
LECTURE 2: LANGLANDS CORRESPONDENCE FOR G

J.W. COGDELL

1. Introduction

If we view the flow of information in the Langlands Correspondence as

Galois Representations ←−−− automorphic/admissible
representations of GLn

then this is the approach to non-abelian CFT: understand Gal(k̄/k). However we can view
the flow in the other direction

Galois Representations −−−→ automorphic/admissible
representations of GLn

this gives an arithmetic parametrization of automorphic or admissible representations of
GLn.

Question. What if we want to replace GLn by some other group G? After all, this is the
strength of the Langlands program. The RHS is “understood”, but on the Galois side

ρ : Gal(k̄/k)→ GLn(C)

what plays the role of GLn(C) for general G?

This is the (Langlands) L-group LG. The L-group has its origin in the theory of Eisenstein
series and L-functions. Recall from SF that the classical Eisenstein series (un-normalized)
had a Fourier expansion

E(z, s) =

[
ys +

Z(2− 2s)

Z(2s)
y1−s

]
+ · · · =

[
ys +

Z(2s− 1)

Z(2s)
y1−s

]
+ · · ·

where Z(s) = π−s/2Γ( s
2
)ζ(s). Classically one could use the continuation and FE of ζ(s)

to derive that of E(z, s). Langlands had developed a theory of Eisenstein series for general
(reductive algebraic) G. Representation theoretically, Eisenstein series correspond to induced
representations and the formalization of Eisenstein series make these induced representations
automorphic. Langlands continued and proved the FE for his Eisenstein series without
recourse to zeta functions and then turned the classical process on its head and tried to
understand the Euler products that occurred in the constant terms of his Eisenstein series.
At his disposal he had

• Artin L-functions and their Euler products,
• Satake’s parametrization of spherical (unramified) representations (SF),
• his raw calculations, expressed in terms of structure theory of G.
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In his letter to Weil in 1967 and his Euler Products notes from the same year langlands
explained his notion of the L-group and how it expressed the Euler products that appeared
in his constant terms in terms of a new type of L-functions. This led to the LLC, GLC,
Functoriality, ...

2. The L-group LG

To explain the L-group we must have some structure theory. I will explain for GLn but
there is something similar for general G (reductive algebraic). For classical groups like Sp2n
or SO2n+1 you can think of them as linear groups in GLn to calculate with.

For G = GLn we have its Borel subgroup B = TU with T the diagonal torus and U the
upper triangular unipotent group:

T =



t1

t2
. . .

tn


 U =




1 u1,2 · · · u1,n
1 ∗ u2,n

. . .
...
1


 .

The Lie algebra of GLn is g = Lie(GLn) = Mn the n× n matrices.

Let K be a field of definition of G. (K could be local or global, and for GLn we can take
Q if we want.) Then we have

X(T ) = HomK(T,Gm) = the K-rational characters of T

∪
Φ(T ) = the roots of T in G = the characters occurring in the adjoint action of T on g

∪
Φ+(T ) = the positive roots = the characters occurring in the adjoint action of T on u = Lie(U)

∪
∆ = the simple roots = “basis” of Φ+(T )

For GLn the simple roots are ∆ = {α1, . . . , αn−1} where αi(t) = tit
−1
i+1, which occur on the

first diagonal rank of u.

And these have dual structures:

X∨(T ) = HomK(Gm, T ) = the K-rational one parameter subgroups of T

∪
Φ∨(T ) = the coroots of T in G

∪
∆∨ = the simple coroots

For GLn the simple coroots are the α∨i where α∨i (t) = diag(1, . . . , t, t−1, . . . , 1) with t in the
ith position.
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With this notation, the root datum for G is

Ψ(G) = (X(T ),Φ(T ), X∨(T ),Φ∨(T ))

and the based root datum is

Ψ0(G) = (X(T ),∆, X∨(T ),∆∨).

The reason this (essentially linear algebra) data is important is the following:

Theorem. [Chevalley, Steinberg] The root datum Ψ(G) determines G up to K̄-isomorphism.

Most groups are more complicated and involve a galois structure. (Think of unitary groups
which involve a quadratic extension E/K and its Galois conjugation in its definition.) How
to classify groups over non-algebraically closed fields? I believe this is due to Tits. You have
to use the based root datum and build in the Galois action. There is a split exact sequence

1 −−−→ Int(G) −−−→ Aut(G) −−−→ Aut(Ψ0(G)) −−−→ 1

The K structure is given by a morphism of µ : Gal(K̄/K) → Aut(G) which descends to
µ : Gal(K̄/K)→ Aut(Ψ0(G)).

