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Preface
These notes are for a course on Stochastic Analysis at King’s College London. Given

the limited time and diverse background of the audience we will only consider stochastic
integration with respect to Brownian motion. However in particular for application to
Financial Mathematics, this is sufficient to study a wide range of models and to understand
the major tools such as Girsanov’s Theorem and Feynman-Kac formula.

The notes are intended to serve as an intermediate step to more advanced books such as
the monographs by Karatzas and Shreve [9], Protter [17] or Revuz and Yor [18] among many
others. The monographs by Klebaner [10], Kuo [12], Mikosch [13] and Oksendal [16] might
be considered to be at a comparable level as these notes. One can also find some excellent
online sources for these courses, such as the lecture notes [14], [21] and [23].

The mathematics for stochastic analysis can be quite technical, in particular if one is
confronted with this part of probability theory the first time. In order to avoid that students
get lost in these technical details some parts of the notes are written in small print. Moreover,
due to the limited time, only a vanishing part of the theory can be presented here, and
sometimes I cannot resist to say a little more, which is then also written in small print. In any
case, text which is written in small print is not examinable.

Each chapter finishes with some exercises where the reader can apply the studied theory
and results (and which is essential to understand the mathematics). The exercises are
classified (very subjective) into the following categories:

• very basic;

• requires a bit of thinking/understanding, marked with (∗).

• slightly difficult, marked with (∗∗).

• rather straightforward but the topic and tools are not in the focus, marked with (\).

• slightly difficult and not in the focus of these notes, marked with (]).

The symbols appear at the end of subquestions they are refereing to. All questions are
examinable except those marked with (\) or (]). Nevertheless, also these questions marked
with (\) or (]) might help to understand the content better, and thus they also might help
to pass the exam.
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The first three chapters are presented in a different order in classes in order to make it
hopefully more interesting. Here we follow roughly the following order:

Definition 3.0.1 (Ex. 3.4.1)
Section 1.1 (Ex. 1.3.1 - 1.3.5, 1.3.8 - 1.3.10)

Proposition 3.2.1 (Ex. 3.4.1 - 3.4.6)
Proposition 3.2.2

Section 2.1 (Ex. 2.5.1 - 2.5.3, Ex. 2.5.6- 2.5.7)
Section 2.2

Theorem 3.2.3
Corollary 3.2.4

Section 1.2 (Ex. 1.3.6, 1.3.7)
Section 2.3 (Ex. 2.5.4, 2.5.5)
Section 3.3 (Ex. 3.4.7, 3.4.8

... (much later)
Section 2.4 (Ex. 2.5.8)

The numbers in bracket indicate the exercises you can tackle after this part of the course.
These notes benefited from the comments of a view students (and each comment is still

welcome!). In particular, I want to mention here and thank very much Rasmus Søndergaard
Pedersen (LGS) and Tomas Restrepo-Saenz (King’s College).
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1
The Tool: Stochastic Processes

Note: In the lecture classes the first three chapters of these notes are presented
in a different order than in this printed version. The order can be found in the
preface.

Let (Ω,A , P ) be a probability space. The integer d ∈ N is fixed and denotes the dimension
of the underlying space Rd. The Borel σ-algebra is denoted by B(Rd).

1.1. Some definitions

Recall that a random variable or random vector is a measurable mapping X : Ω→ Rd with
respect to A and B(Rd). In the case d > 2 the random variable X is also called random
vector.

Definition 1.1.1. Let I be a subset of [0,∞). A stochastic process with values in Rd is a
family (X(t) : t ∈ I) of random variables X(t) : Ω→ Rd for each t ∈ I.

In this course we most often consider stochastic processes in continuous time, that is
I = [0, T ] for a constant T > 0 or I = [0,∞). If I ⊆ N0 then we say that (X(t) : t ∈ I) is
a stochastic process in discrete time. Both notations X(t) and Xt are used in the literature
but in this course the latter is typically used for stochastic processes in discrete time.

There are at least two different perspectives on stochastic processes:

• for each fixed t ∈ I the object X(t) : Ω→ Rd is a random variable and the stochastic
process (X(t) : t ∈ I) might be considered as an ordered family of random variables;

• for each fixed ω ∈ Ω the collection {X(t)(ω) : t > 0} is a function

t 7→ X(t)(ω).

This mapping is called a path or a trajectory of X.
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three paths of a stochastic process

t 7→ X(t)(ω1)

t 7→ X(t)(ω2)

t 7→ X(t)(ω3)

If P -almost all (short: P -a.a.) paths of a stochastic process have a certain property, then
we describe the stochastic process by this property, e.g. a continuous stochastic process
(X(t) : t > 0) means that for P -a.a. ω ∈ Ω its trajectories t 7→ X(t)(ω) are continuous.
Here for P -a.a. ω ∈ Ω means that there exists a set Ω0 ∈ A with P (Ω0) = 1 such that
the property holds for all ω ∈ Ω0, e.g. the trajectories t 7→ X(t)(ω) are continuous for all
ω ∈ Ω0.

Example 1.1.2.

(a) Let X1, X2, . . . be independent, identically distributed random variables with

P (X1 = 1) = p P (X1 = −1) = 1− p,

for some fixed value p ∈ (0, 1). Define for each t > 0

R(t) :=

{
0, if t ∈ [0, 1),

X1 + · · ·+X[t], if t > 1,

where [t] denotes the largest integer smaller than t. It follows that (R(t) : t > 0)
is a stochastic process, the so-called random walk. Often this stochastic process is
considered in discrete time by (Rk : k ∈ N0) with Rk := X1 + · · ·+Xk for k ∈ N and
R0 = 0.

(b) Let X1, X2, . . . be independent, identically distributed random variables with expo-
nential distribution with parameter λ > 0, that is

P (X1 6 x) =

{
1− e−λx, if x > 0,

0, else
.
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Define S0 := 0 and Sn := X1 + · · ·+Xn for all n ∈ N. It follows that

N(t) :=

{
0, if t = 0,

max{k ∈ {0, 1, 2, . . . } : Sk 6 t}, if t > 0,

defines a stochastic process (N(t) : t > 0), the Poisson process with intensity λ > 0.

Poisson processes often model the occurrences of a sequence of discrete events, if the
time intervals between successive events are exponentially distributed.

(c) A stochastic process (X(t) : t > 0) is called Gaussian if for every 0 6 t1 6 . . . 6 tn
and n ∈ N the random vector

Z :=
(
X(t1), . . . , X(tn)

)
: Ω→ Rn

is normally distributed in Rn. In this case, the distribution of the random vector Z is
characterised by(

E[X(t1)], . . . , E[X(tn)]
)

and
(

Cov(X(ti), X(tj))
)n
i,j=1

.

In contrast to the other two examples it is not clear if Gaussian stochastic processes
exist!

0.2 0.4 0.6 0.8 1.0
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three paths of a Poisson process

Since the paths of a stochastic process are random it is not obvious which processes are
considered to be the same. In fact, there are two different notions for the equivalence of two
stochastic processes.

Definition 1.1.3. Let X = (X(t) : t ∈ I) and Y = (Y (t) : t ∈ I) be two stochastic
processes.
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(a) The stochastic processes X and Y are called a modification of each other if

P
(
X(t) = Y (t)

)
= 1 for all t ∈ I.

(b) The stochastic processes X and Y are called indistinguishable

P
(
X(t) = Y (t) for all t ∈ I

)
= 1.

In order that the definition of indistinguishable for stochastic processes in continuous time
makes sense it must be true that

{X(t) = Y (t) for all t > 0} ∈ A .

Since for a general probability space (Ω,A , P ) this need not to be true this requirement is
implicitly part of the definition.

It follows directly form the definition that if two stochastic processes X and Y are in-
distinguishable then they are also modification of each other. For stochastic processes in
continuous time with continuous paths also the converse direction is true (see Exercise 1.3.1).
In general this is not true as the following example shows.

Example 1.1.4. Let Ω = [0,∞), A = B([0,∞)) and P be a probability measure on A
which has a density. Define two stochastic processes (X(t) : t > 0) and (Y (t) : t > 0) by

X(t)(ω) =

{
1, if t = ω,

0, otherwise,
Y (t)(ω) = 0 for all t > 0 and all ω ∈ Ω.

Then X and Y are modification of each other but X and Y are not indistinguishable.

In typical applications such as financial mathematics or physics, a stochastic process
models the evolution of a particle or a share price in time. If the stochastic process is
observed at a fixed time t in such models, then only its values at time t and prior to time
t are known. Thus, at a time t only some specific information is available and the amount
of information increases as the time increases. Mathematically, the amount of information
available at different times is modelled by a filtration:

Definition 1.1.5. A family {Ft}t∈I of σ-algebras Ft ⊆ A for all t ∈ I with

Fs ⊆ Ft for all 0 6 s 6 t

is called a filtration.

Definition 1.1.6. A stochastic process X := (X(t) : t ∈ I) is called adapted with respect
to a filtration {Ft}t∈I if X(t) is Ft-measurable for every t ∈ I.

Then there is no ambiguity we sometimes say that a stochastic process is adapted without
mentioning the underlying filtration explicitly.

You might think of a filtration as the description of the information available at different
times. The σ-algebra Ft of a filtration {Ft}t∈I represents the information which is available
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at time t. One can think that the random outcome ω ∈ Ω is already specified but we are
only told at time t for all sets in the σ-algebra Ft whether this ω is in the set or not. The
more sets there are in Ft, the more information we obtain of an Ft-measurable random
variable. If (X(t) : t > 0) is an adapted stochastic process this means that the random
function t 7→ X(t)(ω) is already specified on the interval [0,∞) (by fixing ω ∈ Ω) but we
know at time s only the values of the function on the interval [0, s] but not on (s,∞).

Example 1.1.7. Let X := (X(t) : t > 0) be an {Ft}t>0-adapted stochastic process in the
following examples.

(a) The set A = {ω ∈ Ω : X(s)(ω) > 29.4 for all s 6 3.14} is an element in F3.14. The
set A is even in each Fs for s > 3.14.

(b) If X has continuous trajectories then the stochastic process Y := (Y (t) : t > 0) defined
by

Y (t) := sup
s∈[0,t]

|X(s)|

is adapted to the same filtration as X is.1

(c) The stochastic process Y := (Y (t) : t > 0) defined by

Y (t) := sup
s∈[0,t+1]

|X(s)|

is not adapted to the same filtration as X is (if we do not consider a very pathological
situation).

Most often one assumes the filtration which is generated by the process X itself, that is
at a time t the σ-algebra Ft contains all information which is decoded by X restricted to
the interval [0, t]. This is described more formally by

FX
t : = σ

(
X(s) : s ∈ [0, t]

)
:= σ

((
X(s)

)−1
([a, b]) : s ∈ [0, t],−∞ < a 6 b <∞

)
,

which means “the smallest σ-algebra” containing all the preimages2(
X(s)

)−1
([a, b]) := {ω ∈ Ω : X(s)(ω) ∈ [a, b]}

for all s ∈ [0, t] and all a, b ∈ R.

Example 1.1.8. Let Ω = {1, 2, 3}, A = P(Ω) and P ({ω}) = 1
3 for each ω ∈ Ω. Define a

stochastic process (X(t) : t > 0) by X(t)(ω) = max{t−ω, 0}. Then the filtration generated
by the stochastic process X computes as

FX
t =


{∅,Ω}, if t ∈ [0, 1],

{∅,Ω, {1}, {2, 3}}, if t ∈ (1, 2],

P(Ω), if t > 2.

1Why do I require that X has continuous paths?
2note, I really mean preimage and not the inverse of a function
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We end this subsection with some more technical definitions on filtration and measurability
of stochastic processes. These notions will not be in the center of our attention but they are
necessary to present the results in these notes correctly.

Let (X(t) : t > 0) be a stochastic process and {FX
t }t>0 the generated filtration. For

some technical reasons, see for example Exercise 1.1.10, we have to enlarge the filtration by
the set of the so-called null-sets:

N := {N ⊆ Ω : ∃B ∈ A such that N ⊆ B, P (B) = 0}.

Define the augmented3 filtration {FXt }t>0 generated by X by

FXt := σ(FX
t ∪N ) for all t > 0.

Thus, each σ-algebra FXt contains all null-sets N ∈ N .
Apart from including the set N in the filtration, often the so-called right-continuity

of a filtration is required. For example, this plays later an important role in part (b) of
Proposition 1.2.7.

Definition 1.1.9. A filtration {Ft}t>0 satisfies the usual conditions if

(a) N ⊆ F0. (completion)

(b) Ft =
⋂
s>t

Fs for all t > 0. (right-continuity)

Example 1.1.10. In Example 1.1.4 the stochastic processes X and Y are modifications of
each other. But although the stochastic process Y is adapted to the generated filtration
{FY

t }t>0 the modification X is not adapted to the same filtration.
This problem can not occur if the filtration {Ft}t>0 is required to be complete. Then, if

X and Y are modification of each other it follows for every B ∈ B(R) and t > 0

{Y (t) ∈ B} = {X(t) ∈ B}\{Y (t) /∈ B,X(t) ∈ B} ∪ {Y (t) ∈ B,X(t) /∈ B}.

Completeness of the filtration guarantees for all t > 0 that

{Y (t) /∈ B,X(t) ∈ B}, {Y (t) ∈ B,X(t) /∈ B} ∈ Ft,

since both sets are subsets of the set {X(t) 6= Y (t)}.

Definition 1.1.11. The stochastic process X := (X(t) : t > 0) is called measurable if the
mapping

R+×Ω→ Rd, (t, ω) 7→ X(t)(ω)

is measurable with respect to B(R+)⊗A and B(Rd).

3Oxford dictionary: augmented: adjective 1) having been made greater in size or value
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One of the reasons to require the measurability is that we often want to define the time
integral of a stochastic process and we want to take the expectation of the resulting new
random variable. More specifically, if the stochastic process (X(t) : t > 0) has trajectories
s 7→ fω(s) := X(s)(ω) which are integrable functions fω : R+ → R for all ω ∈ Ω then

Y (t) :=

∫ t

0

X(s) ds

defines a random variable Y (t) : Ω→ R for each t > 0. If in addition the stochastic process
X is measurable then Fubini’s theorem can be applied and it follows that

E

[∫ t

0

|X(s)| ds
]

=

∫ t

0

E[|X(s)|] ds.

1.2. Stopping Times

Definition 1.2.1. A random variable τ : Ω → [0,∞] is called a stopping time of the
filtration {Ft}t>0 if

{τ 6 t} ∈ Ft for all t > 0.

Example 1.2.2.

(a) Every constant τ(ω) := c for all ω ∈ Ω for a constant c > 0 is a stopping time.

(b) An important example is the hitting time of a constant a ∈ R for a stochastic process
(X(t) : t > 0):

τa : Ω→ [0,∞], τa(ω) := inf{t > 0 : X(t)(ω) = a}.

This mapping is not always a stopping time but in Proposition 1.2.7 we give conditions
under which this is true.

(c) Let (X(t) : t > 0) be an adapted stochastic process with continuous paths and let
A ⊆ R be a set. A typical example of a random variable which is not a stopping time
is

Y : Ω→ [0,∞], Y (ω) := sup{t > 0 : X(t)(ω) ∈ A}.

This random variable describes the last time that the stochastic process X visits the
set A.

Example 1.2.3. In the setting of Example 1.1.8 define

τ : Ω→ [0,∞), τ(ω) := inf{t > 0 : X(t)(ω) > 0}.

Then τ is not a stopping time as {τ 6 1} = {1} but {1} /∈ F1.
But τ is a so-called optional time. A mapping τ : Ω → [0,∞) is called an optional time if {τ < t} ∈ Ft

for all t > 0.
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Financial Mathematics 1. American options do not have a fixed exercise time, the holder
can exercise an American option at any time agreed at conclusion of the contract. By
means of stopping times the value of an American option can be defined and in some cases
calculated explicitly. Let the stochastic process (S(t) : t ∈ [0, T ]) model a share price. Then
the American call option with strike price K can be described by the stochastic process
(A(t) : t ∈ [0, T ]) for A(t) := max{S(t)−K, 0} and its (non-discounted) value at time t is
given by

V (t) = sup
τ∈Υ

E[A(τ)|FS
t ],

where Υ := {τ : Ω→ [0, T ] : τ is stopping time with respect to {FS
t }t∈[0,T ]}.

Another application of stopping times in Financial Mathematics are default times in credit
risk models. Here, typically

τ := inf{t > 0 : V (t) 6 0} or τ := inf{t > 0 : V (t) 6 c},

where the stochastic process (V (t) : t > 0) models the firm value and c is a safety barrier.

Theorem 1.2.4. If τ and ϕ are stopping times then

(a) τ + ϕ is a stopping time;

(b) τ ∧ ϕ := min{τ, ϕ} is a stopping time;

(c) τ ∨ ϕ := max{τ, ϕ} is a stopping time;

Proposition 1.2.5. Let (X(t) : t > 0) be a stochastic process with continuous paths and
adapted to a filtration {Ft}t>0 and let τ be a stopping time with respect to the same filtration.

(a) The mapping

X(τ) : Ω→ R, X(τ)(ω) :=

{
X(τ(ω))(ω), if τ(ω) <∞,
0, else

defines a random variable.

(b) The random variables

X(t ∧ τ) : Ω→ R, X(t ∧ τ)(ω) =

{
X(t)(ω), if t 6 τ(ω),

X(τ(ω))(ω), else,

form a continuous stochastic process (X(t ∧ τ) : t > 0) adapted to {Ft}t>0.

Proof. See [9, Prop. I.2.18].

The stochastic process (X(t ∧ τ) : t > 0) defined in Proposition 1.2.5 is called a stopped
process.



Chapter 1. The Tool: Stochastic Processes 9

Example 1.2.6. Let (X(t) : t > 0) be a continuous stochastic process and define for a
constant a ∈ R

τa : Ω→ [0,∞], τa(ω) := inf{t > 0 : X(t)(ω) = a}.

Then we have X(τ) = a.

An important example of a stopping time is provided by the following result. Note that
we employ a standard convention that the infimum of the empty set is infinity.

Proposition 1.2.7. Let (X(t) : t > 0) be an {Ft}t>0-adapted stochastic process with
continuous paths and define for A ∈ B(R) the random time

τA : Ω→ [0,∞], τA(ω) := inf{t > 0 : X(t)(ω) ∈ A}.

(a) If A is a closed set then τA is a stopping time of {Ft}t>0.

(b) If A is an open set and the filtration {Ft}t>0 satisfies the usual condition then τA is
a stopping time of {Ft}t>0.

Proposition 1.2.7 clarifies part (b) in Example 1.2.2: if X is a continuous, stochastic
process then the hitting time

τa := inf{t > 0 : X(t) = a}

of a constant a ∈ R is a stopping time of the filtration {FX
t }t>0. This is due to the simple

fact that {a} is a closed set.
Part (b) of Proposition 1.2.7 is true under much more generality, see Début Theorem.

Example 1.2.8. In Example 1.2.3, the random time τ is of the form τA for A = (0,∞) as
defined in Proposition 1.2.7. However, τ is not a stopping time as showed in Example 1.2.3,
and Proposition 1.2.7 cannot be applied since the filtration is not right-continuous.

1.3. Exercises

1. Let X = (X(t) : t ∈ I) and Y = (Y (t) : t ∈ I) be two stochastic processes.

(a) Show that if X and Y are indistinguishable then they are modification of each
other.

(b) Assume that I = [0,∞) and that X and Y have continuous trajectories. Show
that if X and Y are modifications then they are also indistinguishable.

2. Let T be a non-negative random variable with a density and define two stochastic
processes X and Y by

X(t)(ω) = 0, Y (t)(ω) =

{
0, if T (ω) 6= t,

1, if T (ω) = t,
for all ω ∈ Ω, t > 0.

Show that X is a modification of Y but that X and Y are not indistinguishable.
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3. Let (Y (t) : t > 0) be a modification of X(t) : t > 0). Show that then the finite-
dimensional distributions coincide:

P (X(t1) ∈ B1, . . . , X(tn) ∈ Bn) = P (Y (t1) ∈ B1, . . . , Y (tn) ∈ Bn)

for all t1, . . . , tn > 0 and B1, . . . , Bn ∈ A . (∗)

4. (from [16]). Let Ω = {1, 2, 3, 4, 5}.
(a) Find the smallest σ-algebra C containing

S := {{1, 2, 3}, {3, 4, 5}}.

(b) Is the random variable X : Ω→ R defined by

X(1) = X(2) = 0, X(3) = 10, X(4) = X(5) = 1

measurable with respect to C ?

(c) Find the σ-algebra D generated by Y : Ω→ R and defined by

Y (1) = 0, Y (2) = Y (3) = Y (4) = Y (5) = 1.

5. Let Ω = [0, 1] and A = B([0, 1]). Define a stochastic process (Xn : n ∈ N) by

Xn(ω) := 2ω1
[0,1− 1

n ]
(ω).

