgroup of index d; then

YΓ := Γ\H

is a topological space, a real 2-manifold, and a Riemann surface of genus g(Γ) := g(YΓ). This
can be compactified by adding a finite number of cusps Γ\P1(Q) to get

XΓ = YΓ ∪ {cusps}.

We refer to such XΓ as modular curves. We use the following notation:

Γ XΓ

Γ0(N) X0(N)
Γ1(N) X1(N)
Γ(N) X(N)

The modular curve X(1) is sometimes referred to as “the j-line”. Points on the non-cuspidal part
Y (1) parameterise elliptic curves over C up to isomorphism. Indeed, any complex elliptic curve
E/C tales the form C/Λ where Λ is a rank two Z-lattice in C. Two complex elliptic curves E1

and E2 are isomorphic if and only if the corresponding lattice Λ1 and Λ2 are homothetic, i.e.
Λ1 = αΛ2 for some α ∈ C∗. In particular any complex elliptic curve E/C is isomorphic to some
C/Λτ , where Λτ = Z + Zτ with τ ∈ H. Moreover, given τ1, τ2 ∈ H, the lattice Λτ1 and Λτ2 are
homothetic if and only if τ1 and τ2 are in the same SL2(Z)-orbit.

The modular curve X(1) has genus 0, so X(1)C ' P1(C). But X(1) has the additional structure
of an algebraic curve over Q. The function field of X(1)C is C(j); to get a Q-structure we fix
the subfield Q(j), which is the function field of P1

Q. Thus a point on X(1) is defined over Q if
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and only if the value of j at that point is in Q ∪ {∞}.

We have many choices for a generator j for C(j), but we can fix one by specifying its value at
three points. We take

j(∞) =∞
j(i) = 1728

j(ρ) = 0

where ρ = (1 +
√
−3)/2. Writing q = e2πiτ , it can be shown that the resulting j is given by

j =
1

q
+ 744 + 196884q + ... ∈ Z((q)).

So an isomorphism class of elliptic curves E over C is defined over Q if and only if j(E) ∈ Q;
i.e. E has a Weierstrass equation with coefficients in Q.

Now let Γ ≤ SL2(Z) be an index d subgroup. We have a map XΓ → X(1) (induced by the
identity on H). This is a covering map of Riemann surfaces of degree d. It is unramified, except
possibly above j = ∞, 0, 1728. Above j = ∞, the ramification degree is just the width of that
cusp. Above j = 0, the ramification degree can be 1 or 3; above j = 1728 it can be 1 or 2. The
Riemann–Hurwitz formula states

2g(Γ)− 2 = d(2× 0− 1) +
∑
P∈XΓ

(eP − 1)

(recall X(1) has genus 0). Thus

g(Γ) = 1− d+
1

2

∑
P

(eP − 1).

For example, take Γ = Γ0(2). Then d = 3. Above ∞ we have two points: 0 with multiplicity 2,
and ∞ with multiplicity 1. Above i we have two points: again one has multiplicity 2, and the
other has multiplicity 1. Above ρ we have a single point with multiplicity 3. (These numbers can
be verified by drawing the fundamental domain.) It follows that∑

P

(eP − 1) = 1 + 1 + 2 = 4,

and hence that g(Γ0(2)) = 0.

For all N ≥ 1, X0(N) and X1(N) have models over Q, while X(N) is only defined over Q(ζN ).
X0(2) has function field Q(t). In particular, the covering X0(2) → X(1) expresses Q(t) as an
extension of Q(j). Thus j = F (t), where F is a rational function of degree 3. We choose t so
that above j =∞ we have t = 0,∞,∞. This means that

F (t) =
cubic in t

t
.

Above j = 0, e = 3, so we know that

F (t) =
(t+ a)3

t
.

Above j = 1728 we see

F (t)− 1728 =
(t+ b)2(t+ c)

t
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where a, b, c, 0,∞ are distinct. Thus

(t+ a)3 = 1728t+ (t+ b)2(t+ c).

This implies that (a, b, c) = ±(16,−8, 64). Thus

j =
(t+ 16)3

t

and

j − 1728 =
(t− 8)2(t+ 64)

t
.