Theorem. [Tits] G is determined up to K-isomorphism by Ψ(G) and the morphism µ :
Gal(K̄/K)→ Aut(Ψ0(G)).

Given this structure theory for G and his Euler product computations, Langlands first

defined a complex analytic dual group Ĝ as a first approximation to GLn(C). If we begin
with the root datum Ψ(G) associated to G and “dualize” in the sense of simply interchanging
X(T )↔ X∨(T ) and Φ(T )↔ Φ∨(T ) we get another root datum

Ψ(G)∨ = (X∨(T ),Φ∨(T ), X(T ),Φ(T ))

which then determines a group Ĝ over C such that Ψ(G)∨ = Ψ(Ĝ). This is the Langlands

dual group of G. [Langlands took Ĝ as a complex group, but Ψ(G)∨ determines a group over
any algebraically closed field.]

It is not hard to compute the dual group using structure theory, but note that this duality
“flips” groups of type B and C:

G Ĝ

GLn GLn(C)

Sp2n SO2n+1(C)

SO2n+1 Sp2n(C)

SO2n SO2n(C)

Note that we have recovered GLn(C) when G = GLn.
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To obtain the L-group as a group that actually sees G and not just G over K̄ he had to

work in the Galois action of Gal(K̄/K) on the complex group Ĝ. But this is “easy”. Since

Aut(Ψ0(G)) ' Aut(Ψ0(G)∨) ' Aut(Ψ0(Ĝ)) and Aut(Ψ0(Ĝ) → Aut(Ĝ) by our split exact

sequence above then we have µ : Gal(K̄/K)→ Aut(ψ0(Ĝ))→ Aut(Ĝ). So Langlands set

LG = ĜoµGal(K̄/K)

and this is the L-group of G. Note, for certain purposes we could take LG = ĜoµWK or
LG = ĜoµW

′
K since the Weil and Weil-Deligne groups naturally map to the Galois group.

The L-group let Langlands explain the Euler products that occurred in the constant terms
of his Eisenstein series. It also gave him a way to formulate the langlands correspondence
for general G, namely replace GLn(C) by LG.

3. Langlands Correspondence for G

F a local field. We begin with the local Langlands correspondence. We now have the
L-group of G at our disposal. What plays the role of the actual Galois representations ρ?
These are the admissible homomorphisms.

Definition. A homomorphism φ : W ′
F → LG is called admissible if

(i) it is a homomorphism over Gal(F̄ /F ), that is the following commutes:

W ′
F

φ //

$$

LG

zz
Gal(F̄ /F )

(ii) φ is continuous, φ(Ga) is unipotent in Ĝ, and φ(ΦF ) is semisimple,
(iii) “relevance” (roughly, if φ(WF ) lies in the Levi subgroup of a parabolic P , it must be

defined over F ).

For G(F ) in general we do not have an independent analytic theory of L-functions as for
GLn. So the original LLC was phrased in terms of representation theory.

Local Langlands Correspondence/Conjecture for G. Let G be a connected reductive
algebraic over F . There exists a surjective map

A(G) =

{
irreducible admissible

representations π of G(F )

}
→ Φ(G) =

{
φ : W ′

F → LG
admissible

}
with finite fibres Aφ such that A(G) =

∐
Aφ satisfying a list of 5 representation theoretic

desiderata.

Among the desiderata are
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• one π ∈ Aφ is square integrable ⇐⇒ all π ∈ Aφ are square integrable ⇐⇒ φ(W ′
F )

is not contained in a proper Levi
• one π ∈ Aφ is tempered ⇐⇒ all π ∈ Aφ are tempered ⇐⇒ φ(WF ) is bounded
• compatibility for certain maps H(F )→ G(F ) (abelian kernel and cokernel).

The fibres Aφ are called L-packets and φ is its Langlands parameter. This really would
be an arithmetic parametrization of the representations of G(F ).

What do we know (or did Langlands know)?

• If F is non-archimedean and π is spherical (unramified) then the parameter φ is

unramified (trivial on IF and Ga), Aφ is a singleton, and φ(ΦF ) = Aπ ∈ T̂ is the
Satake parameter of π.
• If G = T is a torus, this was established by Langlands in 1968.
• if F = R or C this was proved in complete generality by Langlands in 1973. This is

the Langlands classification.
• if G = GLn this is subsumed by the L-function version.
• Sporadic special cases (GSp4, Sp4, generic representations of SO2n+1).

k a global field. If we had a global Weil-Deligne group W ′
k we could give an analogous

global statement. Without that we can essentially do what we did for GLn, that is

A. Restrict to parameters of Galois type, i.e., of the form φ : Gal(k̄/k) → LG or φ : Wk →
LG, and ask what type of automorphic representations are parametrized by these.