Show that the generated filtration {FX
n }n∈N is given by (∗)

FX
n =

{
A ∪B : A ∈ B

(
(0, 1− 1

n ]
)
, B ∈

{
∅, {0} ∪ (1− 1

n , 1]
}}

6. Show part (c) of Theorem 1.2.4.

7. Let σ, τ be stopping times with respect to a filtration {Ft}t>0.

(a) Show that

Fτ := {A ∈ A : A ∩ {τ 6 t} ∈ Ft for all t > 0}.

is a σ-algebra;

(b) Show that if σ 6 τ then the σ-algebras defined in (a) satisfy Fσ ⊆ Fτ ;

8. There are four different “standard” definitions for Poisson processes, which are equiv-
alent. We show that the definition in Example 1.1.2 and the following are equivalent:
Definition 1.3.1. A stochastic process (N(t) : t > 0) is called a Poisson process with
intensity λ > 0 if

(i) N(0) = 0;
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(ii) for every 0 6 t1 6 . . . 6 tn, n ∈ N the random variables

N(t2)−N(t1), . . . , N(tn)−N(tn−1)

are independent (independent increments);

(iii) for all 0 6 s 6 t and k ∈ N we have

P (N(t)−N(s) = k) =
(λ(t− s))k

k!
e−λ(t−s).

(stationary and Poisson distributed increments)

The proof of the implication from Example 1.1.2 to Definition 1.3.1 can be divided
into smaller steps, where I follow Section 6 in [3]. Let N be a Poisson process as
constructed in Example 1.1.2 based on the random variables X1, X2, . . . .

(a) P (N(t) = k) =
(λt)k

k!
e−λt for all t > 0, k ∈ N0. (])

(b) Define for some t > 0 the sum Rtn := Y t1 + · · ·+ Y tn where

Y t1 := SN(t)+1 − t, Y tn := XN(t)+n, n = 2, 3, . . . .

Show that the stochastic process (Qt(s) : s > 0) defined by

Qt(s) :=

{
0, if s = 0,

max{k ∈ {0, 1, 2, . . . } : Rtk 6 s}, if s > 0,

obeys P -a.s. the equality Qt(s) = N(t+ s)−N(t) for all s > 0. (\)

(c) Show that for all k ∈ N and si > 0, i = 0, . . . k, we have

P
(
Y t1 > s1, . . . , Y

t
k > sk|N(t)

)
= P (X1 > s1) · · ·P (Xk > sk). (1.3.1)

(Hint: start with k = 1.) (])

(d) The stochastic process (Qt(s) : s >) is a Poisson process (in the sense of Example

1.1.2) and it is independent of N(t) with Qt(s)
D
= N(s) for all s > 0. (\)

(e) Conclude that every stochastic process of the form constructed in Example 1.1.2.b
satisfies Definition 1.3.1. (\)

Do not forget to show the converse. (\)

9. Assume that the service of busses starts at 8pm and then they arrive according to a
Poisson process of rate λ = 4 per hour. John starts to wait for a bus at 8pm.

(a) What is the expected waiting time for the next bus?

(b) At 8:30pm John is still waiting. What is now the expected waiting time?

10. Show that if N1 and N2 are independent Poisson processes with intensity λ1 > 0 and
λ2 > 0, respectively, then N1 +N2 is also a Poisson process.





2
Martingales

We state the following definition for martingales for both in discrete time (I ⊆ N0) or in
continuous time (I ⊆ [0,∞)).

2.1. Definition

Definition 2.1.1. Let {Ft}t∈I be a filtration. An adapted stochastic process (M(t) : t ∈ I)
is called

(a) a martingale with respect to {Ft}t∈I if

(i) E[|M(t)|] <∞ for all t ∈ I;

(ii) E[M(t)|Fs] = M(s) P -a.s. for all 0 6 s 6 t and s, t ∈ I.

(b) a submartingale if

(i) E[|M(t)|] <∞ for all t ∈ I;

(ii) E[M(t)|Fs] >M(s) P -a.s. for all 0 6 s 6 t and s, t ∈ I.

(c) a supermartingale if

(i) E[|M(t)|] <∞ for all t ∈ I;

(ii) E[M(t)|Fs] 6M(s) P -a.s. for all 0 6 s 6 t and s, t ∈ I.

In Definition 2.1.1, the condition in part (i) is the technical condition such that the
conditional expectation considered in part (ii) is defined. A martingale (M(t) : t ∈ I) can
be considered as a stochastic process which describes a “fair” game in the following sense:
the best approximation of the future value M(t) given all information available today at
time s, equals the value M(s) observed today. In other words, the martingale M has no
systematic up- or downwards movements.
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Example 2.1.2.

(a) Let X1, X2, . . . be independent, integrable random variables with E[Xk] = 0 for all
k ∈ N. Then

Sn := X1 + · · ·+Xn

defines a martingale (Sn : n ∈ N) in discrete time with respect to the filtration
FS
n := σ(S1, . . . , Sn) for n ∈ N.

(b) Let (N(t) : t > 0) be a Poisson process with intensity λ. Then (N(t)− λt) : t > 0) is
a martingale with respect to the filtration FN

t := σ(N(s) : s 6 t), see Exercise 2.5.1.

(c) Let X be a random variable with E[|X|] < ∞ and let {Ft}t∈I be a filtration. Then
Y (t) := E[X|Ft] defines a martingale (Y (t) : t ∈ [0, T ]) with respect to {Ft}t∈I , see
Exercise 2.5.2.

Financial Mathematics 2. Efficient market hypotheses requires that asset prices in finan-
cial markets reflect all relevant information about an asset, which is called informationally
efficient. There are different forms: the weak efficient market hypotheses postulates that
asset prices cannot be predicted from historical information about prices. In particular,
this means that one cannot beat the market in the long run by using strategies based on
historical share prices. The strong efficient market hypothesis assumes that the share prices
reflect all information, public and private, and one cannot beat the market in the long run
even if one includes all private and public information.

If (S(t) : t > 0) denotes the share prices then the weak efficient market hypothesis means
that (exp(−µt)S(t) : t > 0) is a martingale with respect to the generated filtration {FS

t }t>0.
Here, µ denotes the expected growth rate of the share price. The strong efficient market
hypothesis requires that (exp(−µt)S(t) : t > 0) is a martingale with respect to the much
larger filtration {Gt}t>0, where Gt contains all private and public information available at
time t.

2.2. Equalities and Inequalities

Martingales satisfy some important relations and probably the most important one is the
so-called Doob’s maximal inequality which we will introduce below. However, some other
important relations follow easily directly from the martingale property.

Example 2.2.1. A martingale (M(t) : t ∈ I) with respect to {Ft}t∈I and with E[|M(t)|2] <
∞ for all t ∈ I satisfies:

(a) E[(M(t)−M(s))2|Fs] = E[M2(t)|Fs]−M2(s) for all t > s and s, t ∈ I.

(b) E[(M(t)−M(s))2] = E[M2(t)−M2(s)] for all s, t ∈ I.

(c) E[M(s)(M(t)−M(s))] = 0 for all 0 6 s 6 t and s, t ∈ I (orthogonality of increments).
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In the following result we consider martingales in continuous times. An analogue result for
martingales in discrete time is available but there the assumption of continuous martingale
does not make much sense.

Theorem 2.2.2. (Doob’s maximal inequality)
Let (M(t) : t ∈ [0, T ]) be a continuous martingale (or a non-negative submartingale). Then
we have

(a) for p > 1 and λ > 0 that

λpP

(
sup
t∈[0,T ]

M(t) > λ

)
6 E[|M(T )|p].

(b) for p > 1 that

E

[
sup
t∈[0,T ]

|M(t)|p
]
6

(
p

p− 1

)p
E [|M(T )|p] .

Proof. The inequalities follow from the analogue result for martingales in discrete time, see
[18, Th. II.1.7].

2.3. Optional Stopping Theorem

A stopping time τ defines the σ-algebra prior to the stopping time by

Fτ := {A ∈ A : A ∩ {τ 6 t} ∈ Ft for all t > 0},

see Exercise 1.3.7. One can think of Fτ as the information which is described by the random
time τ . A stopping time is called bounded if there exists a constant c > 0 such that τ(ω) 6 c
for all ω ∈ Ω.

Theorem 2.3.1. (Optional Stopping Theorem)
Let (M(t) : t > 0) be a continuous stochastic process with E[|M(t)|] < ∞ for all t > 0 and
adapted to a filtration {Ft}t>0. Then the following are equivalent:

(a) M is a martingale w.r.t. {Ft}t>0;

(b) (M(τ ∧ t) : t > 0) is a martingale w.r.t. {Ft}t>0 for all stopping times τ ;

(c) E[M(τ)] = E[M(0)] for all bounded stopping times τ ;

(d) E[M(τ)|Fσ] = M(σ) for all bounded stopping times σ and τ with σ 6 τ .

Often, only the implication (a) ⇒ (d) is referred to as the Option Sampling Theorem.
In fact, we collect in Theorem 2.3.1 several results.

Note, that the assumption of a bounded stopping time is essential.
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Example 2.3.2. Let W be a Brownian motion (see Section 3) and define the stopping time

τ := inf{t > 0 : W (t) = 1}.

Here Proposition 1.2.7 guarantees that τ is a stopping time. Since W is a continuous
martingale according to Theorem 3.2.3 , the optional sampling Theorem 2.3.1 ((a)⇒ (b))
implies (W (t ∧ τ) : t ∈ [0, T ]) is a martingale and thus, we have

E[W (t ∧ τ)] = E[W (0)] for all t > 0.

However, we cannot conclude E[W (τ)] = E[W (0)], since the implication (a)⇒ (c) in The-
orem 2.3.1 requires that the stopping time is bounded, which is not true although we have
P (τ <∞) = 1, see Proposition 3.3.1.

In fact, the equation E[W (τ)] = E[W (0)] would imply E[W (τ)] = 0 since W (0) = 0
which contradicts the fact that W (τ) = 1.

2.4. Local Martingales

In later sections we will consider stochastic processes which satisfy the martingale prop-
erty only locally, that is only the stopped process is a martingale. This generalisation of
martingales will enrich our theory significantly and is fundamental for some applications in
financial mathematics.

Definition 2.4.1. A stochastic process (X(t) : t > 0) adapted to a filtration {Ft}t>0 is
called a local martingale w.r.t. {Ft}t>0 if there exists a non-decreasing sequence {τn}n∈N
of stopping times such that

(a) P
(

lim
n→∞

τn =∞
)

= 1;

(b)
(
X(t ∧ τn) : t > 0

)
is a martingale w.r.t. {Ft}t>0 for each n ∈ N.

The sequence {τn}n∈N is called localising for X.

We also call a stochastic process (M(t) : t ∈ [0, T ]) defined on a bounded interval a local
martingale if it satisfies the same definition. In this case it seems to be pointless to require
part (a) of the definition. In fact, in this case one can replace Condition (a) by

(a′) P
(

lim
n→∞

τn > T
)

= 1.

Example 2.4.2. A martingale (M(t) : t > 0) is a local martingale. This can be seen by
taking the constant mappings τn : Ω → [0,∞], τn(ω) := n for n ∈ N, which are stopping
times by Example 1.2.2.

The localising sequence for a local martingale is not unique. However, for a large class of
local martingales there exists a canonical choice for the localising sequence.
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Lemma 2.4.3. Let (X(t) : t ∈ [0, T ]) be a continuous local martingale. Then

τn := inf{t > 0 : |X(t)| > n}

defines a localising sequence {τn}n∈N for X.

In Financial Mathematics the problem occurs that one can construct the hedging strategy
as a local martingale but one does not know if it is a martingale.

Lemma 2.4.4. Every local martingale (X(t) : t > 0) with supt,ω |X(t)(ω)| < ∞ is a
martingale.

There is a necessary and sufficient condition known which guarantees that a continuous
local martingale is a martingale; see uniform integrability. Later we can easily construct
specific examples of local martingales which are not martingales. Here we give an explicit
example originating from [14] and [24].

Example 2.4.5. A local martingale which is not a martingale
We define a stochastic process (X(t) : t > 0) which attains only values in the integers and
it spends an exponentially distributed random time in each value.

Let {pk}k∈Z be a probability distribution on the integers Z which satisfies additionally

∞∑
k=−∞

k2pk <∞.

This assumption means that the probabilities pk of large numbers k or −k decrease rapidly
as k → ±∞.

Let the process X starts from 0 where it stays for an exponentially distributed time T0

which has expectation p0. At time T0, with equal probability it jumps up or down by the
value of a random variable Y1 which attains the values ±1 with equal probability. At the
level Y1 the stochastic process X stays for the exponentially distributed time T1 which is
independent of T0 and has expectation pY1

. At time T0 + T1 the stochastic process jumps
up or down which is determined by an independent random variable Y2 which attains the
values ±1 with equal probability. At the level Y1 + Y2 the stochastic process X stays for an
exponentially distributed time T3 with expectation pY1+Y2

. If the stochastic process X has
jumped to a value y in the k-th jump then it stays there for the exponentially distributed
time Tk which has expectation py and which is independent of all prior waiting times Tj
for j = 0, . . . , k − 1. Since the moments of the waiting times depend on the values of the
stochastic process X it is constructed in such a way that it spends a long time at the same
value if this value is near 0 and the time is short at levels away from 0. With some basic
arguments one can show that in this way the stochastic process X is defined on [0,∞) (and
that T1 + T2 + . . . does not accumulate at a finite time).

The stochastic process X is a local martingale with the localising stopping times τk :=
T0 + · · ·+ Tk−1 which is the time of the k-th jump. Since

X(t ∧ τk) =

k∑
i=1

Yi1{τi6t}
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and Yi is independent of B ∩ {τi ∈ (s, t]} for every B ∈ FX
s we obtain for 0 6 s 6 t that

E[(X(t ∧ τk)−X(s ∧ τk))1B ] =

k∑
i=1

E
[
Yi1B∩τi∈(s,t]

]
=

k∑
i=1

E[Yi]E
[
1B∩τi∈(s,t]

]
= 0,

which shows that X is a local martingale.
You can convince yourself that X is not a martingale by the following heuristic argument:

if for s < t the value X(s) is given then the expected value of X(t) is X(s). However, if
the latter is very large then this contradicts our intuition that the expected value of X(t) is
rather small since X spends most of the time near 0. A formal argument can be found in
[24].

2.5. Exercises

In this section W denotes a Brownian motion as introduced in Section 3.

1. Let (N(t) : t > 0) denote the Poisson process, constructed in Example 1.1.2. Show
that the following stochastic processes are martingales w.t.r {FN

t }t>0:

(a) (N(t)− λt : t > 0);

(b)
(
(N(t)− λt)2 − λt : t > 0

)
.

(c)
(
(N(t)− λt)2 −N(t) : t > 0

)
.

(Hint: use Exercise 1.3.8).

2. Let X be a random variable with E[|X|] < ∞ and let {Ft}t∈I be a filtration. Then
Y (t) := E[X|Ft] defines a martingale (Y (t) : t ∈ [0, T ]) with respect to {Ft}t∈I ,

3. Check whether the following stochastic processes (X(t) : t > 0) are martingales with
respect to the generated filtration {FW

t }t>0 where

(a) X(t) = W (t);

(b) X(t) = W 2(t);

(c) X(t) = exp(cW (t)− c2

2 t) for every constant c ∈ R;

(d) X(t) = W 3(t)− 3tW (t);

(e) X(t) = t2W (t)− 2
∫ t

0
sW (s) ds;

(f) X(t) = W 4(t)− 4t2W (t).

4. For a constant a > 0 define τ := inf{t > 0 : W (t) /∈ (−a, a)}.
(a) Give a reason that τ is a stopping time with respect to {FW

t }t>0.

(b) Show that

M(t) := exp
(
− c

2

2 t
)

cosh(cW (t))

defines a martingale (M(t) : t > 0) with respect to {FW
t }t>0.
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(c) Show that E[exp(−λτ)] = (cosh(a
√

2λ ))−1 for every λ > 0. (∗)

5. For constants a, b > 0 define τ := inf{t > 0 : W (t) = a + bt}. Show that for each
λ > 0 we have

E
[
e−λτ

]
= exp−a(b+

√
b2+2λ ) .

(Hint: use part (c) in question 4 with c = b+
√
b2 + 2λ ). (∗)

6. Let (Xk : k ∈ N0) be a submartingale with respect to a filtration {Fk}k∈N0
. Then

there exists a unique martingale (Mk : k ∈ N0) with respect to {Fk}k∈N0
and an

increasing sequence (Ak)k∈N0 of random variables Ak, where Ak is Fk−1-measurable
and A0 = 0, such that

Xk = Mk +Ak for all k ∈ N0 .

This is the so-called Doob-Meyer decomposition, which is also true for submartingales
in continuous times but there much harder to prove.

7. Let the share price be modeled by (S(t) : t > 0) where

S(t) = s0 exp
(
σW (t) +

(
r − 1

2σ
2
)
t
)

for all t > 0,

where s0 ∈ R+ and r, σ > 0. Calculate the value process (V (t) : t > 0) of an European
call option which is given by

V (t) =
1

er(T−t)
E[(S(T )−K)+|FW

t ] for all t > 0,

and where K > 0 denotes the strike price K > 0 and T > 0 the maturity. (\)

8. Let (Xk : k ∈ N) be a local martingale with E[|Xk|] < ∞ for all k ∈ N. Then it
follows that X is a martingale.
Note, this is only true because it is a local martingale in discrete time.





3
Brownian Motion

The most important example of a stochastic process is the Brownian motion which is also
called a Wiener process. The botanist Robert Brown (1773 -1858) observed an example of
a two-dimensional Brownian motion as the diffusion of pollen of different plants in water in
1827. However, Brown was not able to explain his observations. Later, the one-dimensional
Brownian motion was used by Louis Bachelier in his PhD thesis (Théorie de la spéculation,
Ann. Sci. École Norm. Sup. 17, 1900) to model a financial market. In 1905, Albert Einstein
published a theory to explain the motion of pollen observed by Brown. He observed that
the kinetic energy of fluids makes the molecules of water to move randomly. Thus, a pollen
grain is suspended to a random number of impacts of random strength and from random
directions. This random bombardment by the molecules of the fluid causes a small particle to
move as it was described by Brown. However, Einstein did not provide a mathematical proof
of the existence of a Browian motion. This was done in 1923 by the American mathematician
Norbert Wiener who used newly developed methods from measure theory. Finally, the work
by the Japanese Mathematician Kiyoshi Itô in the ’40s plays a fundamental role in the
application of Brownian motion in a wide spectrum of sciences such as biology, economics,
finance and physics.

Definition 3.0.1. A stochastic process (W (t) : t > 0) with values in Rd is called a d-
dimensional Brownian motion if

(a) W (0) = 0 P -a.s.

(b) W has independent increments, i.e.

W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

are independent for all 0 6 t1 < t2 < · · · < tn and all n ∈ N;

(c) the increments are normally distributed, i.e.

W (t)−W (s)
D
= N(0, (t− s) Idd)
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for all 0 6 s 6 t.

(d) W has continuous trajectories.

Condition (c) implies for every h > 0

W (t+ h)−W (s+ h)
D
= W (t)−W (s) for all 0 6 s < t.

Together with Condition (b) we can conclude for all 0 6 t1 < t2 < · · · < tn and all n ∈ N
that the random vector (

W (t2)−W (t1), . . . ,W (tn)−W (tn−1)
)

has the same joint distribution as the random vector(
W (t2 + h)−W (t1 + h), . . . ,W (tn + h)−W (tn−1 + h)

)
.

This property is called stationary increments.
In contrast to the case of a Poisson process in Example 1.1.2 a Brownian motion is only

formally defined. Thus, from a mathematical point of view, we should convince ourself now
that there exists a Brownian motion in a probability space. In fact, there are three common
ways to construct a Brownian motion, but in this course, we skip the mathematical proof
and assume its existence.

Since the Brownian motion W maps to the d-dimensional Euclidean space Rd we can
represent it componentwise:

W = ((W1(t), . . . ,Wd(t)) : t > 0).

Let k be in {1, . . . , d}. By property (c) it follows that for each 0 6 s < t the random variable
Wk(t) −Wk(s) is a normally distributed random variable with expectation 0 and variance
t − s. Moreover, property (b) implies that the one-dimensional stochastic process Wk :=
(Wk(t) : t > 0) has independent increments and therefore, Wk is also a Brownian motion
but with values in R. Furthermore, for all t > 0 the random variables W1(t), . . . ,Wd(t) are
independent since Cov(Wi(t)Wj(t)) = 0 for each t > 0 which together with (b) implies that
the stochastic processes W1, . . . ,Wd are independent. For these reasons, we will consider in
the remaining part of this chapter only one-dimensional Brownian motion, i.e. d = 1, and
the generalisation to the multi-dimensional setting is in most cases obvious.

Recall that for a given stochastic process W = (W (t) : t > 0) the generated filtration is
denoted by {FW

t }t>0, i.e.

FW
t = σ(W (s) : s ∈ [0, t]) for all t > 0.

The property (b) in Definition 3.0.1 is equivalent to

(b′) W (t)−W (s) is independent of FW
s for all 0 6 s < t. (3.0.1)

We often use this formulation instead of Condition (b).
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3.1. Brownian filtration
A mathematically more precise definition of Brownian motions includes the underlying filtration into the
definition, similarly as in the definition of a stopping time or of a martingale.

Definition 3.1.1. A stochastic process (W (t) : t > 0) with values in Rd and adapted to a filtration {Ft}t>0

is called a d-dimensional Brownian motion with respect to a filtration {Ft}t>0 if

(a) W (0) = 0 P -a.s.

(b) for every 0 6 s < t the increment W (t)−W (s) is independent of Fs.

(c) the increments are normally distributed, i.e.

W (t)−W (s)
D
= N(0, (t− s) Idd)

for all 0 6 s 6 t.

(d) W has continuous trajectories.