For ` ≥ 5 prime,

g(X0(`)) =


`−3
12 ` ≡ 1 mod 12,
`−5
12 ` ≡ 5 mod 12,
`−7
12 ` ≡ 7 mod 12,
`+1
12 ` ≡ 11 mod 12.

In particular, g(X0(`)) = 0 if and only if ` = 2, 3, 5, 7, 13. The parameters t = t` can be chosen
to satisfy

j =
(t+ 27)(t+ 3)2

t
for ` = 3,

j =
(t2 + 10t+ 5)3

t
for ` = 5,

j =
(t2 + 13t+ 49)(t2 + 5t+ 1)3

t
for ` = 7,

j =
(t2 + 5t+ 13)(t4 + . . . )3

t
for ` = 13.

The modular curve X(N) has genus 0 for N = 1, 2, 3, 4, 5. Also, g(X(6)) = 1, and g(X(7)) = 3.

Level structure. For X0(N), the additional structure on the isomorphism classes of elliptic
curves is a cyclic subgroup of order N . Thus we consider pairs (E,C) where E is an elliptic curve
and C is a cyclic subgroup of E of order N . We say (E1, C1) ∼ (E2, C2) if and only if there is
an isomorhism α : E1 → E2 such that α(C1) = C2. One can easily show that, at least as sets,
Y0(N) = {(E,C) as above }/ ∼.

Indeed, take Ei = C/Λτi with cyclic subgroup Ci = 〈 1
NZ + τiZ〉 for i = 1, 2. Let g =

(
a b
c d

)
∈

SL2(Z) be such that

τ2 =
aτ1 + b

cτ1 + d
.

Then g maps C1 to C2 if and only if g ∈ Γ0(N).

One can also regard Y0(N) as parameterising isomorphism classes of pairs (E,E′) with a cyclic
isogeny E → E′. Thus a rational point on Y0(N) gives an elliptic curve E/Q together with an
N -isogeny defined over Q.

For example, consider X0(2), so j = (t+ 16)3/t. For fixed j, the three values of t correspond to
the three possible 2-isogenies from E (with j(E) = j, j 6= 0, 1728). For example, consider the
elliptic curves

y2 = x(x− 1)(x+ 2).
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Then j(E) = 2673/32. We get t = 64/3, 8/3,−72.

The Fricke involution and dual isogenies. Let ϕ : E → E′ be a cyclic isogeny of degree N ,
and set C = ker(ϕ). The dual isogeny ϕ̂ : E′ → E is characterised by the condition ϕ̂◦ϕ = [N ]E .
The map

wN : (E,C) 7→ (E′, ϕ(E[N ])),

or equivalently
wN : (E,E′) 7→ (E′, E),

is called the Fricke involution on X0(N). For example, on X0(2) the Fricke involution is the map
t 7→ 4096/t. This fixes ±64, which corresponds to j = 8000 and j = 1728. The former of these
gives an isomorphism class of elliptic curves E which have complex multipliction by

√
−2; the

latter gives an isomorphism class with complex multiplication by
√
−1.

The modular curve X0(11). Note that g(X0(11)) = 1. We would like (1) an equation for
X0(11), (2) a formula for the map X0(11)→ X(1). Now the curve

X+
0 (11) = X0(11)/〈w11〉

has genus 0, so we have a factorisation

X0(11)→ X+
0 (11)

∼−→ P1.

(This also holds for 9 other prime values of N in place of 11.) Thus X0(11) is hyperelliptic, and
the hyperelliptic involution is given by the Fricke involution.

We choose a modular function u with u(∞) =∞ which generates Q(X+
0 (11)). Specifically

u = q−1 + 5 + 17q + 46q2 + . . .

which is the quotient u = ε/ω of the weight 2 level 11 Eisenstein series

ε = 1 + 3q + 6q2 + . . .

by the weight 2 level 11 normalised cusp form

ω = q − 2q2 − q3 + . . . ,

both of which are anti-invariant under w11, so u is invariant. Take

v =
1

ω

du

q
= −q−2 − 2q−1 + 12 + 116q + . . . ,

which is anti-invariant under w11. Then comparing q-expansions gives

X0(11) : v2 = u4 − 16u3 + 2u2 + 12u− 7.