B. Local/global compatibility. If π = ⊗′πv is a cuspidal automorphic representation of G(A)
then assuming the LLC for G(kv) each component πv determines a Langlands parameter
φv ∈ Φ(G(kv) and the collection φ = {φv} should fit together to give a “global parameter”
for π and so have an inferred compatibility.

4. Langlands L-functions

Remember, Langlands was trying to understand certain Euler products in terms of L-
functions. One goal of this parametrization was to define suitable L-functions. This was
done as follows.

We need one extra piece of data: a representation

r : LG→ GLn(C)

which is continuous and such that the restriction of r to Ĝ is complex analytic.

Local Langlands L-functions. If π is an irreducible admissible representation of G(F )
with Langlands parameter φ ∈ Φ(G), i.e., π ∈ Aφ, then if we compose the parameter φ with
our representation r we obtain a Weil-Deligne (or simply Artin) representation r ◦φ : W ′

F →
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GLn(C). We use this to then define the local L-function attached to π and r:

L(s, π, r) = L(s, r ◦ φ)

ε(s, π, r, ψ) = ε(s, r ◦ φ, ψ)

Note that the elements ofAφ cannot be distinguished by this class of (Langlands) L-functions,
hence the name L-packet.

Global Langlands L-functions. Even though we do not have a (even hypothetical) global
Langlands correspondence, we can none the less define global L-functions by local/global
compatibility and Euler products. Let k be a global field. If r : LG→ GLn(C) then by the
compatibility of the local and global L-groups, r will determine a complex representation of
LGv = LG(kv), which we still denote by r:

r : LGv → LG→ GLn(C).

If π ' ⊗′πv is an irreducible automorphic representation of G(A), then for each local
component πv we (hope to) have a local Langlands parameter φv ∈ Φ(Gv) And we set

L(s, π, r) =
∏
v

L(s, πv, r) =
∏
v

L(s, r ◦ φv) = L(s, r ◦ {φv})

ε(s, π, r) =
∏
v

ε(s, πv, r, ψv) =
∏
v

ε(s, r ◦ φv, ψv) = ε(s, r ◦ {φv})

• Even though we don’t know the LLC in general, we do know how to parametrize all
unramified local representations and all representations for v|∞. So there is a finite set of
places S outside of which the local component πv is parametrized. Se we have a well defined
partial L-function

LS(s, π, r) =
∏
v/∈S

L(s, πv, r).

This is very similar to the situation in Artin’s first paper on his L-functions where he only
had a definition of the local factors at the unramified places. Langlands proved that these
partial L-functions converged for Re(s)� 0.

It is an open problem in general to determine the L-factors for v ∈ S such that the
resulting Euler Product has meromorphic continuation and FE. This can be thought of as
an analytic/arithmetic problem independent of the local classification. There are currently
two methods for this.

(a) The Langlands-Shahidi method. Here one analyzes the L(s, π, r) for those π and r
that occur in the Fourier coefficients of Eisenstein series. These are essentially Lang-
lands’ original Euler products. This is essentially complete by the work of Shahidi.

(b) Integral representations. This method is active, but somewhat stuck at present. The
L-functions defined this way figured in the LLC and GLC for GLn. Often in the
theory of integral representations one identifies the L-functions represented in terms
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of Langlands L-functions by doing a local unramified calculation. Very seldom in the
local ramified analysis completed (except for GLn).

Exercises

1. Take the following two low rank algebraic groups and work out the roots, positive roots,
and simple roots and simple coroots.

(a) Sp4. Take the symplectic form to be represented by J =


1

1
−1

−1

 and define

Sp4(K) = {g ∈ GL4(K) | tgJg = J}
With this form, one can obtain a Borel subgroup by intersecting with the Borel of GL4.

(b) SO5. Now take the symmetric form to be represented by S =


1

1
1

1
1

 and

then
SO5(K) = {g ∈ GL5(K) | tgSg = S}

Again, with this form, one can obtain a Borel subgroup by intersecting with the Borel of
GL5.

2. Can you see any hints of the Langlands duality between Sp4 and SO5.
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