The main difference between Definition 3.0.1 and 3.1.1 is part (b). If {FW
t }t>0 denotes the filtration

generated by a Brownian motion W but not augmented, then Condition (b) in Definition 3.0.1 implies that
W (t) − W (s) is independent of Fs for every 0 6 s < t, see (3.0.1). Consequently, a Brownian motion
W satisfying Definition 3.0.1 is a Brownian motion with respect to {FW

t }t>0 in the sense of Definition
3.1.1. The problem of this subsection comes now from the fact that instead of the filtration {FWt }t>0 we
want to consider the larger augmented filtration {FWt }t>0. Considering the augmented filtration has the
important advantage that it satisfies the usual conditions, see Definition 1.1.9, whereas this is not true for
the generated, non-augmented filtration.

Proposition 3.1.2. The augmented filtration {FWt }t>0 of a Brownian motion satisfies the usual conditions,
i.e.

(a) N ⊆ FW0 .

(b) FWt =
⋂
s>t

FWs for all t > 0.

Theorem 3.1.3. A Brownian motion W in the sense of Definition 3.0.1 is a Brownian motion with respect
to the augmented filtration {FWt }t>0 in the sense of Definition 3.1.1.

3.2. Properties

Proposition 3.2.1. A Brownian motion (W (t) : t > 0) satisfies

(a) W (t)−W (s)
D
= W (t− s) for all 0 6 s < t.

(b) E[W (t)−W (s)] = 0 for all 0 6 s 6 t,

Var[W (t)−W (s)] = t− s for all 0 6 s 6 t.

E[W (s)W (t)] = s ∧ t for all s, t > 0.

(c) E[exp (uW (t))] = exp
(

1
2u

2t
)

for all u ∈ R, t > 0.

Proof. Part (a) and (b) follow easily from the definition. Part (c) follows from a short
calculation.
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If X and Y are two real-valued random variables the notation X
D
= Y means that X and

Y are equal in distribution, i.e.

P (X ∈ B) = P (Y ∈ B) for all B ∈ B(R).

In particular, it follows that the moments coincide

E[Xk] = E[Y k] for all k ∈ N .

However, equality in distribution does not mean very much; for example if X is a normally

distributed random variable with E[X] = 0, then X
D
= −X. Thus, property (a) says only

that P (W (t)−W (s) ∈ A) = P (W (t−s) ∈ A) for each Borel set A ∈ B(R). But this implies
for example, that E[W (t)−W (s)] = E[W (t− s)].

Proposition 3.2.2. Let (W (t) : t > 0) be a Brownian motion and let c > 0. Then we have:

(a) X(t) := cW (t/c2), t > 0, defines a Brownian motion (X(t) : t > 0).

(b) Y (t) :=

{
0, if t = 0,

tW (1/t), if t > 0,
defines a Brownian motion (Y (t) : t > 0).

Proof. 1 (b) (follows the proof of Th.1.9 in [15]): By definition of Y we have Y (0) = 0. For
every 0 < s 6 t we obtain

E[Y (t)] = tE[W (1/t)] = 0, Cov(Y (s), Y (t)) = stE
[
W ( 1

s )W ( 1
t )
]

= st 1
t = s. (3.2.2)

Fix some 0 6 t1 < · · · < tn. Since W is a Gaussian process according to Exercise 3.4.3, it
follows that (Y (t) : t > 0) is a Gaussian process, which implies that the random vector

U :=
(
Y (t1) . . . , Y (tn)

)
is normally distributed. The equalities in (3.2.2) show that

E
[(
Y (t1), . . . , Y (tn)

)]
= E

[(
W (t1), . . . ,W (tn)

)]
,(

Cov(Y (tk), Y (tl))
)
k,l=1,...,n

=
(

Cov(W (tk),W (tl))
)
k,l=1,...,n

.

Since the normal distribution in Rn is characterised by the expectations and covariances,
the random vector U has the same distribution as V :=

(
W (t1), . . . ,W (tn)

)
. Since

Y (t1)
Y (t2)− Y (t1)

...
Y (tn)− Y (tn−1)

 =


1 0 0 . . . 0 0
−1 1 0 . . . 0 0
...

...
...

...
0 0 0 . . . −1 1

U
D
=


1 0 0 . . . 0 0
−1 1 0 . . . 0 0
...

...
...

...
0 0 0 . . . −1 1

V,

the independent and stationary increments of W imply the independent and stationary
increments of Y .

1this proof is only included since I had it typed already.
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The paths t 7→ Y (t) are continuous on (0,∞). Since the above shows that (Y (t) : t ∈
Q∩[0,∞)) and (W (t) : Q∩[0,∞)) have the same finite-dimensional distributions, it follows

lim
t↘0
t∈Q

Y (t) = lim
t↘0
t∈Q

W (t) = 0 P -a.s.

Since Q∩(0,∞) is dense in (0,∞) and Y is continuous on (0,∞) it follows

lim
t↘0

Y (t) = 0,

which completes the prove.
For the last (hard) part, the continuity in zero, there is another argument, based on the

so-called law of the iterated logarithm of the Brownian motion, see Theorem 3.3.8.

Property (a) in Proposition 3.2.2 is called Brownian scaling and property (b) is called time
inversion. Further transformations which again lead to Brownian motions can be found in
Exercise 3.4.1.

Theorem 3.2.3. A Brownian motion W is a continuous martingale with respect to the
generated filtration {FW

t }t>0.

Corollary 3.2.4. Let (W (t) : t > 0) be a Brownian motion and c ∈ R a non-zero constant.
Then we have:

(a)
(
W 2(t)− t : t > 0

)
is a continuous martingale with respect to {FW

t }t>0.

(b)
(

exp(cW (t)− c2

2 t) : t > 0
)

is a continuous martingale with respect to {FW
t }t>0.

Remark 3.2.5. In fact the two previous results, Theorem 3.2.3 and Corollary 3.2.4, are even true if the
generated filtration {FW

t }t>0 is replaced by the larger augmented filtration {FWt }t>0. This can be easily
seen by taking into account the result of Theorem 3.1.3 and repeating our proofs with the augmented
filtration.

Financial Mathematics 3. Recall that the share prices under the equivalent risk-neutral
measure in the Black-Scholes model are given by a geometric Brownian motion (S(t) : t > 0)
which is of the form

S(t) = exp
(
σW (t) +

(
r − σ2

2

)
t
)

for all t > 0,

where σ > 0 is the volatility and r is the interest rate of a risk-less bond in the market. It
follows by Corollary 3.2.4 that the discounted share prices (exp(−rt)S(t) : t > 0) define a
martingale under the equivalent risk-neutral measure.

3.3. Path Properties

In order to develop an idea of the behaviour of the trajectories of Brownian motions we
begin with studying the exit time of an interval around zero.
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Proposition 3.3.1. For a, b > 0 define

τ := inf{t > 0 : W (t) = −b or W (t) = a}.

Then the stopping time τ obeys the following:

(a) P (τ <∞) = 1.

(b) P (W (τ) = a) = b
a+b .

(c) E[τ ] = ab.

Definition 3.0.1 requires the paths of a Brownian motion to be continuous. In fact, the
following theorem, which is called Kolmogorov’s continuity theorem, enables us to conclude
that if a stochastic process satisfies (a), (b) and (c) in Definition 3.0.1 then there exists
a modification of this process with continuous paths. Thus, it is not necessary to require
condition (d) in Definition 3.0.1, which we do for simplicity.

Kolmogorov’s continuity theorem gives not only a sufficient condition for guaranteeing the
existence of a modification with continuous paths, but even with Hölder continuous paths.
Hölder continuous: a function f : [a, b]→ R is called Hölder continuous of order h ∈ R+,
if there exists a constant c > 0 such that

|f(x)− f(y)| 6 c |x− y|h for all a 6 x 6 y 6 b.

A function which is Hölder continuous of order 1 is also called Lipschitz continuous.

Example 3.3.2. A function f : [a, b] → R which is continuously differentiable is Hölder
continuous of order 1. This follows immediately from the mean value theorem of calculus.

Theorem 3.3.3. (Kolmogorov’s continuity theorem)
Let (X(t) : t ∈ [0, T ]) be a stochastic process on a probability space (Ω,A , P ) which satisfies
that for each T > 0 there exist constants α, β, γ > 0 such that

E [|X(t)−X(s)|α] 6 γ |t− s|1+β
for all 0 6 s 6 t 6 T.

Then there exists a modification of X with Hölder continuous paths on [0, T ] of any order
h ∈ [0, β/α].

Proof. See [9, Thm. II.2.8].

In order to apply Theorem 3.3.3 to a Brownian motion we have to calculate its moments.

Lemma 3.3.4. Let X be a normally distributed random variable, i.e. X
D
= N(0, σ2) for

some σ2 > 0. Then

E
[
Xk
]

=

{
0, if k is odd,

k!
2k/2(k/2)!

σk, if k is even.
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Lemma 3.3.4 guarantees that a Brownian motion satisfies for each α ∈ N

E[|W (t)−W (s)|2α] 6 c |t− s|α for all 0 6 s 6 t, (3.3.3)

for a constant c > 0, depending on α. Theorem 3.3.3 implies that there exists a modification
of the Brownian motion with Hölder continuous paths of every order β < 1

2 :

Corollary 3.3.5. For any h < 1
2 , there exists a modification of a Brownion motion with

Hölder continuous paths of order h on [0, T ] for every T > 0.

After Definition 1.1.1 it is mentioned that there are at least two ways to consider a stochastic process.
There is a third one (closely related to the view of trajectories) if one knows something about the trajectories,
as for example for a Brownian motion W . The continuity of the paths imply that we can define

Z : Ω→ C([0, T ]), Z(ω) := (W (t)(ω) : t ∈ [0, T ]),

where C([0, T ]) denotes the space of (deterministic) continuous functions on the interval [0, T ]. If we assume

that we can equip C([0, T ]) with a σ-algebra then we can ask if Z is a random variable. (Yes, it is!).

Next we show the opposite result that a Brownian motion does not have trajectories
which are Hölder continuous of any order larger than 1

2 , where I follow the notes [21] by
T. Seppäläinen.

Theorem 3.3.6. Let (W (t) : t > 0) be a Brownian motion and define for every ε, β, c > 0
the set

Rε(β, c) :=
{
ω ∈ Ω : ∃s > 0 : |W (t)(ω)−W (s)(ω)| 6 c |t− s|β for all t ∈ [s− ε, s+ ε]

}
.

Then we obtain for each β > 1
2

P
(
Rε(β, c)

)
= 0 for all ε, c > 0.

By the mean-value theorem, any continuous, differentiable function f : [0, T ] → R with
a bounded derivative is Hölder continuous of order 1. As a consequence, we obtain from
Theorem 3.3.6 that the paths of a Brownian motion cannot be differentiable.

Corollary 3.3.7. With probability one, the trajectories of a Brownian motion (W (t) : t > 0)
are not differentiable at any time t > 0.

The trajectories of a Brownian motion are Hölder continuous of any order less than 1/2 but not of any
order larger than 1/2. This can be made precisely:

Theorem 3.3.8. Every Brownian motion (W (t) : t > 0) satisfies

lim sup
δ↘0

sup
06s<t
t−s6δ

W (t)−W (s)√
2δ log δ−1

= 1 P -a.s.

Another characterisation of the irregularity of a function is its total variation which we
introduce in the following short excursion to calculus of deterministic functions.
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Finite Variation: for an interval [a, b] a partition is any sequence {tk}k=0,...,n for n ∈ N
with

a = t0 < t1 < · · · < tn = b.

The mesh of a partition π = {tk}k=0,...,n is defined as

|π| := max
k=1,...,n

(tk − tk−1).

The set of all partitions of the interval [a, b] is denoted by P [a, b]. For a function f : [a, b]→ R

the total variation TVf ([a, b]) is defined by

TVf ([a, b]) := sup

{
n−1∑
i=0

|f(ti+1)− f(ti)| : {tk}k=0,...n ∈ P [a, b], n ∈ N

}
.

If TVf ([a, b]) is finite the function f is of finite variation on [a, b]. The total variation of
a function f does not give the length of the function, consider for example f(t) := t for
t ∈ [0, 1]. The total variation might be described as the trace of the function f projected to
the y-axis.

Example 3.3.9. If f : [a, b] → R is an increasing function, then the sum in the definition
of the total variation is just a telescope sum and we obtain

TVf ([a, b]) = f(b)− f(a).

A similar result holds if f is decreasing.

Example 3.3.10. If f : [a, b] → R is differentiable and the derivative f ′ : [a, b] → R is
continuous then f has finite variation and

TVf ([a, b]) =

∫ b

a

|f ′(s)| ds.

This follows from the mean value theorem.

Example 3.3.11. Define a function

f : [0, 1]→ R, f(x) :=

{
x sin

(
1
x

)
, if x 6= 0,

0, if x = 0.

Show, that f is continuous but not of finite variation; see Exercise 3.4.8.

In order to be consistent with other notations in particular with books on stochastic analysis we
mention the following: for a function f : [a, b] → R define for every partition π = {tk}k=0,...,n of
[a, b]

sπ :=

n−1∑
k=0

|f(tk+1)− f(tk)| .
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If f is continuous then

TVf ([a, b]) = lim
|π|→0

sπ, (3.3.4)

which is shorthand that for every ε > 0 there exists a δ > 0 such that for all π ∈ P (a, b):

|π| 6 δ ⇒ TVf ([a, b])− ε 6 sπ 6 TVf ([a, b]).

The equation (3.3.4) is noteworthy, since on the left hand side the supremum is taken over all
partitions whereas on the right hand the limit is taken only over partitions with vanishing mesh.

In the sequel we show that the paths of a Brownian motion are not of finite variation,
which will imply later that we cannot apply standard integration theory to define an integral
with respect to Brownian motion. Furthermore, the result also shows that the paths of a
Brownian motion are quite rough and oscillate rapidly. We begin with a kind of a positive
result which we will need later:

Proposition 3.3.12. Every Brownian motion (W (t) : t > 0) satisfies for each T > 0:

lim
|π|→0

P [0,T ]3π={tk}k=1,...,n

E

∣∣∣∣∣
n−1∑
k=1

(
W (tk+1)−W (tk)

)2

− T

∣∣∣∣∣
2
 = 0.

We express the property that the trajectories of a Brownian motion W are not of finite
variation by replacing the deterministic function f in the definition of TVf ([a, b]) by the
Brownian motion W . Obviously, TVW ([a, b]) depends then on ω ∈ Ω and we do assume that
it is a random variable.

Theorem 3.3.13. With probability one, a Brownian motion is of infinite variation on every
interval [a, b], that is

P
(
TVW ([0, T ]) =∞ for every T > 0

)
= 1.

There are much more known about the trajectories of a Brownian motion, but there are
even some questions open. For us the most important result is that the trajectories are not
of bounded variation.

3.4. Exercises

In this section (W (t) : t > 0) denotes a one-dimensional Brownian motion.

1. Show that the following stochastic processes are Brownian motions:

(a) (−W (t) : t > 0).

(b) (W (t+ t0)−W (t0) : t > 0) for any fixed constant t0 > 0.

(c) (cW (t/c2) : t > 0) for any fixed constant c > 0.
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2. Show that a normally distributed random variable X with expectation 0 and variance
σ2 > 0 satisfies

E
[
Xk
]

=

{
0, if k is odd,

k!
2k/2(k/2)!

σk, if k is even,

for k ∈ N (Proof of Lemma 3.3.4).

(Hint: apply partial integration and then induction.) (∗)

3. Show that a Brownian motion is a Gaussian process by using the definition given in
Example 1.1.2.

(Hint: use the result that the image of a normal random vector under an affine function
is again normally distributed.)

4. Define a stochastic process (B(t) : t ∈ [0, 1]) by B(t) = W (t)− tW (1) for all t ∈ [0, 1].
Show that the covariance is given by

Cov(B(ti)B(tj)) = min{ti, tj} − titj

for all ti, tj ∈ [0, 1]. Conclude from this that (B(t) : t ∈ [0, 1]) is a Brownian bridge:
a stochastic process (B(t) : t > 0) is called a Brownian bridge if B is a continuous,
Gaussian stochastic process which starts at 0 P -a.s. and satisfies

E [B(t)] = 0 for all t > 0,

E [B(t)B(s)] = min{s, t} − st for all s, t ∈ [0, 1].

5. Let f : R+ → R be a continuous function. Define for each t > 0 the random variable

Y (t) :=

∫ t

0

W (s)f(s) ds.

(a) Calculate expectation and variance of Y (t) and Cov(Y (s), Y (t)) for s, t > 0.
Calculate the explicit values for f(t) = 1 and f(t) = t2, t > 0. (∗)

(b) Show that Y (t) is a Gaussian random variable (you need the definition of Riemann
integrals) (∗)

6. (a) If X is a non-negative random variable show that

E[X] =

∫ ∞
0

P (X > y) dy.

(b) Show that if a random variable X satisfies E[|X|] <∞ then P (X <∞) = 1.

If you don’t know measure theory you can assume in both questions that the distri-
bution of X has a density f .

These arguments are used in the proof of Proposition 3.3.1.
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7. For some H ∈ (0, 1), let (WH(t) : t > 0) be a Gaussian stochastic process with
E[WH(t)] = 0 for all t > 0 and with covariance

r(s, t) := E[WH(s)WH(t)] =
1

2

(
t2H + s2H − |t− s|2H

)
for all s, t > 0.

(a) Show that WH has stationary increments.

(b) Show that WH has a modification with Hölder continuous paths of every order
α < H.

This exercise introduces fractional Brownian motions. A stochastic process (WH(t) : t > 0)
is called a fractional Brownian motion with Hurst index H ∈ (0, 1) if WH is a continuous
Gaussian stochastic process which starts at 0 P -a.s. and satisfies

E
[
WH(t)

]
= 0 for all t > 0,

E
[
WH(t)WH(s)

]
=

1

2

(
t2H + s2H − |t− s|2H

)
for all s, t > 0.

8. (a) Show that a Hölder continuous function f : [a, b]→ R of order α = 1 is of finite
variation.

(b) (Example 3.3.11) Define a function

f : [0, 1]→ R, f(x) :=

{
x sin

(
1
x

)
, if x 6= 0,

0, if x = 0.

Show that f is continuous but not of bounded variation. (])





4
Stochastic Integration

In this chapter we define a stochastic integral for a large class of integrands with respect to
Brownian motion. The main challenge is to overcome the fact that the Brownian motion
is not of bounded variation, see Theorem 3.3.13. This prevents us to apply the integration
theory from calculus in a pathwise sense (see the first section). A way to circumvent this
difficulty was introduced by K. Itô in the 1940s by defining the stochastic integral as a limit
in L2

P (Ω). We finish the chapter by deriving an analogue of the fundamental theorem of
calculus for this new kind of integration.

In this chapter (Ω,A , P ) is a probability space with a filtration {Ft}t>0 which satisfies
the usual conditions. Furthermore, (W (t) : t > 0) denotes a Brownian motion and we
assume that

(i) W (t) is Ft-adapted for all t > 0;

(ii) W (t)−W (s) is independent of Fs for all 0 6 s 6 t.

These assumptions are nothing else than to require that W is a Brownian motion with respect to the

filtration {Ft}t>0 in the sense of Definition 3.1.1. The augmented filtration {FWt }t>0 always satisfies these

assumptions however it might be beneficiary to include larger filtrations.

4.1. Why do we need a new kind of integration?

There are different ways and generalities to define an integral for a deterministic function
f : [a, b]→ R. The standard approach is the Riemann integral which is defined by∫ b

a

f(s) ds := lim
|πn|→0

mn−1∑
i=0

f
(
ζ

(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
, (4.1.1)
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where πn = {t(n)
i }i=0,...,mn is a partition of [a, b] for each n ∈ N and ζ

(n)
i ∈ [t

(n)
i , t

(n)
i+1]. Of

course, this definition makes only sense if the right hand side converges for every sequence

{πn}n∈N of partitions of [a, b] with |πn| → 0 and for every choice of ζ
(n)
i ∈ [t

(n)
i , t

(n)
i+1]. In

this case, the function f is called Riemann integrable and the left hand side is the Riemann
integral. One can show that at least every continuous function f : [a, b] → R is Riemann
integrable.

The fundamental theorem of calculus states that if f : [a, b]→ R is differentiable and the
derivative f ′ is Riemann integrable then

f(b)− f(a) =

∫ b

a

f ′(s) ds. (4.1.2)

The Riemann integral can be generalised to the Riemann-Stieltjes integral which assigns
various weights to the integrand f . The weights are described by a function g : [a, b]→ R.
Then the Riemann-Stieltjes integral is defined by∫ b

a

f(s) g(ds) := lim
|πn|→0

mn−1∑
i=0

f
(
ζ

(n)
i

)(
g
(
t
(n)
i+1

)
− g

(
t
(n)
i

))
, (4.1.3)

where πn = {t(n)
i }i=0,...,mn is a partition of [a, b] for each n ∈ N and ζ

(n)
i ∈ [t

(n)
i , t

(n)
i+1]. As

before, the definition makes only sense if the right hand side converges for every sequence

{πn}n∈N of partitions and every intermediate argument ζ
(n)
i ∈ [t

(n)
i , t

(n)
i+1]. In this situation,

the function f is called Riemann-Stieltjes integrable with respect to g and the unique limit
is called the Riemann-Stieltjes integral of f with respect to g. One can show that at least
every continuous function f : [a, b]→ R is Riemann-Stieltjes integrable with respect to every
function g of finite variation. In this situation it follows easily that∣∣∣∣∣

∫ b

a

f(s) g(ds)

∣∣∣∣∣ 6 sup
s∈[a,b]

|f(s)|TVg([a, b]).

