
LECTURE 3: FUNCTORIALITY

J.W. COGDELL

1. Introduction

Langlands always viewed the “principle of functoriality” as central to his view of auto-
morphic representations. It is both a consequence of the local and global Langlands corre-
spondences and encompasses them as a special case. It gives a conceptual framework for the
transferring of automorphic or admissible representations.

Functoriality is mediated by admissible homomorphisms between L-groups. Let K denote
a local or global field. Let H and G be connected reductive groups over K and LH and LG
their L-groups.

Definition. A homomorphism u : LH → LG is called an L-homomorphism if

(i) it is a homomorphism over Gal(K̄/K), that is, the following commutes:

LH
u //

%%

LG

yy
Gal(K̄/K)

(ii) u is continuous

(iii) The restriction of u to Ĥ is a complex analytic u : Ĥ → Ĝ.

A consequence of this definition is that if G is quasisplit and φ ∈ Φ(H) then the compo-
sition u ◦ φ ∈ Φ(G) is also admissible. So L-homomorphisms are those that induce maps
Φ(u) : Φ(H) → Φ(G) on parameter spaces, as long as G is quasisplit. (It is possible that
they can induce maps on parameter spaces even if G is not quasisplit. This is a matter of
preserving “relevancy”.)

2. Local Functoriality

Now take K = F a local field. If we assume the LLC for G and H (which we know for many
representations and completely in some cases) then it is easy to see how an L-homomorphism
gives a transfer of admissible representations.
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Local Functoriality Diagram. Let F be local, H and G defined over F , and G quasisplit.
Let u : LH → LG be an L-homomorphism. Then for π ∈ Aφ(H) we have

LH
u // LG

π � // � // {Π} .

W ′
F

φ

XX

u◦φ

FF

where {Π} = Au◦φ(G) ⊂ A(G(F )).

So each π ∈ A(H(F )) determines a local L-packet Au◦φ(G(F )) of representations of G(F ).
What we really transfer is the Langlands parameter and hence their associated L-packets.
(However, remember that if π is unramified, the L-packet is a singleton.)

One of the important aspects of Functoriality is that it preserves Langlands L-functions
and ε-factors, essentially by definition. If u : LH → LG and r : LG → GLn(C) then the
composition r ◦ u : LH → GLn(C) and

L(s, π, r ◦ u) = L(s, (r ◦ u) ◦ φ) = L(s, r ◦ (u ◦ φ)) = L(s,Π, r)

and similarly

ε(s, π, r ◦ u, ψ) = ε(s,Π, r, ψ).

So we can view Functoriality as giving a map or transfer A(H(F ))→ A(G(F )) mediated by
the preservation of Langlands L- and ε-factors (through local Artin L- and ε-factors).

If we take G = GLn so that LG = GLn(C)×W ′
F then the L-packets for GLn are singletons,

and if we take r = id we get functoriality to GLn in terms of the analytic L-functions on
GLn that appeared in the LLC.

3. Global Functoriality

If we had a global version of the Weil-Deligne group (or maybe when we do) we could write
down a similar global functoriality diagram. In its absence we can think of a functoriality in
terms of a local/global compatibility as follows.

Let k be a global field, u : LH → LG an L-homomorphism. The local/global L-group
constructions are compatible, so for all places v of k u induces a L-homomorphism, which
we still denote by u : LHv → LGv. Then we can piece together the various local functoriality
diagrams to obtain

Global Functoriality Conjecture. Let u : LH → LG be an L-homomorphism. Let
π ' ⊗′πv be an irreducible automorphic representation of H(A). Then applying our local
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functoriality diagram at each place we obtain a “global diagram”

LH
u // LG

π = ⊗′πv πv
� // � // {Πv} {Π = ⊗′Πv}

W ′
kv

φv

XX

u◦φv

FF

Then at least one (if not all) of the Π formed this way should be an automorphic represen-
tation of G(A).

(Remember that if u ◦φv is unramified, which will be the case for almost all v, then Au◦φv
is a singleton. )

Again, this global functoriality should preserve global Langlands L-functions, that is, for
all r : LG→ GLn(C) we have

L(s, π, r ◦ u) =
∏
v

L(s, πv, r ◦ u) =
∏
v

L(s, r ◦ u ◦ φv) =
∏
v

L(s,Πv, r) = L(s,Π, r)

and similarly

ε(s, π, r ◦ u) = ε(s, π, r).

So, once again, you can view global functoriality as a transfer now of automorphic repre-
sentations (or L-packets) A(H)→ A(G) mediated by the equality of Langlands L-functions
and ε-factors.

4. The local Langlands correspondence revisited

Let us now consider Functoriality in the case of H = {e}, the trivial group. Then there is
no restriction on the G we can use as the target since H has no internal structure.

If we let F be a local field and take the Weil-Deligne from of the L-group then LH =
{e} × W ′

F = W ′
F . The only representation of H(F ) is the trivial one, 1, and the only

admissible homomorphism of W ′
F to LH is the identity map.

Now an L-homomorphism u : LH → LG is simply an admissible homomorphism from W ′
F

to LG and our local functoriality diagram takes the form

W ′
F

u // LG

1 � // � // {π} .