(See the Sage worksheet for details.) Making the change of variables

u =
6 + x

5− x
, v =

−11(2y + 1)

(x− 5)2

we get the expected Weierstrass equation

E : y2 + y = x3 − x2 − 10x− 20.
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We can compute the rational points

E(Q) = {∞, (5, 5), (5,−6), (16, 6), (16,−61)}.

Write j = a(u) + vb(u) (map from the (u, v)-curve to the j-line). Then a and b are polynomials
with deg(a) = 11, deg(b) = 9. Tabulating the j-invariants,

(x, y) (u, v) j
∞ (−1, 0) −215

(5, 5) ∞+ ∞
(5,−6) ∞− ∞
(16, 60) (−2,−11) −112

(16,−61) (−2, 11) −11× 1313

j = −215 is the j-invariant of an elliptic curve with complex multiplciation by (1 +
√
−11)/2.

The j-invariants −112 and −11× 1313 come from the elliptic curves 121a1 and 121a2, and there
is indeed a rational 11-isogeny between these non-isomorphic curves.

3 Lecture 2

Modular symbols provide a method to compute Sk(N), the space of cusp forms of weight k for
Γ0(N). One is interested in knowing

• dimensions (there are formulas for this)

• explicit bases, in terms of q-expansions,

• the action of the Hecke algebra T.

These are used in Sage. For example, at a Sage prompt, one can type CuspForm(group=Gamma0(11),
weight=2).basis(), and Sage will return the basis

q − 2q2 − q3 + q4 + q5 +O(q6)

or CuspForms(group=Gamma0(11), weight=10, prec=10).basis() and Sage will return the
basis

[q − 9q9 +O(q10),

q2 − 8q9 +O(q10),

q3 + 10q9 +O(q10),

...,

q8 + 4q9 +O(q10)]

In this lecture we will restrict to S2(N).

Cusp forms and homology. Given f ∈ Sk(N), we can form the holomorphic differential
ωf = 2πif(z)dz on X0(N). (To be precise this is actually the pullback of such a differential to
the upper half plane H). It follows that

dimS2(N) = g(X0(N)).

We use duality to switch from these cohomological objects to homology

H(N) := H1(X0(N),Z) ' Z2g.
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One can think of H(N) as being the free abelian group on closed paths on X0(N), modulo
homotopy. We also work with

H(N)∗ := H1(X0(N),Z; cusps),

the homology relative to the cusps. One can think of H(N)∗ as being generated by paths which
start and end at cusps (but are not necessarily closed in X0(N)).

If γ ∈ H(N) then γ defines a C-linear map

S2(N)→ C

by the rule

f 7→
∫
γ

ωf =: 〈γ, f〉.

We can therefore identify H(N) with a lattice of rank 2g in the dual space of S2(N), which has
complex dimension g and real dimension 2g.

The Hecke alegbra acts on H(N) and S2(N) in a compatible way:

〈γ|T, f〉 = 〈γ, f |T 〉

for all T ∈ T. Our strategy is to compute H(N) explicitly, and to compute the action of each
T ∈ T on H(N) as a 2g × 2g integer matrix. This will give us the structure of S2(N) as a Hecke
module, from which (by linear algebra) we can find out what we want, for example eigenforms.

Modular symbols. Let α, β ∈ P1(Q) = Q ∪ {∞}. We write {α, β} for the geodesic path in
H∗ from α to β. We use the same symbol to denote its image in X0(N), and the same symbol
again to denote the image of that in H(N)∗. As a path on the upper half plane, {α, β} is either
a vertical line or a semicircle in H meeting the real axis at rational points. We have the relations

{α, α} = 0,

{α, β}+ {β, α} = 0,

{α, β}+ {β, γ}+ {γ, α} = 0.

Also, for g ∈ Γ0(N), we have
{g(α), g(β)} = {α, β},

and one can use these to show that the class

{α, g(α)} ∈ H(N)

is independent of the choice of α. Furthermore, the map

g 7→ {α, g(α)}

defines a group homomorphism
Γ0(N)→ H(N)

(for any choice of α).