If a function f : [a, b]→ R is Riemann-Stieltjes integrable with respect to some g : [a, b]→
R, then g is Riemann-Stieltjes integrable with respect to f and they satisfy

f(b)g(b)− f(a)g(a) =

∫ b

a

f(s) g(ds) +

∫ b

a

g(s) f(ds).

This formula is called integration by parts.
If the function f : [a, b]→ R and the derivative g′ : [a, b]→ R of a function g : [a, b]→ R

are both Riemann integrable then f is Riemann-Stieltjes integrable with respect to g and it
satisfies the relation: ∫ b

a

f(s) g(ds) =

∫ b

a

f(s)g′(s) ds. (4.1.4)

Remark 4.1.1. In general, the integrand f can level out irregularities of the integrator g
such that the limit in (4.1.3) exists and vice versa. However, if we ask for the largest class
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of integrators g such that at least every continuous function is Riemann-Stieltjes integrable
with respect to g, then g must be of finite variation (see [17, Th. 56]). This result rules
out the possibility to define the stochastic integral of a stochastic process (Φ(t) : t ∈ [0, T ])
with respect to a Brownian motion pathwise. That is, for fixed ω ∈ Ω define an integral of
the function t 7→ fω(t) := Φ(t)(ω) with respect to the function t 7→ gω(t) := W (t)(ω), which
turns out to be impossible since the function gω is of infinite variation for P -a.a. ω ∈ Ω
according to Theorem 3.3.13.

In calculus the Riemann integral is not the best approach to define an integral since it lacks some im-
portant properties concerning the interchangeability of taking the limit and integration. A much better
approach is Lebesgue integration which is applied, for example in probability theory, in order to define the
expectation of a random variable in a measure-theoretic way.

For all who are familiar with Lebesgue integration: in the book [10] by F. C. Klebaner I have found the
following description:

In folklore the following analogy is used. Imagine that money is spread out on a floor. In the Riemann

method of integration, you collect the money as you progress in the room. In the Lebesgue method, first you

collect $100 bills everywhere you can find them, then $50, etc.

4.2. The Construction

Definition 4.2.1. A stochastic process (H(t) : t ∈ [0, T ]) is called simple if it is of the form

H(t)(ω) = 1{0}(t)X0(ω) +

n−1∑
k=0

1(tk,tk+1](t)Xk(ω) for all t ∈ [0, T ], ω ∈ Ω, (4.2.5)

where Xk : Ω→ R are Ftk -measurable random variables with E[|Xk|2] <∞, and 0 = t0 <
t1 < · · · < tn = T and n ∈ N. The space of all simple stochastic processes is denoted by
H0 := H0([0, T ]).

Note that each simple stochastic process H ∈ H0 is adapted to the given filtration
{Ft}t>0. For a simple stochastic process H ∈H0 of the form (4.2.5), we define the stochastic
integral I(H) with respect to a Brownian motion (W (t) : t > 0) by

I(H) :=

n−1∑
k=0

Xk

(
W (tk+1)−W (tk)

)
. (4.2.6)

Instead of the notion I(H), one can use the more striking symbol
∫ T

0
H(s) dW (s). It is easy

to see that I is a linear mapping on H0, that is

I(αH + βG) = αI(H) + βI(G)

for all H,G ∈H0 and α, β ∈ R.
Definition (4.2.6) is analogue to the sum on the right hand side in (4.1.3). For partitions

πn = {t(n)
i }i=0,...,mn ∈ P [0, T ] and a function f : [0, T ] → R choose ζ

(n)
i := t

(n)
i for all
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i = 0, . . . ,mn − 1 and n ∈ N. Then the sum in the right hand side in (4.1.3) becomes

mn−1∑
i=0

f
(
ζ

(n)
i

)(
g
(
t
(n)
i+1

)
− g

(
t
(n)
i

))
.

Financial Mathematics 4. Assume that (W (t) : t > 0) models some share prices (with
negative values) and that an agent trades Xk units of this share at the times 0, t1, . . . , tn.
Then her yield at time T is I(H). We will make this idea more accurate later.

Of course, we are not satisfied with only integrating simple stochastic processes. For the
extension of the class of admissible integrands the following result is essential.

Lemma 4.2.2. (simple Itô’s isometry)
Each H ∈H0 satisfies

E
[
|I(H)|2

]
=

∫ T

0

E
[
|H(s)|2

]
ds. (4.2.7)

Example 4.2.3. Let Y be a F1-measurable random variable with E[Y 2] = 2 and define a
stochastic process (Φ(t) : t ∈ [0, 3]) by

Φ(t) =


4, if t ∈ [0, 1],

Y, if t ∈ (1, 2],

0, if t ∈ (2, 3].

Write the stochastic integral ∫ 3

0

Φ(s) dW (s)

as the sum of two random variables and calculate its mean and variance.

Equation (4.2.7) is the crucial result which enables us to extend the space of integrands.
Firstly, recall that L2

P (Ω) is a Hilbert space with scalar product and corresponding norm

〈X,Y 〉L2
P

:= E [XY ] , ‖Y ‖L2
P

=
(
E[|Y |2]

)1/2

.

Thus, we can rewrite the left hand side of (4.2.7) as

‖I(H)‖2L2
P

= E
[
|I(H)|2

]
.

Also the right hand side can be interpreted as a norm. For this purpose, it is fruitful to
consider a stochastic process (Φ(t) : t ∈ [0, T ]) as a mapping

Φ : [0, T ]× Ω→ R .
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We require that Φ is in the space1

L2
ds⊗P ([0, T ]× Ω) :=

{
Φ: [0, T ]× Ω→ R measurable,

∫
[0,T ]

E
[
|Φ(s)|2

]
ds <∞

}
.

This space can be equipped with a scalar product

〈Φ,Ψ〉L2
ds⊗P

:=

∫ T

0

E[Φ(s)Ψ(s)] ds,

and also with the corresponding norm

‖Φ‖L2
ds⊗P

:=

(∫ T

0

E[|Φ(s)|2] ds

)1/2

.

It turns out that L2
ds⊗P ([0, T ] × Ω) is a Hilbert space. Note, that the space H0 of simple

stochastic processes is a subspace of L2
ds⊗P ([0, T ]×Ω). Equation (4.2.7) can be rewritten as

‖I(H)‖L2
P

= ‖H‖L2
ds⊗P

. (4.2.8)

This equation (4.2.8) is precisely the reason why the result of Lemma 4.2.2 is called isometry:
it shows that if we understand the definition of the stochastic integral I(H) as a mapping

I : H0 → L2
P (Ω),

then this mapping preserves the norm. Here we use the fact that H0 is a subspace of
L2
ds⊗P ([0, T ]× Ω) and thus, it can be equipped with the same norm.

The recipe: Assume that for a stochastic process Φ ∈ L2
ds⊗P ([0, T ] × Ω) there exists a

sequence {Hn}n∈N of simple stochastic processes in H0 converging to Φ:

lim
n→∞

‖Hn − Φ‖2L2
ds⊗P

= lim
n→∞

∫ T

0

E
[
|Hn(s)− Φ(s)|2

]
ds = 0.

By the triangle inequality of norms, it follows

lim
m,n→∞

‖Hm −Hn‖2L2
ds⊗P

= 0.

Since (4.2.8) yields

‖I(Hm)− I(Hn)‖2L2
P

= ‖Hm −Hn‖2L2
ds⊗P

for all m,n ∈ N,

we obtain

lim
m,n→∞

‖I(Hm)− I(Hn)‖2L2
P

= 0,

1Do not bother the strange notation I use for denoting the space, see Remark 4.2.4.
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that is {I(Hn)}n∈N is a Cauchy sequence in the Hilbert space L2
P (Ω). A crucial property of

Hilbert spaces is that each Cauchy sequence converges to an element in the Hilbert space.
In our case this means, that there exists a random variable Y ∈ L2

P (Ω) such that

lim
n→∞

‖I(Hn)− Y ‖2L2
P

= 0.

Clearly, we call Y the stochastic integral of Φ and define

I(Φ) :=

∫ T

0

Φ(s) dW (s) := lim
n→∞

∫ T

0

Hn(s) dW (s) in L2
P (Ω).

Remark 4.2.4. If we define the product measure µ := ds⊗ P (where ds denotes the Lebesgue measure on
[0, T ]) then µ is a measure on the product σ-algebra B([0, T ]) ⊗ A over the space S := [0, T ] × Ω. In this
case the space of square-integrable functions is defined as

L2
µ(S) :=

{
Φ: S → R measurable,

∫
S
|Φ(s)|2 µ(ds) <∞

}
.

By writing out the definition of S and µ and writing the integral with respect to the probability measure P
as expectation (using Fubini’s theorem) we obtain

L2
µ(S) =

{
Φ: [0, T ]× Ω→ R measurable,

∫
[0,T ]×Ω

|Φ(s)(ω)|2 (ds⊗ P )(ds, dω) <∞
}

=

{
Φ: [0, T ]× Ω→ R measurable,

∫
[0,T ]

E
[
|Φ(s)|2

]
ds <∞

}
.

Thus, the space L2
ds⊗P ([0, T ]×Ω), introduced above, is actually the space L2

µ(S) which is well known to be
a Hilbert space equipped with the norm

‖Φ‖L2
ds⊗P

:=

(∫
S
|Φ(s)|2 µ(ds)

)1/2

In even smaller print: in order that ‖·‖L2
ds⊗P

is a norm, we must have the property that ‖Ψ‖ = 0 if and

only if Ψ = 0. This can only be achieved by considering two stochastic processes Ψ and Φ as equal if∫
[0,T ]

P
(
Ψ(t) 6= Φ(t)

)
dt = 0.

In particular, stochastic processes which are modifications or versions of each other are considered to be
equal in this interpretation.

We summarise the conclusions from the recipe in the following result with a small addition
on uniqueness.

Theorem 4.2.5. Assume that for Φ ∈ L2
ds⊗P ([0, T ] × Ω) there exists a sequence (Hn)n∈N

of simple stochastic processes Hn ∈H0 such that

lim
n→∞

‖Hn − Φ‖2L2
ds⊗P

= lim
n→∞

∫ T

0

E
[
|Hn(s)− Φ(s)|2

]
ds = 0.

Then there exists a random variable Y ∈ L2
P (Ω) which obeys

lim
n→∞

E
[
|I(Hn)− Y |2

]
= 0.

The random variable Y does not depend on the approximating sequence (Hn)n∈N.
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Due to Theorem 4.2.5 the question of extending the definition of the stochastic integral
to a larger space of integrands becomes which stochastic processes Φ ∈ L2

ds⊗P ([0, T ] × Ω)
can be approximated by a sequence of simple stochastic processes in H0. Note that the
stochastic processes in L2

ds⊗P ([0, T ] × Ω) are not required to be adapted whereas in the
derivation of Lemma 4.2.2 adaptness of the simple stochastic process is essential. In fact it
turns out that exactly all stochastic processes in Φ ∈ L2

ds⊗P ([0, T ] × Ω) which are adapted
can be approximated by a sequence of simple stochastic processes in H0, that is stochastic
processes in the space

H :=

{
Φ : [0, T ]× Ω→ Rmeasurable, adapted and

∫ T

0

E
[
|Φ(s)|2

]
ds <∞

}
.

The space H is a subspace of L2
ds⊗P ([0, T ]×Ω) and it is equipped with the same norm, but

for ease of notation we define for all Φ ∈H

‖Φ‖H := ‖Φ‖L2
ds⊗P

=

(∫ T

0

E
[
|Φ(s)|2

]
ds

)1/2

. (4.2.9)

The set H is a linear space, that is,

Φ,Ψ ∈H , α, β ∈ R ⇒ αΦ + βΨ ∈H

and the norm satisfies (as each norm does by definition) for Φ, Ψ ∈H and α ∈ R:

‖αΦ‖H 6 |α| ‖Φ‖H ,

‖Φ + Ψ‖H 6 ‖Φ‖H + ‖Ψ‖H

The approximation of elements in H by simple stochastic process is given in the following
result:

Proposition 4.2.6. For each Φ ∈H there exists a sequence {Hn}n∈N ⊆H0 such that

lim
n→∞

‖Φ−Hn‖H = 0.

In order to complete our construction we define the stochastic integral according to our
recipe:

Definition 4.2.7. For every Φ ∈ H the stochastic integral I(Φ) is defined as the unique
random variable in L2

P (Ω) which satisfies

I(Φ) :=

∫ T

0

Φ(s) dW (s) := lim
n→∞

I(Hn) in L2
P (Ω),

where (Hn)n∈N ⊆H0 is a sequence satisfying ‖Hn − Φ‖H → 0 as n→∞.
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Remark 4.2.8. (pathwise vs. not pathwise)
As we pointed out in Remark 4.1.1, we can not define an integral with respect to a Brownian
motion pathwise for a suitable large class of integrands by following the Riemann-Stieltjes
approach. However, the definition of I(H) for a simple stochastic process H ∈H0 in (4.2.6)
is pathwise, since you apply this definition for every ω ∈ Ω. But for Φ ∈ H we define the
integral I(Φ) as a limit in L2

P (Ω), which is a space of functions where the limit does not
necessarily coincide with a pointwise limit.

Theorem 4.2.9. (Properties of the stochastic integral)
Let Φ and Ψ be in H and α, β in R. Then the stochastic integral satisfies:

(a)

∫ T

0

(αΦ(s) + βΨ(s)) dW (s) = α

∫ T

0

Φ(s) dW (s) + β

∫ T

0

Ψ(s) dW (s).

(b) E

∣∣∣∣∣
∫ T

0

Φ(s) dW (s)

∣∣∣∣∣
2
 =

∫ T

0

E
[
|Φ(s)|2

]
ds. (Itô’s isometry)

By using the norms Itô’s isometry can be expressed shorthand as

‖I(Φ)‖L2
P

= ‖Φ‖H for all Φ ∈H .

Example 4.2.10. By approximating the identity on R by step functions we obtain∫ T

0

W (s) dW (s) = 1
2W

2(T )− 1
2T.

Note, that this formula does NOT correspond to the case if the integral on the left hand
side would be a Stieltjes integral.

In a more abstract way the construction of the stochastic integral can be described in the the following

way: firstly, we define a linear operator I : H0 → L2
P (Ω) by (4.2.6). Lemma 4.2.2 shows that this linear

operator I is continuous. Since the set H0 is dense in H according to Proposition 4.2.6 and L2
P (Ω) is

complete, the continuous linear operator can be uniquely extended to a continuous linear operator I on

H . This is a classical argument often applied in analysis and related areas to linear operators and called

principle of extension of uniformly continuous mappings.

4.3. The Integral Process

From a well defined integral we expect that if
∫ T

0
exists then

∫ t
0

exists for every t 6 T . This
is satisfied by the stochastic integral since Φ ∈ H implies Φ(·)1[0,t](·) ∈ H for each t 6 T
and we introduce the notation

It(Φ) :=

∫ t

0

Φ(s) dW (s) :=

∫ T

0

Φ(s)1[0,t](s) dW (s) for each t ∈ [0, T ].



Chapter 4. Stochastic Integration 41

That is, for every t ∈ [0, T ] we obtain a random variable It(Φ). By collecting all t ∈ [0, T ]
we want the family (It(Φ) : t ∈ [0, T ]) to fit in our framework of stochastic processes and
martingales. Recall that for each t ∈ [0, T ] the random variable It(Φ) is defined as a limit in
L2
P (Ω). However, random variables in L2

P (Ω) might differ on a set N ∈ A with P (N) = 0
but they are equal as elements in L2

P (Ω). Consequenlty, for each t ∈ [0, T ] the random
variable It(Φ) can be specified arbitrarily on a set At ∈ A with P (At) = 0. Since the set
[0, T ] is uncountable and the union of uncountable null sets might equal the whole set Ω, it
could happen that the whole family (It(Φ) : t ∈ [0, T ]) is ambiguous on Ω. We circumvent
this problem by passing to a continuous modification of the stochastic integral.

Theorem 4.3.1. If Φ ∈H then there exists a modification of the stochastic process(∫ t

0

Φ(s) dW (s) : t ∈ [0, T ]

)
,

which is a continuous martingale with respect to {Ft}t>0 and with finite second moments;
in particular, expectation and variance are given for all t ∈ [0, T ] by

E

[∫ t

0

Φ(s) dW (s)

]
= 0, (4.3.10)

E

[∣∣∣∣∫ t

0

Φ(s) dW (s)

∣∣∣∣2
]

=

∫ t

0

E
[
|Φ(s)|2

]
ds, (4.3.11)

Proof. The main part of this theorem is the existence of a continuous modification. The
claimed equalities for the moments are either easily proved or just Itô’s isometry and are
mentioned here only for completeness.

A stochastic process Φ in H defines the new stochastic process(∫ t

0

Φ(s) dW (s) : t ∈ [0, T ]

)
which we often call the integral process of Φ and which we always assume to be a continuous
martingale. Alternatively, we use the notation (It(Φ) : t ∈ [0, T ]) for the integral process of
Φ.

Example 4.3.2. The calculation in Example 4.2.10 can be repeated for each t ∈ [0, T ] such
that we obtain ∫ t

0

W (s) dW (s) = 1
2W

2(t)− 1
2 t for all t ∈ [0, T ].

Theorem 4.3.1 implies that (W 2(t)− t : t ∈ [0, T ]) is a martingale, which recovers the result
from Corollary 3.2.4.

The next result considers the integral process (It(Φ) : t ∈ [0, T ]) stopped by a stopping
time τ . Note that since the integral process is a stochastic process one can consider the
stopped process (It∧τ (Φ) : t ∈ [0, T ]) introduced in Proposition 1.2.5.
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Theorem 4.3.3. If τ is a stopping time and Φ is in H then

It∧τ
(
Φ
)

= It

(
Φ(·)1{[0,τ ]}(·)

)
P -a.s. for all t ∈ [0, T ].

If we replace the stopping time τ by a constant c ∈ [0, T ] then the result of Theorem 4.3.3
is obvious. Even for a stopping time one might be misled to follow a pathwise argument in
order to show the result. However, the truth is that the proof requires some more work.

4.4. Localising

Although the space H provides a rich class of admissible integrands, some natural examples
are excluded. For example, even for a continuous function f : R→ R the stochastic process
Φ := (f(W (t)) : t ∈ [0, T ]) might not be in H .

Example 4.4.1. For the function f : R→ R, f(x) = exp(x2) it follows that

E[|f(W (t))|2] = E[exp(2W 2(t))] =

{
1√

1−4t
, if t ∈ [0, 1

4 ),

∞, if t > 1
4 .

Thus, if T > 1
4 , the process Φ is not in H .

By the price that the integral will not be a martingale, we enlarge the space of admissible
integrands:

Hloc :=

{
Φ : [0, T ]× Ω→ R measurable, adapted, P

(∫ T

0

|Φ(s)|2 ds <∞

)
= 1

}
Remark 4.4.2. Note, that since every stochastic process Φ ∈H satisfies∫ T

0

E
[
|Φ(s)|2

]
ds <∞,

we can conclude by Exercise 3.4.6.(b) and Fubini’s theorem that∫ T

0

|Φ(s)|2 ds <∞ P -a.s.

Consequently, we obtain H ⊆Hloc.

Example 4.4.3. The integrand
(
f(W (t)) : t ∈ [0, T ]

)
in Example 4.4.1 is in the space

Hloc. In fact, for every continuous function f : R → R, the stochastic process
(
f(W (t)) :

t ∈ [0, T ]
)

is in Hloc:∫ T

0

|f(W (s))|2 ds 6 T sup
s∈[0,T ]

|f(W (s))|2 <∞ P -a.s.

as f is continuous and W has continuous trajectories
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By localising, that is by applying a good sequence of stopping times, we make elements from
Hloc treatable.

Definition 4.4.4. An increasing sequence of stopping times {τn}n∈N is called localising for
Φ ∈Hloc if

(i) P

( ∞⋃
n=1

{τn = T}

)
= 1;

(ii)
(
Φ(t)1[0,τn](t) : t ∈ [0, T ]

)
∈H for each n ∈ N.

In fact, the space Hloc is well chosen, since every element in this space has a localising
sequence:

Proposition 4.4.5. For any Φ ∈Hloc, the random elements

τn : Ω→ [0, T ], τn(ω) := T ∧ inf

{
t > 0 :

∫ t

0

|Φ(s)(ω)|2 ds > n

}
define a localising sequence {τn}n∈N for Φ.