W ′
F

id

XX

u

FF
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where {π} = Au(G) is the L-packet associated to u and we have recovered the local Langlands
correspondence for G.

5. Galois theoretic examples (for GLn)

If L/K is a finite extension of local or global fields then

Gal(L̄/L) ⊂ Gal(K̄/K) or WL ⊂ WK or in the local case W ′
L ⊂ W ′

K .

If we look at the complex representations of these groups, say in Weil group setting, we have,
following Artin, induction and restriction operations

Rep(WL)
Ind−−−→ Rep(WK)

Rest−−−→ Rep(WL)

In terms of the LLC and GLC for GLn there should be analogous operations on admissible or
automorphic representations of GLn. These should all be expressible in terms of functoriality.
Now, the formalism of functoriality has a fixed base field, so there are some technical aspects
to changing fields that are handled by Weil’s restriction of scalars.

(a) Base change or automorphic restriction. This would correspond to the restric-
tion of representations from WK to WL above. We would need a transfer A(GLn(K)) →
A(GLn(L)). Weil’s restriction of scalars gives a group G = ResL/K(GLn) such that G(K) =
GLn(L). We have

G =

 ∏
Gal(L/K)

(GLn)σ

 and LG =

 ∏
Gal(L/K)

GLn(C)

oGal(K̄/K)

where the Galois action factors through Gal(L/K) where it acts by permuting the factors
in the product. Then the required L homomorphism u : LGLn → LG is simple the diagonal
embedding on the GLn(C). The map Φ(u) : Φ(GLn) → Φ(G) indeed corresponds to the
restriction WK → WL.

In the case of L/K solvable, Arthur and Clozel established this functoriality via the twisted
trace formula in both the local and global contexts.

(b) Automorphic induction. This would correspond to the induction of representations
from WL to WK . Suppose that L/K is separable of degree d. Then if ρ : WL → GLn(C)
we have Ind(ρ) : WK → GLnd(C). So we need a functoriality of the form A(GLn(L)) →
A(GLnd(K)).

To achieve this, we need to take H = ResL/K(GLn) and G = GLdn. The map on L groups

u : LH =

 ∏
Gal(L/K)

GLn(C)

oGal(K̄/K)→ LG = GLdn(C)×Gal(K̄/K)
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is given by the block diagonal embedding on Ĥ

Ĥ = GLn(C)× · · · ×GLn(C)→

GLn(C)
. . .

GLn(C)

 ⊂ ĜLdn

and Gal(L/K) maps into the Weyl group W (GLdn) as permutations of the blocks.

This was established for L/K solvable, both locally and globally, by Arthur and Clozel
via the trace formula. Local automorphic induction in general was established by Henniart
and Herb by character identities.

Note that while both base change and automorphic induction are best motivated for GLn,
the formalism works for any reductive algebraic group G.

6. Group theoretic examples

In these examples we take H split and G = GLn. The Galois group plays a minimal role.

(a) Tensor products. Let H = GLn ×GLm and G = GLnm. Then the tensor product of
matrices gives us a homomorphism of dual groups

⊗ : Ĥ = GLn(C)×GLm(C)→ Ĝ = GLnm(C)

which we extend trivially on GK = Gal(K̄/K) to a L-homomorphism.

Over a local field K = F we can define this by the LLC

GLn(C)×GLm(C)
⊗ // GLnm(C)

(π1, π2)
� // � // Π .

W ′
F

φ1×φ2

``

φ1⊗φ2

CC

Over a global field k, we would use a local/global principle. If we have π1 ' ⊗′π1,v a
cuspidal automorphic representation of GLn(A) and π2 ' ⊗′π2,v a cuspidal automorphic
representation of GLm(A), then for each pair of local components (π1,v, π2,v) we can apply
the local diagram to obtain a representation Πv of GLmn(kv). According to the global
functoriality conjecture, Π = ⊗′Πv should be an automorphic representation of GLnm(A).

We only know this in the trivial case of m = 1 and then in the cases

• n = m = 2, so A0(GL2)×A0(GL2)→ A(GL4), due to Ramakrishnan,

• n = 3,m = 2, so A0(GL3)×A0(GL2)→ A(GL6), due to Kim and Shahidi.
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Both of these were obtained by the method of L-functions, i.e, the converse theorem for
GLn.

(b) Symmetric and exterior powers. In this case both H and G are linear, say H = GLn
and G = GLN . There are two natural maps between linear groups, derived from successive
tensors, namely the symmetric and exterior powers:

Symk : GLn(C)→ GLN(C) and Λk : GLn(C)→ GLN(C)

where the choice of N depends on both n and k. We can extend these to L-homomorphisms
by making them trivial on GK = Gal(K̄/K).

For F a local field we can define these by the LLC, which remember is known for GL,

GLn(C)
Rk

// GLN(C)

π � // � // Π .

W ′
F

φ

[[

Rk(φ)

CC

where Rk = Symk or Λk and N is taken appropriately.