Let α = b/d, β = a/c be points of P1(Q). Define the matrix g =
(
a b
c d

)
∈M2(Z). Then

{α, β} = {g(0), g(∞)} = g{0,∞}.
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Using continued fractions, one can show that every {α, β} is a finite sum of paths of the form
g{0,∞} where g ∈ SL2(Z). We write

(g) = {g(0), g(∞)}

for such paths, where g ∈ SL2(Z).

Manin showed that these (g) generate H(N)∗, subject to the relations

(g0g) = (g) for g ∈ SL2(Z), g0 ∈ Γ0(N),

(g) + (gS) = 0,

(g) + (gTS) + (g(TS)2) = 0.

In the second and third relations,

S =

(
0 −1
1 0

)
,

T =

(
1 1
0 1

)
,

TS =

(
1 −1
1 0

)
.

To explain the second and third relations, one can check that S interchanges 0 and ∞, whereas
TS cycles the three points 0,∞, 1.

To recover H(N) from H(N)∗, we take the kernel of the boundary map

δ : H(N)∗ →
⊕

[α]∈Γ0(N)\P1(Q)

Z[α]

given by
δ({α, β}) = [β]− [α],

where [α] denotes the equivalance class of α in Γ0(N)\P1(Q).

Now the cosets of Γ0(N) in SL2(Z) are in bijection with elements of P1(Z/NZ), via(
a b
c d

)
7→ (c : d).

Indeed, note that

Γ0(N)

(
a1 b1
c1 d1

)
= Γ0(N)

(
a2 b2
c2 d2

)
if and only if

c1d2 ≡ c2d1 mod N,

if and only if
(c1 : d1) = (c2 : d2).

We will think of the symbols (c : d) as representing an element of H(N)∗, via

(c : d)↔ g =

(
a b
c d

)
↔ {g(0), g(∞)} =

{
b

d
,
a

c

}
.
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Here a, b are any integers such that ad−bc = 1 (we can choose such integers as gcd(c, d) = 1, and
a different choices of a, b leads to a matrix in the same Γ0(N)-coset). We refer to the symbols
(c : d) viewed as elements of H(N)∗ as M-symbols (after Manin).

Thus H(N)∗ is generated by M-symbols (c : d) subject to the relations

(c : d) + (d : −c) = 0

(c : d) + (c+ d : −c) + (−d : c+ d) = 0

The map δ is given in terms of M -symbols by

δ((c : d)) =
[a
c

]
−
[
b

d

]
,

and as above ker δ = H(N).

Now complex conjugation acts on H(N)∗ by

(c : d) 7→ (−c : d),

and we can factor out by this relation to form

H+(N) = H(N)/〈(c : d) = (−c : d)〉.

Then dimH+(N) = g (wheras dimH(N) = 2g). This is useful for speeding up implementations.

Example: N = 2. We have

P1(Z/2Z) = {(1 : 0), (0 : 1), (1 : 1)}.

These satisfy the relations
(0 : 1) + (1 : 0) = 0,

(1 : 1) + (1 : 1) = 0,

(1 : 0) + (0 : 1) + (1 : 1) = 0.

Thus
H(2)∗ = 〈(0 : 1)〉.

But (0 : 1) represents the path {0,∞}. Since [∞] 6= [0], this is not in ker δ, so we deduce that

H(2) = 0.

Example: N = 11. We have

P1(Z/11Z) = {(1 : 0), (0 : 0), (1 : 1), (2 : 1), (3 : 1), (4 : 1), (5 : 1), (−1 : 1), (−2 : 1), (−3 : 1), (−4 : 1), (−5 : 1).}

These satisfy the relations
(0 : 0) + (1 : 0) = 0

(1 : 1) + (−1 : 1) = 0

(2 : 1) + (5 : 1) = 0

(−2 : 1) + (−5 : 1) = 0

(3 : 1) + (−4 : 1) = 0

(−3 : 1) + (4 : 1) = 0

(0 : 0) + (1 : 0) + (−1 : 0) = 0

(1 : 1) + (−2 : 1) + (5 : 1) = 0

(2 : 1) + (4 : 1) + (−4 : 1) = 0

(−5 : 1) + (−3 : 1) + (3 : 1) = 0
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Thus
H(11)∗ = 〈A,B,C〉

where A = (2 : 1), B = (3 : 1), C = (0 : 1). Complex conjugation maps A 7→ A, B 7→ A − B,
C 7→ C. One can check that δ(A) = δ(B) = 0. Thus

H+(11) = 〈A〉.