The recipe: for Φ ∈Hloc let {τn}n∈N be a localising sequence. Due to condition (ii) in
Definition 4.4.4, Theorem 4.3.1 implies that for each n ∈ N the random variable

Xn(t) :=

∫ t

0

Φ(s)1[0,τn](s) dW (s)

is well defined and forms a continuous martingale (Xn(t) : t ∈ [0, T ]). Theorem 4.3.3
suggests that for Φ ∈Hloc we define∫ t

0

Φ(s) dW (s) := Xn(t) for all t 6 τn. (4.4.12)

By Condition (i) in Definition 4.4.4, one can always choose n large enough such that the
left hand side in (4.4.12) is defined for each t ∈ [0, T ]. In order that this definition makes
sense it must be consistent, i.e. Xm = Xn for all 0 6 m 6 n and it must not depend on the
localising sequence {τn}n∈N. This is summarised in the following result:

Theorem 4.4.6. For Φ in Hloc let {τn}n∈N be a localising sequence. Then there exists an
adapted continuous stochastic process Y = (Y (t) : t ∈ [0, T ]) such that

Y (t) = lim
n→∞

∫ t

0

Φ(s)1[0,τn](s) dW (s) P -a.s. for all t ∈ [0, T ]. (4.4.13)

The limit Y does not depend on the localising sequence {τn}n∈N and it is unique in the sense
of indistinguishability.
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Definition 4.4.7. The stochastic integral for Φ ∈Hloc is defined for all t ∈ [0, T ] by

It(Φ) :=

∫ t

0

Φ(s) dW (s) := Y (t),

where (Y (t) : t ∈ [0, T ]) is the uniquely determined adapted continuous stochastic process
satisfying (4.4.13).

The stochastic integral of a general integrand in Hloc might not have finite expectation,
i.e. property (b) from Theorem 4.2.9 cannot hold. But we have the following:

Theorem 4.4.8. (Properties of the stochastic integral)
For Φ, Ψ ∈Hloc and α, β in R, the stochastic integral satisfies:

(a)

∫ T

0

(αΦ(s) + βΨ(s)) dW (s) = α

∫ T

0

Φ(s) dW (s) + β

∫ T

0

Ψ(s) dW (s).

(b) no analogue.

Similarly, we can not expect that the integral process is a martingale. However, we obtain:

Theorem 4.4.9. If Φ ∈Hloc then(∫ t

0

Φ(s) dW (s) : t ∈ [0, T ]

)
is a continuous local martingale with respect to {Ft}t>0.

4.5. Itô’s formula

If f : R → R is a differentiable function then the fundamental theorem of calculus states
(see (4.1.2)) that

f(t)− f(0) =

∫ t

0

f ′(s) ds for all t > 0.

If furthermore x : [0, T ] → R is another differentiable function then by the chain rule, the
fundamental theorem of calculus can be generalised to

f(x(t))− f(x(0)) =

∫ t

0

f ′(x(s))x′(s) ds for all t ∈ [0, T ].

Rewriting this integral as a Riemann-Stieltjes integral (see (4.1.4)) results in

f(x(t))− f(x(0)) =

∫ t

0

f ′(x(s))x(ds) for all t ∈ [0, T ]. (4.5.14)

Naturally the question arises whether there is also a fundamental theorem for the stochastic
integral.
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Theorem 4.5.1. (Itô’s formula)
If f : R→ R is a twice continuously differentiable function then it obeys

f(W (t)) = f(0) +

∫ t

0

f ′(W (s)) dW (s) +
1

2

∫ t

0

f ′′(W (s)) ds

for all t > 0.

Remark 4.5.2.

(a) In comparison with the formula for the Riemann-Stieltjes integral in (4.5.14) there
appears an additional term in the case of the Itô integral. This additional term is a
consequence of the infinite variation of the Brownian motion.

(b) The generalisation of the stochastic integration to the space Hloc is the first time
fruitful: we immediately know that the stochastic integral appearing in Theorem 4.5.1
is well defined since the integrand (f ′(W (t)) : t ∈ [0, T ]) is in Hloc, see Example 4.4.3.

For the proof of Theorem 4.5.1 we need another result, which has its own interest.

Lemma 4.5.3. A continuous function g : R→ R satisfies

n∑
k=1

g
(
W
(
t
(n)
k−1

))(
W
(
t
(n)
k

)
−W

(
t
(n)
k−1

)) P→
∫ T

0

g
(
W (s)

)
dW (s) as n→∞,

where t
(n)
k := k

nT , k = 0, . . . , n.

Example 4.5.4. For f : R→ R, f(x) = x2 we obtain

W 2(t) = t+ 2

∫ t

0

W (s) dW (s) for all t > 0.

Compare with the efforts required in Example 4.2.10 in order to achieve the same result.
Moreover since W ∈H , Theorem 4.3.1 implies that (W 2(t)− t : t > 0) is a martingale with
respect to {Ft}t>0, a result which we derived in Corollary 3.2.4 by hand.

Example 4.5.5. For f : R→ R, f(x) = exp(x) we obtain

exp(W (t)) = 1 +

∫ t

0

exp(W (s)) dW (s) +
1

2

∫ t

0

exp(W (s)) ds for all t > 0.

Similarly as Example 4.5.4 recovers the result of Corollary 3.2.4.(a), we can obtain part (b)
of the same Corollary by a modest generalisation of Itô’s formula:

Theorem 4.5.6. If f : [0, T ]×R→ R is a function in C1,2([0, T ]×R) then it obeys

f(t,W (t))

= f(0, 0) +

∫ t

0

ft(s,W (s)) ds+

∫ t

0

fx(s,W (s)) dW (s) +
1

2

∫ t

0

fxx(s,W (s)) ds

for all t ∈ [0, T ].



46 4.5. Itô’s formula

The notion C1,2([0, T ] ×R) denotes the space of all functions f : [0, T ] ×R → R which
are continuously differentiable in the first variable and twice continuously differentiable in
the second variable. Accordingly, for f ∈ C1,2([0, T ]×R) we use the following abbreviation
for the partial derivatives:

ft(t, x) :=
∂f

∂t
(t, x), fx(t, x) :=

∂f

∂x
(t, x), fxx(t, x) :=

∂2f

∂x2
(t, x)

for all t ∈ [0, T ] and x ∈ R. These are still deterministic functions! Only by applying these
functions to a random argument they become random as well:

ft(t,W (t)), fx(t,W (t)), fxx(t,W (t)).

Note, from a fussy point of view the expression d
dtf(t,W (t)) does not exist or does not

make any sense, since it denotes the derivative of the function t 7→ f(t,W (t)) which is
not differentiable due to Corollary 3.3.7. For that reason make clear which function you
differentiate.

Example 4.5.7. For a constant c > 0 define the function

f : [0, T ]×R→ R, f(t, x) = exp
(
cx− c2

2 t
)
.

By applying Theorem 4.5.6 we conclude

f(t,W (t)) = 1 + c

∫ t

0

f(s,W (s)) dW (s) for all t ∈ [0, T ].

Moreover since (f(t,W (t)) : t ∈ [0, T ]) ∈ H , Theorem 4.3.1 implies that the stochastic
process (

exp
(
cW (t)− c2

2 t
)

: t ∈ [0, T ]
)

is a martingale. Thus as promised, we also could recover the result of Corollary 3.2.4.(b).

Financial Mathematics 5. In the Black-Scholes model the share prices are modeled by a
geometric Brownian motion (S(t) : t > 0) which is defined by

S(t) := s0 exp
( (
µ− 1

2σ
2
)
t+ σW (t)

)
for all t > 0,

where s0, µ ∈ R and σ > 0 are constants. Theorem 4.5.6 implies

S(t) = s0 + µ

∫ t

0

S(s) ds+ σ

∫ t

0

S(s) dW (s) for all t > 0.

Example 4.5.8. Define the functions

f : [0, T ]×R→ R, f(t, x) = e
1
2 t sin(x),

g : [0, T ]×R→ R, g(t, x) = e
1
2 t cos(x).
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By applying Theorem 4.5.6 we obtain

e
1
2 t sin(W (t)) =

∫ t

0

e
1
2 s
(

cosW (s)
)
dW (s) for all t ∈ [0, T ],

e
1
2 t cos(W (t)) = 1−

∫ t

0

e
1
2 s
(

sinW (s)
)
dW (s) for all t ∈ [0, T ].

Let ı denote the unit on the imaginary line in the complex plane C, i.e. ı =
√
−1 . Then we have the nice

formula

ex+ıy = ex cos y + ıex sin y for all x, y ∈ R . (4.5.15)

By applying this formula to the function f and g above we obtain

exp
(

1
2
t+ ıW (t)

)
= g(t,W (t)) + ıf(t,W (t)) for all t ∈ [0, T ].

In analogy to (4.5.15), the stochastic processes (f(t,W (t)) : t ∈ [0, T ]) and (g(t,W (t)) : t ∈ [0, T ]) might be

considered as the counterparts of the sin and cos function in the Itô calculus.

4.6. Itô Processes

Itô’s formula in Theorem 4.5.6 considers only the transformation of a Brownian motion. The
next step in a generalisation is to consider the transformation of a larger class of stochastic
processes:

Definition 4.6.1. A stochastic process (X(t) : t ∈ [0, T ]) is called an Itô process, if it is of
the form

X(t) = X(0) +

∫ t

0

Υ(s) ds+

∫ t

0

Φ(s) dW (s) for all t ∈ [0, T ], (4.6.16)

where (Υ(t) : t ∈ [0, T ]) and (Φ(t) : t ∈ [0, T ]) are adapted, measurable stochastic processes
with ∫ T

0

|Υ(s)| ds <∞ P -a.s. and

∫ T

0

|Φ(s)|2 ds <∞ P -a.s.

and X(0) is an F0-measurable random variable.

Note, that the families (Υ(t) : t ∈ [0, T ]) and (Φ(t) : t ∈ [0, T ]) are assumed to be
stochastic processes. The integral for Υ is understood in the pathwise sense, that is fix
ω ∈ Ω and then the condition on Υ guarantees that the ordinary integral for the function
s 7→ Υ(s)(ω) exists:

Z(t)(ω) :=

∫ t

0

Υ(s)(ω) ds for all t ∈ [0, T ].

In this way, for each t ∈ [0, T ] a random variable Z(t) : Ω → R is defined. The second
integral in (4.6.16) is the stochastic integral which is well defined since the assumptions on
the stochastic process Φ are nothing else than to require Φ ∈Hloc.
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Example 4.6.2. In Example 4.5.4 we derive that

W 2(t) = t+ 2

∫ t

0

W (s) dW (s) for all t > 0.

Consequently, (W 2(t) : t ∈ [0, T ]) is an Itô process since

W 2(t) = 0 +

∫ t

0

1︸︷︷︸
=:Υ(s)

ds+

∫ t

0

2W (s)︸ ︷︷ ︸
=:Φ(s)

dW (s) for all t > 0.

Example 4.6.3. If f is a function in C1,2([0, T ]×R) then (f(t,W (t)) : t ∈ [0, T ]) is an Itô
process since Itô’s formula in Theorem 4.5.6 implies for all t ∈ [0, T ]

f(t,W (t)) = f(0, 0) +

∫ t

0

(
ft(s,W (s)) ds+

1

2
fxx(s,W (s))

)
︸ ︷︷ ︸

=:Υ(s)

ds+

∫ t

0

fx
(
s,W (s)

)︸ ︷︷ ︸
=:Φ(s)

dW (s).

For an Itô process of the form (4.6.16) one often uses the shorthand notation

dX(t) = Υ(t) dt+ Φ(t) dW (t). (4.6.17)

This has no meaning on its own, it is only shorthand for (4.6.16). By means of Example
4.6.3 the same shorthand notation describes Itô’s formula in Theorem 4.5.6 by

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t).

Again, this has no meaning on its own.
The notation of an Itô process motivates to define an integral with respect to an Itô

process. This does not require any efforts since we only use known integrals:

Definition 4.6.4. Let X be an Itô process of the form (4.6.16) and (Ψ(t) : t ∈ [0, T ]) be an
adapted measurable stochastic process with∫ T

0

|Ψ(s)Υ(s)| ds <∞ P -a.s. and

∫ T

0

|Ψ(s)Φ(s)|2 ds <∞ P -a.s.

Then define the random variable∫ T

0

Ψ(s) dX(s) :=

∫ T

0

Ψ(s)Υ(s) ds+

∫ T

0

Ψ(s)Φ(s) dW (s). (4.6.18)

The assumptions on the stochastic process Ψ yield that both integrals in (4.6.18) exist,
the first one as an ordinary integral and the second one as a stochastic integral for integrands
in Hloc. Let X be an Itô process and let Ψ be as in Definition 4.6.4. Analogously to (4.6.17)
a stochastic process (Z(t) : t ∈ [0, T ]) defined by the stochastic integral

Z(t) :=

∫ t

0

Ψ(s) dX(s)

is often described by the shorthand notation

dZ(t) = Ψ(t) dX(t). (4.6.19)
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Financial Mathematics 6. The geometric Brownian motion (S(t) : t > 0) in Financial
Mathematics 5 is an Itô process since

S(t) = s0 +

∫ t

0

µS(s)︸ ︷︷ ︸
=:Υ(s)

ds+

∫ t

0

σS(s)︸ ︷︷ ︸
=:Φ(s)

dW (s) for all t > 0

for some constants s0, µ ∈ R and σ > 0. If S describes the share prices in the Black-Scholes
model and (Ψ(t) : t > 0) denotes the number of shares held at time t, then

∫ t
0

Ψ(s) dS(s)
is the gain from trading the shares during the time interval [0, t]. Compare with Financial
Mathematics 4.

Theorem 4.6.5. (Itô’s formula)
Let X be an Itô process of the form (4.6.16) and f : [0, T ] × R → R be a function in
C1,2([0, T ]×R). Then, for t ∈ [0, T ] we have P -a.s.:

f(t,X(t)) = f(0, X(0)) +

∫ t

0

ft(s,X(s)) ds+

∫ t

0

fx(s,X(s))Φ(s) dW (s)

+

∫ t

0

fx(s,X(s))Υ(s) ds+
1

2

∫ t

0

fxx(s,X(s))Φ2(s) ds.

Remark 4.6.6. Theorem 4.6.5 implies that the process (f(t,X(t)) : t ∈ [0, T ]) is an Itô
process with the representation:

f(t,X(t))

= f(0, X(0)) +

∫ t

0

(
ft(s,X(s)) + fx(s,X(s))Υ(s) +

1

2
fxx(s,X(s))Φ2(s)

)
ds

+

∫ t

0

fx(s,X(s))Φ(s) dW (s).

By using the shorthand notation (4.6.17) for an Itô process one can write

df(t,X(t)) =
(
ft(t,X(t)) + fx(t,X(t))Υ(t) + 1

2fxx(t,X(t))Φ2(t)
)
dt

+ fx(t,X(t))Φ(t) dW (t).

Also, by using the shorthand notation (4.6.19) for a stochastic integral with respect to an
Itô process this reads as

df(t,X(t)) = ft(t,X(t)) dt+ fx(t,X(t)) dX(t) + 1
2fxx(t,X(t))Φ2(t) dt.

Note again, both shorthand notations have no meaning on their own, only if they are un-
derstood in the integrated version.

Example 4.6.7. Let (X(t) : t > 0) be an Itô process of the form (4.6.16). For the function
f : [0, T ]×R→ R, f(t, x) = x2 we obtain that

X2(t) = X2(0) + 2

∫ t

0

X(s) dX(s) +

∫ t

0

Φ2(s) ds for all t ∈ [0, T ].
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If Υ(s) = 0 for all s ∈ [0, T ] in the representation of X, this formula shows that(
X2(t)−

∫ t

0

Φ2(s) ds : t ∈ [0, T ]

)
is a local martingale, compare with Corollary 3.2.4.(a).

Example 4.6.8. Let ϕ : [0, T ] → R be a deterministic continuous function satisfying∫ T
0
ϕ2(s) ds <∞ and define2 a stochastic process (X(t) : t ∈ [0, T ]) by

X(t) = −
∫ t

0

ϕ(s) dW (s) for all t ∈ [0, T ].

Define the function

f : [0, T ]×R→ R, f(t, x) = expx.

Since X is an Itô process, Theorem 4.6.5 implies

f(t,X(t)) = 1−
∫ t

0

f(s,X(s))ϕ(s) dW (s) for all t ∈ [0, T ],

which in differential form has the nice appearance

df(t,X(t)) = −f(t,X(t)) dX(t) for all t ∈ [0, T ].

Moreover, since (f(t,X(t)) : t ∈ [0, T ]) ∈ H the stochastic process (f(t,X(t)) : t ∈ [0, T ])
is a continuous martingale. This martingale is called the exponential martingale. Compare
with Corollary 3.2.4.(b).

Example 4.6.9.

(a) We define stochastic processes (Y (t) : t ∈ [0, T ]) and (Z(t) : t ∈ [0, T ]) by

Y (t) := cos(W (t)), Z(t) := sin(W (t)).

Then we obtain that Y and Z are Itô processes of the form

dY (t) = − 1
2 cos(W (t)) dt− sin(W (t)) dW (t),

dZ(t) = − 1
2 sin(W (t)) dt+ cos(W (t)) dW (t).

(b) Let (Y (t) : t ∈ [0, T ]) and (Z(t) : t ∈ [0, T ]) be the stochastic processes defined in
part (a). Then we obtain

dY 2(t) =
(
− (cosW (t))

2
+ (sinW (t))

2
)
dt− 2(cosW (t))(sinW (t)) dW (t)

2The multiplication by (-1) is for later convenience.
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and analogously

dZ2(t) =
(
− (sinW (t))

2
+ (cosW (t))

2
)
dt+ 2(sinW (t))(cosW (t)) dW (t).

It follows from sin2(x) + cos2(x) = 1 for all x ∈ R that Y 2(t) + Z2(t) = 1 for all
t ∈ [0, T ] which motivates us to call the stochastic process

((Y (t), Z(t)) : t ∈ [0, T ])

Brownian motion on the circle.

4.7. The multidimensional Itô calculus

In this section we generalise the stochastic integration to Rd for a fixed dimension d ∈ N.
For distinction to the one-dimensional situation we denote here3 the Euclidean norm in Rd

by ‖·‖d, i.e. ‖a‖d = (a2
1 + · · · + a2

d)
1/2 for a = (a1, . . . , ad) ∈ Rd. Let (W (t) : t > 0) be

a d-dimensional Brownian motion, i.e. W (t) = (W1(t), . . . ,Wd(t)) for all t > 0 and each
(Wi(t) : t > 0) is a one-dimensional Brownian motion and Wi and Wj are independent for
i 6= j. An n× d-dimensional stochastic process ((Φij(t))i=1,...,n;j=1,...,d : t > 0) is said to be
in H if each (Φi,j(t) : t ∈ [0, T ]) is in H for every i = 1, . . . , n, j = 1, . . . , d and analogously
for Hloc. Then we define

∫ T

0

Φ(s) dW (s) : =

∫ T

0


Φ1,1(s) Φ1,2(s) . . . . . . Φ1,d(s)
Φ2,1(s) Φ2,2(s) . . . . . . Φ2,d(s)

...
...

...
Φn,1(s) Φn,2(s) . . . . . . Φn,d(s)

 d


W1(s)
W2(s)

...
Wd(s)



:=


∑d
j=1

∫ T
0

Φ1,j(s) dWj(s)∑d
j=1

∫ T
0

Φ2,j(s) dWj(s)
...∑d

j=1

∫ T
0

Φn,j(s) dWj(s)


Note that the stochastic integral is an n-dimensional random vector. The Itô’s isometry has
the following analogue:

Corollary 4.7.1.
If (W (t) : t > 0) is a d-dimensional Brownian motion and ((Φi,j(t))i=1,...,n;j=1,...,d : t > 0)
is an n× d-dimensional stochastic process in H then

E

[∥∥∥∥∫ t

0

Φ(s) dW (s)

∥∥∥∥2

n

]
= E

[∫ T

0

‖Φ(s)‖2HS ds

]
,

3this might be not consistent with other parts of the lecture notes where the Euclidean norm is just denoted
by |·|.
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where for any matrix c = (cij)i=1,...,n;j=1,...,d ∈ Rn×d the Hilbert-Schmidt norm is defined
by

‖c‖HS :=

 n∑
i=1

d∑
j=1

|cij |2
1/2

. (4.7.20)

An n-dimensional stochastic process (X(t) : t > 0) is called an Itô process, if it is of the
form

X(t) = X(0) +

∫ t

0

Υ(s) ds+

∫ t

0

Φ(s) dW (s) for all t > 0, (4.7.21)

where (Υ(t) : t > 0) is an n-dimensional, adapted stochastic process of the form Υ(t) =
(Υ1(t), . . . ,Υn(t)) for all t ∈ [0, t] such that each component Υi is measurable and satisfies∫ T

0

|Υi(s)| ds <∞ P -a.s. for all i = 1, . . . , n

and (Φ(t) : t > 0) is an n× d-dimensional stochastic process such that each component Φi,j
is measurable and satisfies∫ T

0

|Φij(s)|2 ds <∞ P -a.s. for all i = 1, . . . n, j = 1, . . . , d.

Theorem 4.7.2. Let X be an Itô process of the form (4.7.21) and f : [0, T ] × Rn → R

be a function such that the partial derivatives ∂f
∂t , ∂f

∂xi
and ∂2f

∂xixj
exist and that they are

continuous. Then, for t ∈ [0, T ] we have P -a.s.:

f(t,X(t)) = f(0, X(0)) +

∫ t

0

∂f

∂t
(s,X(s)) ds+

n∑
i=1

∫ t

0

Υi(s)
∂f

∂xi
(s,X(s)) ds

+
1

2

n∑
i,j=1

d∑
k=1

∫ t

0

Φik(s)Φjk(s)
∂2f

∂xi∂xj
(s,X(s)) ds

+
n∑
i=1

d∑
j=1

∫ t

0

Φij(s)
∂f

∂xi
(s,X(s)) dWj(s).