Over a global field k, we would use a local/global principle. If we have π ' ⊗′πv a
cuspidal automorphic representation of GLn(A) then for each local component πv we can
apply the local diagram to obtain a representation Πv of GLN(kv). According to the global
functoriality conjecture, Π = ⊗′Πv should be an automorphic representation of GLN(A).

For the symmetric power functoriality, all we only have results for n = 2 and k = 2, 3, 4.
These are:

• Sym2 : A0(GL2)→ A(GL3) due to Gelbart and Jacquet,

• Sym3 : A0(GL2)→ A(GL4) due to Kim and Shahidi,

• Sym4 : A0(GL2)→ A(GL5) due to Kim.

For exterior powers, in the case of Λn this functoriality should map A(GLn) → A(GL1)
and this is just the map π 7→ ωπ the central character. Otherwise, the only non-trivial case
we know is for n = 4 and k = 2, so

• Λ2 : A0(GL4)→ A(GL6) due to Kim.

These were all obtained by the method of L-functions and converse theorems.
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Note that if we knew the symmetric power liftings Symk : A0(GL2) → A(GLk+1) for all
k, then both the Ramanujan conjecture and Selberg’s eigenvalue conjecture for GL2 would
follow. Similarly for GLn.

(c) Classical groups (endoscopy). In this family of examples we take H to be a split or
quasisplit classical group (so Sp, SO, or U) and G = GLN for an appropriate N . Then we
will have natural embeddings LH ↪→ LG:

H LH LGLN GLN

Sp2n SO2n+1(C)×GK GL2n+1(C)×GK GL2n+1

SO2n+1 Sp2n(C)×GK GL2n(C)×GK GL2n

SO2n SO2n(C)×GK GL2n(C)×GK GL2n

SO∗2n SO2n(C) oGK GL2n(C)×GK GL2n

Un GLn(C) oGK (GLn(C)×GLn(C)) oGK ResE/K(GLn)

In each case LH occurs as the fixed point set of an involution in LG. This corresponds to
Langlands notion of endoscopic transfer.

These have been (somewhat) established by both methods.

• Arthur, in his book “The Endoscopic Classification of Representations” established this
in full generality, locally and globally, for the split classical groups. This was (is being) done
via various forms of the trace formula, as various Fundamental Lemmas get established. The
methods have been carried over to the quasisplit situation by Mok. I am not sure how this
is related to knowledge of the LLC and GLC for these groups.

• The L-function method carried this out for generic cuspidal representations of H.

The image on GLN can be characterized in term of L-functions.

7. Concluding unscientific postscript

• There was a recent conference on “The Future of the Trace Formula” in Banff. In its
current shape, it seems the trace formula could analyze the endoscopic transfer from “quasi-

classical” groups (i.e., such that Ĥ is a classical group). This always relies on various forms
of the trace formula and fundamental lemmas.

• The L-function method of establishing functoriality to GLn relies on the converse theo-
rem and the analytic control of twisted L-functions. The cases where the analytic properties
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of the L-functions can be handled by the Langlands–Shahidi method (Fourier coefficients of
Eisenstein series) have mostly been done. (Asgari and Shahidi are finishing up GSpin.) New
cases of functoriality by this method would rely on new integral representations for twisted
L-functions. As RPL would probably say, “that way madness lies” ...

Exercises

1. Let π ' ⊗′πv be a cuspidal representation of GL2(A) for some number field k. At almost
all places πv is unramified and there is an unramified Langlands parameter φv associated to
it. The Satake parameter(s) for πv is either the matrix, which we can take to be diagonal,

φv(Φv) = Aπv =

(
αv,1

αv,2

)
∈ T̂ ⊂ GL2(C)

or its entries, and for any representation r : GL2(C)→ GLn(C) we have

L(s, πv, r) = det(In − r(Aπv)q−sv )−1 and LS(s, π, r) =
∏
v/∈S

L(s, πv, r).

(a) What are the Satake parameters, local L-functions and the partial L-functions for
Λ2(π)? Can you see why this is LS(s, ωπ)?

(b) What are the Satake parameters, local L-functions and the partial L-functions for
Symk(π)?

2. Now let π ' ⊗′πv be an unitary automorphic representation of GLn(A) for some
number field k. At almost all places πv is unramified and there is an unramified Langlands
parameter φv associated to it. The Satake parameter(s) for πv is either the matrix, which
we can take to be diagonal,

φv(Φv) = Aπv =

αv,1 . . .
αv,n

 ∈ T̂ ⊂ GLn(C).

A theorem of Jacquet and Shalika, coming from the theory of integral representations, says
that there is a uniform bound on the Satake parameters of unitary automorphic representa-
tions of GLn(C) of the form

q−1/2v ≤ |αv,i| ≤ q1/2v .

Note that n does not appear ... this is a uniform bound.

(a) Combining the Sym4 lift from GL2 to GL5 with the Jacquet–Shalika bound on Satake
parameters for GL5, what bounds on the Satake parameters for unitary cusp forms on GL2

do you get?

(b) If we knew the existence of all symmetric power lifts Symk : A0(GL2) → A(GLk+1)
what bounds on the Satake parameters for unitary cusp forms of GL2 would we have? This
is the Ramanujan conjecture for GL2. (Note, this is over any number field.)
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