The Hecke operator T2 acting on A is defined by the formal sum

T2(A) =

((
2 0
0 1

)
+

(
1 0
0 2

)
+

(
1 1
0 2

)){
0,

1

2

}
.

Carrying this out, we obtain

T2(A) = {0, 1}+

{
0,

1

4

}
+

{
1

2
,

3

4

}
= (1 : 1) + (4 : 1) +

{
1

2
, 1

}
+

{
1,

3

4

}
= (1 : 1) + (4 : 1) + (−5 : 1) + (−4 : 1)

= 0 + (B −A) + (−A) + (−B)

= −2A,

using the relations. Thus the Hecke eigenvalue is a2 = −2. Similarly, we can compute

p 2 3 5 7 11 13
ap −2 −1 1 −2 1 13

The value of a11 comes from looking at the Fricke involution

w11 : z 7→ −1

11z
.

This sends
{

0, 1
2

}
to
{
∞, −2

11

}
, so w11(A) = −A and so the eigenvalue is in fact −1; the value of

a11 is minus this. This gives us the first few Fourier coefficients of the q-expansion of the weigth
2 cusp form on Γ0(11). We can also compute numerical values for the periods

〈A, f〉 = ω1,

〈B, f〉 = ω2.

We have also obtain the sign in the functional equation of L(f, s). Recall that if

f =
∑
n≥1

anq
n

is a cusp form then the L-function is given by

L(f, s) =
∑
n≥1

ann
−s.

This is also given as a Mellin transform

L(f, s) = (2π)sΓ(s)−1

∫ i∞

0

(−iτ)f(τ)
dτ

τ
.

It follows that 〈{0,∞}, f〉 = −L(f, 1).
Observe the following pattern:
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p 2 3 5 7 11 13
1 + p− ap 5 5 5 10 10

This can be explained as follows. Note that

T2{0,∞} = {0,∞}+ {0,∞}+

{
1

2
,∞
}

= 3{0,∞}−
{

0,
1

2

}
,

thus
(T2 − 3){0,∞} = −A.

This implies that
(2 + 3)〈{0,∞}, f〉 = 〈A, f〉 = ω1,

hence,

L(f, 1) =
1

5
ω1,

or
L(f, 1)

ω1
=

1

5
.

In general (1 + p− Tp){0,∞} ∈ H+(11). Hence

L(f, 1)

ω1
=

np
1 + p− ap

where np ∈ Z, holds for all p 6= 11. Thus

np
1 + p− ap

=
1

5

with np ∈ Z, for all p 6= 11, so 1 + p− ap ≡ 0 (mod 5), as we had observed.

Next we ask: “how to construct the modular elliptic curve associated to a newform f ∈ S2(N),
when all we know is the q-expansion of f?” Well, the newform f ∈ S2(N), which is a Hecke
eigenform with integer eigenvalues ap, corresponds to the two-dimensional eigenspace in H(N)
spanned by A,B. Set

ω1 := 〈A, f〉,
ω2 := 〈B, f〉.

Thus ω1 and ω2 are complex numbers. Consider the lattice Λ = Zω1⊕Zω2. Then we know from
the theory that Ef := C/Λ is defined over Q, and has conductor N .

For example, consider again the case N = 11. Then we can compute

ω1 = 1.2692...,

ω2 =
ω1

2
+ 1.4588...× i.

Using 100 terms of the q-expansion, we can compute

c4 = 496 (to 10−11 decimal places),

c6 = 20008 (to 10−8 decimal places).
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From the theory, we know that these are in fact integers. We can then argue that

Ef : y2 + y = x3 − x2 − 10x− 20.

Again from the theory, we have
L(Ef , s) = L(f, s).

Our previous computations then give

L(Ef , 1)

ω1
=

1

5

?
=

5

52
|X(Ef ))| ,

where the final proposed equality comes from the Birch and Swinnerton-Dyer conjecture. In fact,
it is known in this case that X(E) is trivial.
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