It is assumed in Theorem 4.7.2 that the components Wi and Wj of the d-dimensional
Brownian motion W are independent for i 6= j, which corresponds to our Definition (3.0.1).
However, a multi-dimensional Brownian motion can be defined more general by allowing that
the components might be dependent. In this case the formula in 4.7.2 has some additional
terms.

Recall the standard notion of multidimensional calculus; the gradient is defined by

∇f :=
(
∂f
∂x1

, . . . , ∂f∂xn

)
,
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and the Hessian matrix by

∇2f :=
(

∂2f
∂xi∂xj

)n
i,j=1

.

Let 〈·, ·〉 denote the scalar product in the Euclidean space Rn. Then we can rewrite Itô’s
formula in Theorem 4.7.2 as

f(t,X(t)) = f(0, X(0)) +

∫ t

0

∂f

∂t
(s,X(s)) ds

+

∫ t

0

(〈
Υ(s), (∇f)(s,X(s))

〉
+

1

2
Tr
[
Φ(s)ΦT (s)

(
(∇2f)(s,X(s))

)])
ds

+

d∑
j=1

∫ t

0

〈
(∇f)(s,X(s)), Φ•j(s)

〉
dWj(s),

with Φ•j(s) := (Φ1j(s), . . . ,Φnj(s)) for all j = 1, . . . , d. Often one uses the shorthand
notation

df(t,X(t)) =
(
ft(t,X(t)) +

〈
Υ(t), (∇f)(t,X(t))

〉
+ 1

2Tr
[
Φ(t)ΦT (t)

(
(∇2f)(t,X(t))

)])
dt

+
〈
(∇f)(s,X(s)), Φ(s) dW (s)

〉
.

Remark 4.7.3. Suppose that the Itô process X takes values only in an open set U ⊆ Rn.
Then Theorem 4.7.2 can be generalised to a function f : [0, T ] × U → R by requiring that

its derivatives ∂f
∂t in [0, T ], ∂f

∂xi
and ∂2f

∂xixj
in U exist and that they are continuous. This

can be derived from Theorem 4.7.2 by localising. An example for the case n = d = 1 is
the geometric Brownian motion S in Financial Mathematics 5, which takes only values in
(0,∞) if the initial value s0 is positive. Then we can use Itô’s formula to calculate the form
of (
√
S(t) : t ∈ [0, T ]).

Example 4.7.4. (Product formula)
For independent Brownian motions (W1(t) : t > 0) and (W2(t) : t > 0) let X and Y be of
the form

X(t) = X(0) +

∫ t

0

Υ1(s) ds+

∫ t

0

Φ1(s) dW1(s)

Y (t) = Y (0) +

∫ t

0

Υ2(s) ds+

∫ t

0

Φ2(s) dW2(s).

Then their product satisfies

d(X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t).

4.8. Exercises

1. Let Y1 be a FW
1 -measurable random variable with E[Y 2

1 ] = 2 and let Y2 be a FW
2 -

measurable random variable with E[Y 2
2 ] = 4. Define a stochastic process (Φ(t) : t ∈
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[0, 4]) by

Φ(t) =


2, if t ∈ [0, 1],

Y1, if t ∈ (1, 2],

Y2, if t ∈ (2, 3],

0, if t ∈ (3, 4].

(a) Write the stochastic integral ∫ 4

0

Φ(s) dW (s)

as the sum of three random variables.

(b) Calculate the mean and variance of the stochastic integral∫ 4

0

Φ(s) dW (s).

2. Find for 0 6 a 6 b the expectation and variance of the following random variables:

(a) X =
∫ b
a
|W (t)| dW (t).

(b) X =
∫ b
a

√
t eW (t) dW (t).

(c) X =
∫ b
a

sgn(W (t)) dW (t) where sgn(x) =

{
0, if x = 0,
x
|x| , if x 6= 0.

The stochastic process (
∫ t

0
sgn(W (s)) dW (s) : t > 0) is a Brownian motion.

3. Show at least in two different ways that M(t) := exp(W (t)− 1
2 t) defines a martingale

(M(t) : t > 0).

4. Let f : [0, T ]→ R be a continuous function. For a partition π = {ti}i=0,...,m of [0, T ]
define the sums

L(π) =

m−1∑
k=0

f(tk)
(
f(tk+1)− f(tk)

)
,

R(π) =

m−1∑
k=0

f(tk+1)
(
f(tk+1)− f(tk)

)
.

(a) Show that (\)

L(π) =
1

2

(
f2(T )− f2(0)−

m−1∑
k=0

(
f(tk+1)− f(tk)

)2)
,

R(π) =
1

2

(
f2(T )− f2(0) +

m−1∑
k=0

(
f(tk+1)− f(tk)

)2)
.
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(b) Conclude from part (a) that for the existence of the Riemann-Stieltjes integral∫ T
0
f(s) df(s) it is necessary that the quadratic variation vanishes, that is

lim
|π|→0

m−1∑
k=0

|f(tk+1)− f(tk)|2 → 0,

where the limit is taken over all partitions π ∈ P (0, T ) with |π| → 0. (\)

5. Show that for all t > 0 and m > 2, the Brownian motion satisfies

Wm(t) = m

∫ t

0

Wm−1(s) dW (s) +
m(m− 1)

2

∫ t

0

Wm−2(s) ds.

6. Let (X(t) : t ∈ [0, T ]) be a stochastic process in H0 and 0 6 s 6 t 6 T . Show the
following

(a) E

[∫ t

s

X(u) dW (u)|Fs

]
= 0.

(b) E

[(∫ t

s

X(u) dW (u)

)2

|Fs

]
= E

[∫ t

s

X2(u) du|Fs

]
.

(c) How can you generalise the results in (a) and (b) to X ∈H ?

7. Define the random variable

X(t) :=

∫ t

0

W 2(s) dW (s)

(a) Show that

X(t) =
1

3
W 3(t)−

∫ t

0

W (s) ds for all t > 0

by the same method as in Example 4.2.10 and verify directly that (X(t) : t > 0)
is a martingale. (∗∗)

(b) Repeat part (a) by another arguments.

8. (a) Verify that∫ t

0

s dW (s) = tW (t)−
∫ t

0

W (s) ds P -a.s. for all t > 0.

(b) Show that the stochastic process (X(t) : t > 0) defined by

X(t) = exp
(

1
2 t
)

cosW (t)

satisfies the equation

X(t) = 1−
∫ t

0

exp
(

1
2s
)

sinW (s) dW (s) for all t > 0.
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(c) Show by calculating the differential dY that the process (Y (t) : t > 0) defined
by

Y (t) =
1

3
(W (t))

3 − tW (t),

is a martingale.

9. (a) Show that if Ψ ∈H is such that the mapping (s, t) 7→ E[Ψ(s)Ψ(t)] is continuous
then ∫ T

0

Ψ(s) dW (s) = lim
|π|→0

n−1∑
k=0

Ψ(tk)(W (tk+1)−W (tk)) in L2(Ω),

where the limit is taken over all partitions π = {tk}k=0,...,n of [0, T ].

(b) One can use (a) to define a λ-integral for λ ∈ [0, 1] by

(λ)−
∫ T

0

Φ(s) dW (s) := lim
|π|→0

n−1∑
k=0

Ψ(ζk)(W (tk+1)−W (tk)) in L2(Ω),

where ζk = (1−λ)tk+λtk+1 for all adapted stochastic processes (Ψ(t) : t ∈ [0, t])
for which this limit exists. If λ = 0 the λ-integral coincide with the Itô integral
due to part (a). For λ = 1

2 this integral is called the Stratonovich integral.

(i) If the adapted stochastic process (Ψ(t) : t ∈ [0, T ]) has Lipschitz continuous
paths then

(λ)−
∫ T

0

Ψ(s) dW (s) =

∫ T

0

Ψ(s) dW (s),

i.e. the λ-integral and the Itô integral coincide. (\)

(ii) Show that (\)

(λ)−
∫ T

0

W (s) dW (s) = 1
2W

2(t)−
(

1
2 − λ

)
t.

(iii) Show that if f : R→ R is a continuously differentiable function then (\)

( 1
2 )−

∫ T

0

f(W (s)) dW (s) =

∫ T

0

f(W (s)) dW (s) + 1
2f
′(W (s)) dWs.

10. The Laplace operator of a function f ∈ C2(Rn) is defined by

∆f : Rn → R, ∆f :=
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n

.

The function f is called harmonic on an open set D ⊆ Rn if ∆f = 0 on D. Let W be
an n-dimensional Brownian motion.
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(a) Show that Itô’s formula for f in C2(Rn) is given by

f(W (t)) = f(W (0)) +

∫ t

0

∇f(W (s)) dW (s) +
1

2

∫ t

0

∆f(W (s)) ds for all t ∈ [0, T ].

(b) Let D ⊆ Rd be an open set and define for an open set S ⊆ D with 0 ∈ S and
S ⊆ D the stopping time

τ := inf{t > 0 : W (t) /∈ S}.

Show that if f is harmonic, then (f(W (τ ∧ t)) : t > 0) is a local martingale.

This result can be used to show that Brownian motion in Rd is recurrent only if d = 1 or d = 2.

A Brownian process is recurrent if it returns almost surely to any neighborhood of the origin

infinitely often.





5
Stochastic Differential

Equations

An ordinary differential equation is of the form

x′(t) = f(x(t)) for all t ∈ [0, T ] and x(0) = x0, (5.0.1)

where x0 ∈ R is a given initial value and f : R → R is a given function. A solution is a
function x : [0, T ]→ R which satisfies this equation. A simple example is

x′(t) = αx(t) for all t ∈ [0,T] and x(0) = x0,

for a constant α ∈ R, which is solved by the function x(t) = x0 exp(αt) for all t ∈ [0, T ].
The differential equation (5.0.1) can be written as an integral equation:

x(t) = x(0) +

∫ t

0

f(x(s)) ds for all t ∈ [0,T] (5.0.2)

and it has the same solution. In this chapter we introduce analogously stochastic differential
equations based on the Itô calculus.

5.1. The Equation

From a modelling point of view one can think of perturbing the deterministic dynamic
described in equation (5.0.1) by a random noise modelled by a Brownian motion:

X(t) = X(0) +

∫ t

0

f(X(s)) ds+

∫ t

0

g(X(s)) dW (s) for all t ∈ [0, T ]
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for some functions f , g : R → R. Since the Brownian motion is not differentiable we use
the integrated version (5.0.2). The first integral can be understood pathwise, that is one
fix ω ∈ Ω and considers s 7→ f(X(s)(ω)) as a deterministic function. If this function is
integrable for each ω ∈ Ω then the integral

Z(ω) :=

∫ t

0

f(X(s)(ω)) ds

exists and Z : Ω → R is a random variable. The second integral is the stochastic integral
defined in the previous chapter. It exists if the stochastic process (g(X(t)) : t ∈ [0, T ]) is in
H or more general in Hloc.

In fact, these kind of equations are called stochastic differential equations. If we also allow
the coefficients to depend on time we arrive at the following stochastic differential equation
which we write in the differential form:

dX(t) = f(t,X(t)) dt+ g(t,X(t)) dW (t) for all t ∈ [0, T ],

X(0) = X0,
(5.1.3)

where the coefficients are given by measurable functions

f, g : [0, T ]×R→ R

and the initial value is a given F0-measurable, random variable X0 : Ω→ R with E[|X0|2] <
∞. The term f is called the drift coefficient and the term g is called the diffusion coefficient1.
The underlying probability space (Ω,A , P ) is equipped with a filtration {Ft}t>0 which
satisfies the usual conditions. The noise is modelled by a Brownian motion (W (t) : t > 0)
and we assume the same conditions as mentioned in the very beginning of Chapter 4. As
before the equation (5.1.3) does not have a meaning on its own, but the following definition
explains what we understand as a solution.

Definition 5.1.1. A stochastic process X = (X(t) : t ∈ [0, T ]) is a solution of the stochastic
differential equation (5.1.3) if

(a) X is adapted;

(b) X(0) = X0 P -a.s.

(c) P

(∫ T

0

|f(s,X(s))| ds+

∫ T

0

|g(s,X(s))|2 ds <∞

)
= 1.

(d) For all t ∈ [0, T ], the stochastic process X satisfies

X(t) = X(0) +

∫ t

0

f(s,X(s)) ds+

∫ t

0

g(s,X(s)) dW (s) P-a.s.

1Some authors call g dispersion coefficient and g2 diffusion coeeficient. In Financial Mathematics g is called
volatility.
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Condition (c) guarantees that both integrals appearing in (d) are well defined. In particu-
lar, since the solution X is required to be adapted due to Condition (a) and g : [0, T ]×R→ R

is measurable, the stochastic process (g(t,X(t)) : t ∈ [0, T ]) is adapted and in Hloc because
of Condition (c).

Often the initial condition is just a deterministic value x0 ∈ R instead of an F0-measurable
random variable X0 : Ω → R. A further modification of the considered equation (5.1.3) is
the situation where the solution is required to exist on the entire time axis [0,∞) and not
only on an interval [0, T ]. This can easily be achieved by taking Definition (5.1.1) locally in
time, i.e. a stochastic process (X(t) : t > 0) is called a solution if (X(t) : t ∈ [0, T ]) satisfies
Definition 5.1.1 for all T > 0. In fact, our definition of a solution depends on the considered
time interval [0, T ], since not for all T > 0 a solution must exist.

Example 5.1.2. Consider the example of a deterministic differential (integral) equation:

x(t) = 1 +

∫ t

0

x2(s) ds for all t ∈ [0,T] .

The solution is given by x(t) = (1− t)−1 but only for T < 1.

Recall that a solution of a deterministic differential equation need not to be unique. A
simple example of this fact is the following:

Example 5.1.3. The deterministic differential (integral) equation

x(t) =

∫ t

0

2
√
x(s) ds for all t ∈ [0,T],

has infinitely many solutions. For example, x(t) = 0 and x(t) = t2 for t ∈ [0, T ] are both
solutions.

For stochastic differential equations there are different notions of uniqueness for a solution
of (5.1.3). We use the strongest one and say that a solution is unique if all other solutions
are indistinguishable.

Definition 5.1.4. A solution (X(t) : t ∈ [0, t]) of (5.1.3) is called unique if for any other
solution (Y (t) : t ∈ [0, T ]) of (5.1.3) it follows

P
(
X(t) = Y (t) for all t ∈ [0, T ]

)
= 1.

The standard conditions to guarantee the existence of a unique solution of a deterministic
differential equation are the Lipschitz and linear growth conditions. The same applies to
stochastic differential equations, and even the proof is very similar based on Picard’s iteration
scheme.

Theorem 5.1.5. Suppose that there exists a constant c > 0 such that the following are
satisfied for all t ∈ [0, T ] and all x, y ∈ R:

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| 6 c |x− y| , (5.1.4)

|f(t, x)|2 + |g(t, x)|2 6 c2(1 + |x|2). (5.1.5)

Then there exists a unique solution (X(t) : t ∈ [0, T ]) of the stochastic differential equation
(5.1.3). Moreover, the solution X has the following properties:
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(i) X has continuous trajectories;

(ii) there exists a constants α > 0 such that

E

[
sup
t∈[0,T ]

|X(t)|2
]
6 α

(
1 + E

[
|X0|2

])
.

Proof. See Theorem 5.2.9 in [9].

Condition (5.1.4) is called Lipschitz condition and (5.1.5) linear growth condition. If the
coefficients f and g do not depend on t, i.e. if they are of the form f : R→ R and g : R→ R,
then the Lipschitz condition (5.1.4) is satisfied if and only if f and g are Hölder continuous
of order 1; see Section 3.3 for the definition of Hölder continuity. Due to the inequalities

1 + a2 6 (1 + a)2 6 2(1 + a2) for all a ∈ R+,

Condition (5.1.5) is satisfied if and only if there exists a constant c′ > 0 such that for all
t ∈ [0, T ] and all x, y ∈ R:

|f(t, x)|+ |g(t, x)| 6 c′(1 + |x|).

This is the reason for the term linear in linear growth condition.

Example 5.1.6. The stochastic differential equation

dX(t) = −X(t)

1 + t
dt+

1

1 + t
dW (t) for all t ∈ [0,T], X(0) = 0,

has a unique solution, since the coefficients

f : [0, T ]×R→ R, f(t, x) :=
−x

1 + t
,

g : [0, T ]×R→ R, g(t, x) :=
1

1 + t
,

satisfy the conditions in Theorem 5.1.5. Itô’s formula in Theorem 4.6.5 shows that the
solution (X(t) : t ∈ [0, T ]) is given by

X(t) =
W (t)

1 + t
.

Financial Mathematics 7. Many models in financial mathematics are based on stochastic
differential equations. By far the most important one is the Black-Scholes model where the
share prices (S(t) : t ∈ [0, T ]) are modelled by the stochastic differential equation

dS(t) = µS(t) dt+ σS(t) dW (t) for all t ∈ [0,T],

where µ ∈ R and σ > 0 are constants.
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Various models for interest rates are described by stochastic differential equations, for
example the Vasicek model

dR(t) = −a(R(t)− b) dt+ σ dW (t) for all t ∈ [0, T ],

R(0) = r0,

where r0, a, b, σ > 0 are constants. The draw back of the rather simple Vasicek model is that
the solution R can be negative which does not fit to the purpose of modelling interest rates.
This can be fixed by considering the Cox-Ingersoll-Ross model, where the interst rates R
are modelled by

dR(t) = −a(R(t)− b) dt+ σ
√
R(t) dW (t) for all t ∈ [0, T ],

R(0) = r0,

where r0, a, b, σ > 0 are some constants. Once can show that if the parameters a , b and σ
are in a specific area then the solution R is positive. Note, that the existence of a solution
of this equation does not follow from Theorem 5.1.5 but it can be established by some other
arguments, see Exercise 5.7.7.

5.2. Example: Ornstein-Uhlenbeck Process

As an example we consider a linear stochastic differential equation with additive noise.
Although this equation is rather simple it was the starting point of the idea of stochastic
differential equations and nevertheless, it is applied in various models.

Definition 5.2.1. Let µ ∈ R, u0 ∈ R and σ2 > 0 be given constants. The unique solution
(U(t) : t > 0) of the stochastic differential equation

dU(t) = µU(t) dt+ σ dW (t) for all t > 0,

U(0) = u0,
(5.2.6)

is called Ornstein-Uhlenbeck process.

The coefficients of the stochastic differential equation (5.2.6) are given by

f : [0, T ]×R→ R, f(t, x) := µx,

g : [0, T ]×R→ R, g(t, x) := σ.

Since these functions satisfy the conditions in Theorem 5.1.5 the definition above makes
sense, i.e. the solution of the considered stochastic differential equation exists and is unique.
In this case the solution can even be written explicitly.

Proposition 5.2.2. The solution of (5.2.6) is given by

U(t) = u0e
µt + σ

∫ t

0

eµ(t−s) dW (s) for all t > 0 .
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Moreover, for each t > 0 the random variable U(t) is normally distributed with moments
and variance governed by

E[U(t)] = u0 exp(µt), E
[
(U(t))2

]
= −σ2

2µ +
(
u2

0 + σ2

2µ

)
e2µt,

Var[U(t)] = σ2

2µ

(
e2µt − 1

)
.

The claim in the last Proposition that the random variable U(t) is normally distributed
for each t > 0 is based on the following general result:

Lemma 5.2.3. Let f : [0, T ] → R be a function such that
∫ T

0
|f(s)|2 ds < ∞. Then the

random variables

X(t) :=

∫ t

0

f(s) dW (s) for t ∈ [0, T ],

are normally distributed with E[X(t)] = 0 and Var[X(t)] =

∫ t

0

f2(s) ds and

Cov(X(s), X(t)) =

∫ s∧t

0

f2(u) du.

for s, t ∈ [0, T ].

Lemma 5.2.4. If f : [0, T ]→ R is a differentiable function then∫ t

0

f(s) dW (s) = f(t)W (t)−
∫ t

0

f ′(s)W (s) ds for all t ∈ [0, T ].

5.3. Example: Geometric Brownian Motion

The most popular model in Financial Mathematics is based on the Geometric Brownian
Motion, which we define as the solution of a stochastic differential equation:

Definition 5.3.1. Let µ ∈ R, g0 > 0 and σ2 > 0 be given constants. The unique solution
(G(t) : t > 0) of the stochastic differential equation

dG(t) = µG(t) dt+ σG(t) dW (t) for all t > 0,

G(0) = g0,
(5.3.7)

is called Geometric Brownian Motion.

The coefficients for the stochastic differential equation (5.3.7) are given by the functions

f : [0, T ]×R→ R, f(t, x) := µx, (5.3.8)

g : [0, T ]×R→ R, g(t, x) := σx, (5.3.9)

Obviously, these functions satisfy the linear growth condition and the Lipschitz condition
in Theorem 5.1.5 and thus, the definition above makes sense. By applying Itô’s formula, we
can even represent the solution explicitly.
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Proposition 5.3.2. The solution of (5.3.7) is given by

G(t) = g0 exp
( (
µ− 1

2σ
2
)
t+ σW (t)

)
for all t > 0 .

Moreover, for each t > 0 the random variable G(t) is lognormally distributed2 with moments
and variance given by

E[G(t)] = g0 exp(µt), E[(G(t))2] = g2
0 exp

(
(2µ+ σ2)t

)
,

Var[G(t)] = g2
0e

2µt
(
eσ

2t − 1
)
.

The model of a Geometric Brownian motion can easily be generalised; let (Υ(t) : t > 0)
and (Φ(t) : t > 0) be adapted stochastic processes which satisfy∫ t

0

|Υ(s)| ds <∞ P-a.s.,

∫ t

0

|Φ(s)|2 , ds <∞ P-a.s.

for all t > 0. Then we can define a stochastic process (X(t) : t > 0) by

X(t) =

∫ t

0

(
Υ(s)− 1

2Φ2(s)
)
ds+

∫ t

0

Φ(s) dW (s) for all t > 0 .

Let the stochastic process (Y (t) : t > 0) be defined by Y (t) := y0 exp(X(t)) where y0 ∈ R
is a given constant. Since X is an Itô process we can apply Itô’s formula in Theoerm 4.6.5
to derive

dY (t) = Υ(t)Y (t) dt+ Φ(t)Y (t) dW (t) for all t > 0 . (5.3.10)

This equation differs from the stochastic differential equation (5.1.3) by the fact that the
coefficients in (5.3.10) cannot be described by purely deterministic functions f and g, as for
example in (5.3.8), due to the randomness of Υ and Φ. Nevertheless we can understand
Y intuitively as a solution of a “stochastic differential equation with random coefficients”
although we do not provide the corresponding theory3, e.g a formal definition of a solution.

Equation (5.3.10) is much more general than (5.3.7) due to the coefficients depending on
time t and on the random outcome ω. This yields that the solution Y is much less regular
than the classical Geometric Brownian motion. In the next section we will use equation
(5.3.10) to introduce a model of a share price much more general than the classical Black-
Scholes model.

5.4. Application: Modelling the Share Prices

One of the reasons of the popularity of the Black-Scholes model is its simplicity and the
fact that many terms can be calculated explicitly. However in order to be able to model

2A random variable X is called lognormally distributed if lnX is normally distributed.
3More advanced books often consider stochastic differential equation with random coefficients from the

very beginning.
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financial derivatives and markets it is important to understand which phenomena in the
Black-Scholes model are intrinsic and which might be implied by a much broader view on
the financial market.

One assumes that there is a risk-free asset (B(t) : t ∈ [0, T ]) which is given by

dB(t) = R(t)B(t) dt for all t ∈ [0,T],

B(0) = 1,
(5.4.11)

where R = (R(t) : t ∈ [0, T ]) is an adapted stochastic process. The process R might be
interpreted as an instantaneous risk-free interest rate which is possibly random. If R is a
deterministic constant, i.e. R(t) = r for all t ∈ [0, T ], then we can interpret B as the price
of a bond, say a savings account. If we fix ω ∈ Ω equation (5.4.11) reduces to an ordinary
differential equation of the form

Ḃω(t) = Rω(t)Bω(t) for all t ∈ [0,T],

Bω(0) = 1,

where we use momentarily the notation Bω(t) := B(t)(ω) and Rω(t) := R(t)(ω). This
differential equation can be solved explicitly and the solution is given by

B(t)(ω) = exp

(∫ t

0

R(s)(ω) ds

)
for all t ∈ [0,T] and all ω ∈ Ω.

The share prices (S(t) : t ∈ [0, T ]) is assumed to evolve according to the dynamic

dS(t) = Υ(t)S(t) dt+ Φ(t)S(t) dW (t) for all t ∈ [0,T], (5.4.12)

where the mean rate of return process (Υ(t) : t ∈ [0, T ]) and the volatility process (Φ(t) : t ∈
[0, T ]) are adapted, measurable stochastic processes. The only constraint on these adapted,
stochastic processes are that they are required to satisfy∫ T

0

|Υ(s)| ds <∞ P -a.s.,

∫ T

0

|Φ(s)|2 ds <∞ P -a.s.

Although equation (5.4.12) looks like a stochastic differential equation we do not call it so
since the coefficients depend on ω ∈ Ω. However, the interpretation of the dynamic of the
stochastic process S which satisfies the equation (5.4.12) is the same. In the end of Section
5.3 we derive its representation; the stochastic process (S(t) : t ∈ [0, T ]) which satisfies
equation (5.4.12) is given by

S(t) = S(0) exp

(∫ t

0

(
Υ(s)− 1

2Φ2(s)
)
ds+

∫ t

0

Φ(s) dW (s)

)
(5.4.13)

for all t ∈ [0, T ]. Recall that we do not assume that the filtration is generated by the
Brownian motion W . Thus, the condition on R, Υ and Φ to be adapted is very weak. For
example, the interest rate R could be driven by another process.
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Example 5.4.1. The (standard) Black-Scholes model is included in this setting. Just set
R(t) = r, Υ(t) = µ and Φ(t) = σ for all t ∈ [0, T ] and for some given constants µ ∈ R,
r ∈ R+ and σ > 0.

The generalised Black-Scholes model captures a variety of models which can be found in
the modern literature. A particular important case, which has gained much interest recently,
are the so-called volatility models.

Example 5.4.2. Empirical studies suggest that the volatility in security time markets itself
should be modelled by a stochastic processes, typically described by a stochastic differential
equation. These are the so-called stochastic volatility models and they are included in the
framework of this section. For example, consider the following model of the share prices S:

dS(t) = µS(t) dt+ Φ(t)S(t) dW1(t) for all t ∈ [0,T], (5.4.14)

dΦ(t) = f(t,Φ(t)) dt+ g(t,Φ(t)) dW2(t) for all t ∈ [0,T], (5.4.15)

where µ ∈ R is a given constant and f, g : [0, T ]×R→ R are given deterministic functions,
(W1(t) : t ∈ [0, T ]) and (W2(t) : t ∈ [0, T ]) are Browian motions. In this situation,
(Φ(t) : t ∈ [0, T ]) is an adapted stochastic process, defined as the solution of the stochastic
differential equation (5.4.15), and the share price S is modelled by a generalised Black-
Scholes model as described by equation (5.4.12).

Note, that since Φ is adapted to the filtration {FW2
t }t>0 generated by W2, the share price

S is not necessarily adapted to the filtration {FW1
t }t>0 generated by the Brownian motion

W1 which drives the equation of the share price. This fact has important consequences for
these models as we will see later. The idea of volatility models goes back to Merton (1977).

We finish this short introduction to stochastic modelling of share prices by completing the
model. Once the share prices is described we want also to model the trading of this share.

Definition 5.4.3.

(a) A trading strategy (Γ,∆) is an adapted stochastic process ((Γ(t),∆(t)) : t ∈ [0, T ])
with values in R2.

(b) the value process V = V (Γ,∆) of the trading strategy (Γ,∆) is given by

V (t) = Γ(t)B(t) + ∆(t)S(t) for all t ∈ [0,T] .

(c) a trading strategy (Γ,∆) with∫ T

0

|Γ(s)| ds <∞,
∫ T

0

|∆(s)|2 ds <∞ P -a.s.,

is called self-financing if the value process V = V (Γ,∆) satisfies

dV (t) = Γ(t) dB(t) + ∆(t) dS(t) for all t ∈ [0,T] . (5.4.16)
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The interpretation of a trading strategy ((Γ(t),∆(t)) : t ∈ [0, T ]) is the following: at time
t the agent who is trading according to this strategy keeps Γ(t) units of the bond and ∆(t)
units of the share. The bond has at this time the value B(t) and the share price is written
as S(t). Negative values of Γ(t) or ∆(t) correspond to short positions, respectively. This
leads immediately to the value process (V (t) : t ∈ [0, T ]) whose entry V (t) represents the
value of a portfolio at the time t if Γ(t) units of the bond and ∆(t) units of the share are
kept in the portfolio.

The interpretation of the definition of a self-financing portfolio is slightly more subtle.
The self-financing condition (5.4.16) requires that every change in the value of the portfolio
is only due to changes in the share price and in the bond.

5.5. Systems of stochastic differential equations

We also can consider stochastic differential equations in Rn. For distinction to the one-
dimensional situation we denote here4 the Euclidean norm in Rn by ‖·‖n, i.e. ‖a‖n =
(a2

1 + · · ·+ a2
n)1/2 for a = (a1, . . . , an) ∈ Rn; the Hilbert-Schmidt norm ‖·‖HS of a matrix is

defined in (4.7.20).

Let (W (t) : t > 0) be a d-dimensional Brownian motion, i.e. W (t) = (W1(t), . . . ,Wd(t))
for all t > 0, and denote some measurable functions by

f : [0, T ]×Rn → Rn and g : [0, T ]×Rn → Rn×d .

Then a system of stochastic differential equation or a multi-dimensional stochastic differential
equation is of the form

dX(t) = f
(
t,X(t)

)
dt+ g

(
t,X(t)

)
dW (t) for all t ∈ [0,T],

X(0) = X0,
(5.5.17)

where the initial condition X0 is an F0-measurable random vector X0 : Ω → Rn with
E[‖X0‖2n] <∞. We can write this stochastic differential equation in vector form, since the
functions f and g are of the form

f(t, x) =


f1(t, x)
f2(t, x)

...
fn(t, x)

 , g(t, x) =


g1,1(t, x) g1,2(t, x) . . . . . . g1,d(t, x)
g2,1(t, x) g2,2(t, x) . . . . . . g2,d(t, x)

...
...

...
gn,1(t, x) gn,2(t, x) . . . . . . gn,d(t, x)


for all t ∈ [0, T ] and x ∈ Rn, where

fi : [0, T ]×Rn → R, gi,j : [0, T ]×Rn → R,

4this might be not consistent with other parts of the lecture notes where the Euclidean norm is just denoted
by |·|.
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are some measurable functions for i = 1, . . . , n and j = 1, . . . , d. Then the stochastic
differential equation (5.5.17) can be written as
dX1(t)
dX2(t)

...
dXn(t)

=


f1

(
t,X(t)

)
dt

f2

(
t,X(t)

)
dt

...
fn
(
t,X(t)

)
dt

+


g1,1

(
t,X(t)

)
g1,2

(
t,X(t)

)
. . . g1,d

(
t,X(t)

)
g2,1

(
t,X(t)

)
g2,2

(
t,X(t)

)
. . . g2,d

(
t,X(t)

)
...

...
...

gn,1
(
t,X(t)

)
gn,2

(
t,X(t)

)
. . . gn,d

(
t,X(t)

)


dW1(t)
dW2(t)

...
dWd(t)



X1(0)
X2(0)

...
Xn(0)

=


X

(1)
0

X
(2)
0
...

X
(n)
0


for an initial condition X0 = (X

(1)
0 , . . . , X

(n)
0 ) : Ω→ Rn.

The definition of a solution of (5.5.17) is the same as in the one dimensional situation
in Definition 5.1.1, only part (c) is adjusted in order to guarantee the existence of the
multi-dimensional integrals in part (d).

Definition 5.5.1. A stochastic process X = (X(t) : t ∈ [0, T ]) in Rn is a solution of the
stochastic differential equation (5.5.17) if

(a) X is adapted;

(b) X(0) = X0 P -a.s.

(c) P

(∫ T

0

‖f(s,X(s))‖n ds+

∫ T

0

‖g(s,X(s))‖2HS ds <∞

)
= 1.

(d) For all t ∈ [0, T ], the process X satisfies

X(t) = X(0) +

∫ t

0

f(s,X(s)) ds+

∫ t

0

g(s,X(s)) dW (s) P-a.s.

Theorem 5.5.2. Suppose that there exists a constant c > 0 such that the following are
satisfied for all t ∈ [0, T ] and all x, y ∈ Rn:

‖f(t, x)− f(t, y)‖n + ‖g(t, x)− g(t, y)‖HS 6 c ‖x− y‖n , (5.5.18)

‖f(t, x)‖2n + ‖g(t, x)‖2HS 6 c2(1 + ‖x‖2n). (5.5.19)

Then there exists a unique solution (X(t) : t ∈ [0, T ]) of the stochastic differential equation
(5.1.3). Moreover, the solution X has the following properties:

(i) X has continuous trajectories;

(ii) there exists a constants α > 0 such that

E

[
sup
t∈[0,T ]

‖X(t)‖2n

]
6 α

(
1 + E

[
‖X0‖2n

])
.
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Example 5.5.3. The result from part (a) in Example 4.6.9 can be summarised as

dY (t) = − 1
2Y (t) dt− Z(t) dW (t) for all t ∈ [0,T],

dZ(t) = − 1
2Z(t) dt+ Y (t) dW (t) for all t ∈ [0,T],

where Y (t) = cos(W (t)) and Z(t) = sin(W (t)). Thus, the 2-dimensional stochastic process
((Y (t), Z(t)) : t ∈ [0, T ]) is a solution of the stochastic differential equation in R2:

dX(t) = −1

2
X(t) dt+

(
0 −1
1 0

)
X(t) dW (t) for all t ∈ [0,T],

X(0) =

(
1
0

)
.

Here W denotes a 1-dimensional Brownian motion, i.e. d = 1 and n = 2 in (5.5.17). The
coefficients here are very simple functions, i.e.

f : [0, T ]×R2 → R2, f
(
t, (x1, x2)

)
=

(
− 1

2x1

− 1
2x2

)
,

g : [0, T ]×R2 → R2, g
(
t, (x1, x2)

)
=

(
0 −1
1 0

)(
x1

x2

)
=

(
−x2

x1

)
.

5.6. Numerical approximation

In most cases one can not explicitly give the solution of a stochastic differential equation
although its existence is guaranteed. For this reason it is important to have numerical
methods to simulate and to approximate the solutions. Since our target is a stochastic
process or at least a random variable there are different possibilities which object we actually
simulate: the paths of a solution, the probability distribution of the solution at a specific
time or the expectation of the solution at a specific time or something else. In this section
we only introduce shortly a method to simulate the paths of a solution. There are much
more sophisticated methods for this aim but the ideas are similar.

The considered numerical scheme is called the Euler-Maruyama method and it is very
close to the classical Euler scheme which is used to approximate the solutions of ordinary
differential equations. Divide the time interval [0, T ] into subinterval of length T/h by the
partition {tk}k=0,...,h with tk = kT/h. If (X(t) : t ∈ [0, T ]) denotes a solution of (5.1.3)
then it satisfies

X(tk) = X(tk−1) +

∫ tk

tk−1

f(s,X(s)) ds+

∫ tk

tk−1

g(s,X(s)) dW (s) for all k = 0, . . . , h.

Since for each k = 0, . . . , h the right hand side depends not only on the value of X(tk−1) but
also on the values (X(s) : s ∈ [tk−1, tk]) we can not use this representation to approximate
X(tk). However, if the length T/h of the interval [tk−1, tk] is small then, if we require f
and g to be continuous in both arguments, one can expect that f(s,X(s)) for s ∈ [tk−1, tk]
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does not differ too much from f(tk−1, X(tk−1)) since f and the solution X is continuous and

analogously for g. This results in the approximating scheme (Y
(h)
tk

: k = 0, . . . , h) defined

recursively by Y
(h)
0 = x0 and

Y
(h)
tk

:= Y
(h)
tk−1

+ f(tk−1, Y
(h)
tk−1

)(tk − tk−1) + g(tk−1, Y
(h)
tk−1

)(W (tk)−W (tk−1)) (5.6.20)

for all k = 1, . . . , h. In each step the only unknown term is W (tk)−W (tk−1) which can be
easily simulated since it is a normally distributed random variable with expectation 0 and
variance T/h.

The scheme (Y
(h)
tk

: k = 0, . . . , h) will not coincide with the true solution (X(t) : t ∈ [0, T ])
but we can expect that they are close to each other. The distance between the approximating
scheme and the true solution can be measured in different ways. In the following result we
measure this error by the norm in L2

P (Ω.

Theorem 5.6.1. Let X be the solution of the stochastic differential equation (5.1.3) with the
initial condition X(0) = x0, where the coefficients f , g : [0, T ]×R→ R satisfy the Lipschitz

(5.1.4) and linear growth condition (5.1.5). If T > 0 is fixed and (Y
(h)
tk

: k = 0, . . . , h) is
defined by (5.6.20) for h > 0 then

max
k=0,...,h

E

[∣∣∣X(tk)− Y (h)
tk

∣∣∣2] 6 αh−1/2

for a constant α > 0 which depends on T, x0, f and g.

The exponent γ = 1/2 on the right hand side in the result of Theorem 5.6.1 is the so-
called order of the Euler-Maruyama scheme. It is important since if it is required to decrease
the error 10 times one has to make the interval length 100 times smaller. There are other
schemes, e.g Milstein, Runge-Kutta, to approximate the paths of the solutions with higher
order but they require more efforts to compute.

5.7. Exercises

Let (W (t) : t > 0) be a Brownian motion on a probability space (Ω,A , P ) in the following
exercises.

1. Let (S(t) : t ∈ [0, T ]) be the solution of

dS(t) = αS(t) dt+ σS(t) dW (t)

for some constants α ∈ R and σ2 > 0. Find the stochastic differential equation
satisfied by (Z(t) : t ∈ [0, T ]) where

Z(t) = Sm(t) for some m ∈ N .
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2. (a) Define for a constant a > 0 the stochastic process (X(t) : t > 0) by

X(t) =

{
(W (t)− a)

3
, if W (t) > a,

0, else.

Show that X solves the stochastic differential equation

dX(t) = 3X1/3(t) dt+ 3X2/3(t) dW (t) for all t > 0,

X(0) = 0.
(5.7.21)

(b) Conclude from (a) that there exists infinitely many solutions of the given stochas-
tic differential equation and indicate which condition in Theorem 5.1.5 is not
satisfied.

3. Assume that X := (X(t) : t ∈ [0, T ]) is the unique solution of

dX(t) = b
(
a− ln(X(t))

)
X(t) dt+ σX(t) dW (t) for all t ∈ [0, T ],

X(0) = x0,

for some constants a, b, σ, x0 > 0.

(a) Let Y (t) := ln(X(t)) and derive the stochastic differential equation satisfied by
(Y (t) : t ∈ [0, T ]).

(b) Derive an explicit representation of (exp(bt)Y (t) : t ∈ [0, T ]) in terms of a, b, σ2,
x0 and the Brownian motion W .

(c) Use (a) and (b) to derive an explicit representation of the stochastic process X
in terms of a, b, σ2, x0 and the Brownian motion W .

(d) Since the representation of X in (c) is derived under the assumption that X is
a solution it remains to show that X is in fact is a solution of the stochastic
differential equation above.

4. Let X := (X(t) : t ∈ [0, T ]) be the solution of

dX(t) = αX(t) dt+ σX(t) dW (t) for all t ∈ [0, T ],

X(0) = x0,

where α, σ ∈ R and x0 > 0. Derive the stochastic differential equation which is
satisfied by (X−1(t) : t ∈ [0, T ]).

5. Let X and Y be real-valued Itô processes of the form

X(t) = X(0) +

∫ t

0

Υ1(s) ds+

∫ t

0

Φ1(s) dW (s) for all t ∈ [0,T],

Y (t) = Y (0) +

∫ t

0

Υ2(s) ds+

∫ t

0

Φ2(s) dW (s) for all t ∈ [0,T],
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where (W (t) : t > 0) is a one-dimensional Brownian motion. Show that the product
of X and Y obeys

d(X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t) + Φ1(t)Φ2(t) dt.

Compare with Example 4.7.4.

6. Let (Z(t) : t ∈ [0, T ]) be the solution of the stochastic differential equation in R2:

dZ(t) = αZ(t) dt+

(
0 −1
1 0

)
Z(t) dW (t) for all t ∈ [0,T],

Z(0) =

(
x0

y0

)
,

where α ∈ R and x0, y0 ∈ R and W is a Brownian motion in R. Denote Z(t) =
(X(t), Y (t)) for all t ∈ [0, T ].

(a) Show that there exists a unique solution of this stochastic differential equation.

(b) Show that t 7→ X2(t) + Y 2(t) is a deterministic function.

(c) Compute E[X(t)], E[Y (t)] and Cov(X(t), Y (t)).

7. Let ((W1(t),W2(t)) : t > 0) be a Brownian motion in R2 and define for i = 1, 2 the
stochastic processes (Xi(t) : t ∈ [0, T ]) by

Xi(t) := exp

(
−1

2

∫ t

0

α(u) du

)(
xi +

∫ t

0

(
1
2σ(s) exp

(
1
2

∫ s

0

α(u) du

))
dWi(s)

)
,

where α, σ : [0, T ]→ R are continuous functions and x1, x2 > 0.

(a) Show that Xi is the solution of the stochastic differential equation

dXi(t) = − 1
2α(t)Xi(t) dt+

1

2
σ(t) dWi(t) for all t ∈ [0, T ],

Xi(0) = xi.

(b) Determine the probability distribution of Xi(t) and the values of E[Xi(t)] and
Var[Xi(t)] and Cov(Xi(s), Xi(t)) for s, t ∈ [0, T ] and i = 1, 2.

(c) Show that the stochastic process (R(t) : t ∈ [0, T ]) defined by R(t) := X2
1 (t) +

X2
2 (t) obeys

dR(t) =
(

1
2σ

2(t)− α(t)R(t)
)
dt+ σ(t)X1(t) dW1(t) + σ(t)X2(t) dW2(t).

A well known result, Lévy’s Characterisation of Brownian motion, shows immediately that

B(t) :=
2∑
i=1

∫ t

0

Xi(s)√
R(s)

dWi(s) for all t ∈ [0,T],
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defines a Brownian motion (B(t) : t > 0). Consequently, the equation in part (c) can be written as

dR(t) =
(

1
2
σ2(t)− α(t)R(t)

)
dt+ σ(t)

√
R(s) dB(s).

As a very special case, i.e. if α(t) = a and σ(t) = b for some constants a, b > 0 we have

dR(t) = −a
(
R(t)− b2

2a

)
dt+ b

√
R(s) dB(s),

which is of form as in the Cox, Ingersoll and Ross interest rate model, see Financial Mathematics

7. Note, that the Brownian motion B is defined in terms of the given W1 and W2 and it is not an

arbitrary Brownian motion, as we usually assume.

8. Find a stochastic process (R(t) : t ∈ [0, T ]) which satisfies the Vasicek model

dR(t) = −a(R(t)− b) dt+ σ dW (t) for all t ∈ [0, T ],

R(0) = r0,

where r0, a, b, σ > 0 are constants.



6
Girsanov’s Theorem

In this section we introduce one of the fundamental results in stochastic calculus and which
does not have an analogue in classical calculus. The result is about changing the measure
P of the underlying probability space (Ω,A , P ), which might look rather awkward if one is
only used to elementary probability theory where the underlying probability space is fixed.
However, in many models one can interpret the probability measure P as an individual
perspective on the underlying dynamics, e.g. it models the risk aversion of an agent in
financial mathematics. But also in other areas of mathematics there is sometimes a need
to change the underlying probability measure, e.g. simulation of rare events, statistics
(Maximum Likelihood) and stochastic control theory.

We assume the same properties of the underlying probability space (Ω,A , P ), of the
filtration {FW

t }t>0 and of the Brownian motion (W (t) : t > 0), as in Chapter 4.

6.1. Girsanov’s Theorem

Example 6.1.1. Let the probability space (Ω,A , P ) be given by Ω := {ω1, ω2}, A := P(Ω)
and P ({ω1}) := p and P ({ω2}) := 1 − p for a constant p ∈ (0, 1). For a given constant
q ∈ (0, 1) we define a new random variable by

Λ: Ω→ R, Λ(ω) :=

{
q
p , if ω = ω1,
1−q
1−p , if ω = ω2.

It follows that

Q : A → [0, 1], Q(A) :=
∑
ω∈A

Λ(ω)P ({ω}) for ω ∈ Ω,
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defines a new probability measure. Equivalently we can write

Q(A) = EP [1AΛ] for all A ∈ A .

where EP denotes expectation under the probability measure P . The distribution of the
random variable X under P is given by

P (X ∈ B) = p1B(X(ω1)) + (1− p)1B(X(ω2)) for all B ∈ B(R).

But the distribution of the random variable X under the new probability measure Q obeys

Q(X ∈ B) = Λ(ω1)P ({ω1})1B(X(ω1)) + Λ(ω2)P ({ω2})1B(X(ω2))

= q1B(X(ω1)) + (1− q)1B(X(ω2))

for all B ∈ B(R). The expectation of X under P , denoted by EP , is given by

EP [X] = X(ω1)P ({ω1}) +X(ω2)P ({ω2}) = pX(ω1) + (1− p)X(ω2),

and the expectation of X under Q, denoted by EQ, is given by

EQ[X] = X(ω1)Q({ω1}) +X(ω2)Q({ω2})
= X(ω1)Λ(ω1)P ({ω1}) +X(ω2)Λ(ω2)X(ω2) = EP [XΛ].

Example 6.1.2. Let X be a random variable, defined on the probability space (Ω,A , P ),
which is normally distributed with expectation 0 and variance 1. Let fµ denote the density
of the N(µ, 1) distribution for µ ∈ R, that is

fµ : R→ R+ fµ(u) :=
1√
2π

e−
1
2 (u−µ)2 .

Since X is standard normally distributed its distribution under P is given by

P
(
X ∈ B

)
=

∫
B

f0(u) du for all B ∈ B(R).

For a constant a ∈ R we define the random variable Y := X + a. Clearly, the distribution
of Y under the original measure P obeys

P
(
Y ∈ B

)
= P

(
X ∈ B − a

)
=

∫
B−a

f0(u) du =

∫
B

fa(u) du for all B ∈ B(R).

Can we find a probability measure Q on A such that Y is normally distributed with expec-
tation 0 and variance 1 under Q? In order to answer this question we define a new random
variable by

Λ: Ω→ R Λ(ω) := e−aX(ω)−a
2

2 ,

and a new probability measure by

Q : A → [0, 1], Q(A) := EP [1AΛ].
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It follows that the distribution of Y under Q is given by

Q
(
Y ∈ B

)
= Q

(
Y −1(B)

)
= EP

[
1Y −1(B)Λ

]
= EP

[
1X−1(B−a)Λ

]
,

where we use the equality Y −1(B) = X−1(B − a). Due to the set equality

{ω ∈ Ω : ω ∈ X−1(B − a)} = {ω ∈ Ω : X(ω) ∈ B − a},

and since Λ = f(X) for the function f : R→ R defined by f(x) = e−ax−
a2

2 , we obtain

EP
[
1X−1(B−a)Λ

]
= EP

[
1(B−a)(X) f(X)

]
=

1√
2π

∫
B−a

e−au−
a2

2 e−
1
2u

2

du.

By summarising the terms in the last integral we arrive at

Q(Y ∈ B) =
1√
2π

∫
B−a

e−
1
2 (u+a)2 du =

1√
2π

∫
B

e−
1
2u

2

du,

which shows that Y is normally distributed with expectation 0 and variance 1 under Q.

Theorem 6.1.3. (Girsanov’s Theorem)
Let (X(t) : t ∈ [0, T ]) be an adapted stochastic process satisfying

P

(∫ T

0

X2(s) ds <∞

)
= 1. (6.1.1)

Define a stochastic process (L(t) : t ∈ [0, T ]) by

L(t) := exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
,

and a mapping Q by

Q : A → [0,∞], Q(A) := EP [1AL(T )].

If (L(t) : t ∈ [0, T ]) is a martingale under P then the mapping Q is a probability measure

and the stochastic process (W̃(t) : t ∈ [0, T ]) defined by

W̃(t) := W (t) +

∫ t

0

X(s) ds,

is a Brownian motion under the new measure Q.

Notation: The stochastic process (L(t) : t ∈ [0, T ]) is called Radon-Nikodym derivative and is denoted by

dP

dQ
|Ft := L(t).

If you know some measure theory, then the probability measure Q can equivalently be written as

Q(A) =

∫
A
L(T )(ω)P (dω) for all A ∈ A .

Compare with Example (6.1.1), where both representations are mentioned and are understandable without

knowing measure theory.
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Remark 6.1.4.

(a) The condition (6.1.1) guarantees that both integrals in the definition of L(t) exist.
The main condition and often most difficult to verify is the requirement that (L(t) :
t ∈ [0, T ]) is a martingale under P .

(b) Girsanov’s Theorem is also true under the condition that EP [L(T )] = 1. Obviously,
this is implied by the requirement that (L(t) : t ∈ [0, T ]) is a martingale, and in fact
both conditions are equivalent, see Example 6.1.9.

(c) Since by definition of L we have P (L(t) > 0) = 1 it follows from the definition of Q
by Q(A) = EP [1AL(T )] that

Q(A) = 0 ⇔ P (A) = 0.

In other words, an event has the probability 0 under P if and only if it has probability
0 under Q and the same applies for events of probability 1. Thus, the measures P
and Q differ in the probability values they assign to events but no event is neglected
by becoming an event of probability 0. This is called that the measures P and Q are
equivalent.

Lemma 6.1.5. Assume the conditions in Theorem 6.1.3. Then a random variable Y satis-
fies EQ[|Y |] <∞ if and only if EP [|Y L(T )|] <∞. In this situation, we have

EQ
[
Y
]

= EP
[
Y L(T )

]
.

Proof. If the sample space Ω countable the proof is easy.

Example 6.1.6. Let (Y (t) : t ∈ [0, T ]) be given by

Y (t) := µt+ σW (t)

for some constants µ ∈ R and σ > 0 and with (W (t) : t ∈ [0, T ]) denoting a Brownian
motion under P . Is there a measure such that Y is a martingale? If the stochastic process
(X(t) : t ∈ [0, T ]) is given by X(t) = µ/σ, then the random variables

L(t) := exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
= exp

(
− µ

σ
W (t)− µ2t

2σ2

)
,

define a martingale (L(t) : t ∈ [0, T ]) according to part (b) in Corollary 3.2.4. Thus,
Girsanov’s Theorem implies that

W̃(t) := W (t) +
µt

σ

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the probability measure

Q : A → [0, 1], Q(A) = EP

[
1A exp

(
−µσW (T )− µ2T

2σ2

)]
.
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One can calculate for example

EP [Y 2(t)] = EP
[
µ2t2 + 2µtσW (t) + σ2W 2(t)

]
= µ2t2 + σ2t,

EQ[Y 2(t)] = EQ

[
(σ2W̃ (t))2

]
= σ2t.

Financial Mathematics 8. A barrier option is an option whose pay off at maturity T
depends whether or not the underlying asset (S(t) : t ∈ [0, T ]) hits a specified barrier
during the lifetime of the option. For example, an up-and-out call option C is of the form

C =

{
(S(T )−K)+, if supt∈[0,T ] S(t) < B,

0, else.
,

where K > 0 is the strike price, B > 0 the barrier. It is assumed K < B. In order to
calculate its value process it is essential to know the distribution of the running maximum
of a Brownian motion W , that is

M(t) := sup
s∈[0,t]

W (s)

The distribution of M(t) can be calculated explicitly by using Girsanov’s Theorem and the
reflection principle for Brownian motion.

Example 6.1.7. (Importance sampling - rare events)
Let X be a normal distributed random variable with expectation 0 and variance 1. A rare event refers to
an event with a very small probability, e.g. {X > a} for a large constant a > 0. The standard approach
(Monte Carlo) is to generate a sample {x1, . . . , xN} of N independent standard normally distributed random
variables. Then the law of large numbers guarantees that

P (X > a) ≈
1

N

N∑
k=1

1{xk>a}, (6.1.2)

where ≈ is to understand that the larger N the better the approximation. However, for large a the probability
of the event {X > a} is extremely small and a good approximation requires a very large sample size N .

For importance sampling one changes the underlying measure P such that the random variable X has
expectation a under the new probability measure Q. For that purpose, define a random variable

Λ: Ω→ R Λ(ω) := e−aX(ω)−a
2

2

and a new probability measure by

Q : A → [0, 1], Q(A) := EP [1AΛ].

With f : R→ R defined by f(x) = exp(−ax− a2

2
) it follows for every A ∈ B(R)

Q(X ∈ A) = EP [1A(X)f(X)] =
1
√

2π

∫
A
e−au−

a2

2 e−
1
2
u2

du =
1
√

2π

∫
A
e−

1
2

(u+a)2 du,

which shows that X is normally distributed with expectation a and variance 1 under Q, confer with Example
6.1.2. For each A ∈ A we obtain

P (A) = EP [1A] = EP

[
1Af(X)

1

f(X)

]
= EP

[
1AΛeaX+

a2

2

]
= e

a2

2 EP

[
1AΛeaX

]
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Taking into account EQ[Y ] = EP [ΛY ] for every random variable Y we arrive at

P (A) = e
a2

2 EQ

[
1Ae

aX
]

for all A ∈ B(R). (6.1.3)

Choose the set A := {X > a}. Since X is normally distributed with expectation a and variance 1 under
Q, the strong law of large number (applied under Q) guarantees that a sample {z1, . . . , zN} of independent
normally distributed random variables with expectation a and variance 1 satisfies

EQ

[
1{X>a}e

aX
]
≈

1

N

N∑
k=1

1{zk>a}e
azk .

Equality (6.1.3) yields

P (X > a) ≈ e
a2

2
1

N

N∑
k=1

1{zk>a}e
azk ,

which is a much better approximation than (6.1.2), since we can expect that about half of the sample exceeds
the value a.

Admittedly this example shows the benefit of changing the underlying measure but it does not need
Girsanov’s Theorem, since there is no dynamic in time. However one can extend this method to sampling
of solutions of stochastic differential equations where Girsanov’s theorem plays an essential role.

In applying Girsanov’s Theorem 6.1.3 the most difficult part is to verify that (L(t) : t ∈
[0, T ]) is a martingale. A powerful tool for that is the following sufficient condition:

Theorem 6.1.8. (Novikov’s condition)
Let (X(t) : t ∈ [0, T ]) be an adapted stochastic process satisfying

P

(∫ T

0

X2(s) ds <∞

)
= 1.

Define for t ∈ [0, T ] the random variable

L(t) := exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
.

If

E

[
exp

(
1

2

∫ T

0

X2(s) ds

)]
<∞

then the process (L(t) : t ∈ [0, T ]) is a martingale under P .

Stochastic processes L of the form as considered in the above Theorem 6.1.8 have already
appeared in Example 4.6.8; we continue to consider them in the following example:

Example 6.1.9. Let (Z(t) : t ∈ [0, T ]) be an Itô processes of the form

Z(t) =

∫ t

0

−X(s)︸ ︷︷ ︸
=:Φ(s)

dW (s) +

∫ t

0

−1

2
X2(s)︸ ︷︷ ︸

=:Υ(s)

ds for all t ∈ [0, T ],
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where (X(t) : t ∈ [0, T ]) is an adapted stochastic process satisfying∫ T

0

|X(s)|2 ds <∞ P -a.s.

Define the function

f : [0, T ]×R→ R, f(t, z) = exp (z) .

Itô’s formula in Theorem 4.6.5 implies

f(t, Z(t)) = 1−
∫ t

0

f(s, Z(s)) Φ(s) dW (s) for all t ∈ [0, T ].

In general we only know that (f(t, Z(t))Φ(t) : t ∈ [0, T ]) ∈ Hloc and thus, we only have
that (

L(t) := exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
: t ∈ [0, T ]

)
is a local martingale according to theorem 4.4.9.

Let {τn}n∈N be a localising sequence for the local martingale (L(t) : t ∈ [0, T ]). Then
(L(t ∧ τn) : t ∈ [0, T ]) is a martingale and we obtain

1 = E[L(0)] = E[L(t ∧ τn)] for all t ∈ [0, T ], n ∈ N .

Since L(t) > 0 for all t ∈ [0, T ], Fatou’s Lemma1 implies for all t ∈ [0, T ]

E[L(t)] = E
[

lim
n→∞

L(t ∧ τn)
]
6 lim
n→∞

E [L(t ∧ τn)] = 1,

which shows E[|L(t)|] <∞ for all t > 0. In the same way one can establish for each 0 6 s 6 t

L(s) = lim
n→∞

L(s ∧ τn) = lim
n→∞

E[L(t ∧ τn)|Fs] > E[ lim
n→∞

L(t ∧ τn)|Fs] = E[L(t)|Fs],

which shows that (L(t) : t ∈ [0, T ]) is a supermartingale. In particular, since E[L(t)] 6
E[L(s)] 6 1 for all 0 6 s 6 t it follows that L is a martingale if and only if E[L(t)] = 1 for
all t ∈ [0, T ].

Example 6.1.10. Girsanov’s theorem can be used to transform the drift in a stochastic
differential equation as in (5.1.3). Let (X(t) : t ∈ [0, T ]) be the unique solution of

dX(t) = f(t,X(t)) dt+ g(t,X(t)) dW (t) for all t ∈ [0, T ], (6.1.4)

where the coefficients are given by some measurable functions f, g : [0, T ] × R → R. Let
ϕ : [0, T ]×R→ R be a continuous function and assume that

E

[
exp

(
1
2

∫ T

0

|ϕ(s,X(s))|2 ds

)]
<∞.

1If you do not know Fatou’s Lemma consider it as a justification for changing the order of expectation and
limit below, similarly as Lebesgue’s Theorem of dominated convergence but with 6.
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Define a stochastic process (L(t) : t ∈ [0, T ]) by

L(t) := exp

(
−
∫ t

0

ϕ
(
s,X(s)

)
dW (s)− 1

2

∫ t

0

ϕ
(
s,X(s)

)2
ds

)
.

Theorem 6.1.8 and Theorem 6.1.3 imply that

Q : A → [0,∞], Q(A) := EP [1AL(T )],

defines a probability measure and that the stochastic process (W̃(t) : t ∈ [0, T ]) defined by

W̃(t) := W (t) +

∫ t

0

ϕ
(
s,X(s)

)
ds,

is a Brownian motion under the probability measure Q. The solution X of (6.1.4) obeys
then

dX(t) = f(t,X(t)) dt+ g(t,X(t)) dW (t)

= f(t,X(t)) dt+ g(t,X(t))
(
dW (t) + ϕ(t,X(t) dt)

)
− g(t,X(t))ϕ(t,X(t)) dt

=
(
f(t,X(t))− g(t,X(t))ϕ(t,X(t))

)
dt+ g(t,X(t)) d W̃(t).

Thus, X is also the solution of the stochastic differential equation

dX(t) =
(
f(t,X(t))− g(t,X(t))ϕ(t,X(t))

)
dt+ g(t,X(t)) d W̃(t).

For example, if we can choose

ϕ(t, x) =
f(t, x)

g(t, x)
for all t ∈ [0, T ], x ∈ R,

and the function ϕ satisfies the conditions assumed above we arrive at

dX(t) = g(t,X(t)) d W̃(t). (6.1.5)

Many properties of the solution X which are true under the probability measure Q are
also true under the probability measure P . Since (6.1.5) is often easier to analyse one can
conclude in this way certain properties of the solution of the stochastic differential equation
(6.1.4).

6.2. Financial mathematics: arbitrage-free models

Financial mathematics relies on the assumption of arbitrage-free markets, that is there does
not exist an opportunity to make money without any risk. One can formally describe an
arbitrage opportunity in terms of self-financing strategies as introduced in Definition 5.4.3.
However, in continuous time this formulation is a bit tricky and we can circumvent this
difficulty by motivating the following result based on our understanding that a martingale
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represents a fair game, i.e. the likelihood to win or to loose is equal. Thus, if the considered
market is arbitrage-free then there should be at least one market such that the (discounted)
share prices are a (local) martingale. More precisely, if (S(t) : t ∈ [0, T ]) is described by the
dynamic (5.4.12), i.e.

dS(t) = Υ(t)S(t) dt+ Φ(t)S(t) dW (t) for all t ∈ [0,T],

and the risk-free asset (B(t) : t ∈ [0, T ]) by (5.4.11), i.e.

dB(t) = R(t)B(t) dt for all t ∈ [0,T],

then the discounted share prices (Ŝ(t) : t ∈ [0, T ]) are defined by

Ŝ(t) :=
S(t)

B(t)
for all t ∈ [0, T ].

Discounting takes into account that the value of money you will receive at a future time
has a smaller value than the money you have in your pocket today. The first fundamental
theorem of asset pricing reads as follows:

Theorem 6.2.1. A model (S,B) of a market as described by (5.4.12) and (5.4.11) is
arbitrage-free if and only if there exists an equivalent measure Q such that the discounted
share prices Ŝ are a local martingale under Q.

Proof. See Theorem 10.14 in the monograph [2] by T. Björk.

Recall, that there is a precise definition of an arbitrage-free market but we think of it as
a market without the possibility to make money without any risk. Two measures P and Q
are equivalent if for each A ∈ A they satisfy

P (A) = 0 ⇐⇒ Q(A) = 0,

see part (c) of Remark 6.1.4.
The fundamental Theorem 6.2.1 requires to show the existence of an equivalent measure

under which the discounted share prices are local martingales. This measure is called equiva-
lent martingale measure. Note, that this measure might not be unique. Girsanov’s Theorem
enables us to derive conditions guaranteeing the existence of an equivalent martingale mea-
sure and to construct it explicitly.

Theorem 6.2.2. If the volatility process (Φ(t) : t ∈ [0, T ]) satisfies

P
(
Φ(t) 6= 0

)
= 1 for all t ∈ [0,T],

and if the market price
(
M(t) := Υ(t)−R(t)

Φ(t) : t ∈ [0, T ]
)

obeys the Novikov condition

EP

[
exp

(
1
2

∫ T

0

M2(s) ds

)]
<∞, (6.2.6)
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then the discounted stock price Ŝ satisfies

dŜ(t) = Φ(t)Ŝ(t) d W̃(t) for all t ∈ [0,T],

where W̃(t) := W (t) +
∫ t

0
M(s) ds defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the

probability measure

Q : A → [0, 1], Q(A) = EP

[
1A exp

(
−
∫ T

0

M(s) dW (s)− 1
2

∫ T

0

M2(s) ds

)]
.

Proof. From Theorem 6.1.3 and Theorem 6.1.8 it follows that Q is a probability measure
and W̃ is a Brownian motion under Q. It remains to prove the representation of Ŝ. For that
purpose define the function

f : [0, T ]×R→ R, f(t, x) = S(0)ex,

which is in C1,2. Furthermore, by letting

X(t) :=

∫ t

0

(
Υ(s)−R(s)− 1

2Φ2(s)
)
ds+

∫ t

0

Φ(s) dW (s) for all t ∈ [0, T ],

we obtain an Itô process (X(t) : t ∈ [0, T ]). By using the representation (5.4.13) of S it
follows that Ŝ(t) = f(t,X(t)) for all t ∈ [0, T ]. Then, Itô’s formula in Theorem 4.6.5 implies

dŜ(t) = df(t,X(t))

=
(
Ŝ(t)

(
Υ(t)−R(t)− 1

2Φ2(t)
)

+ 1
2 Ŝ(t)Φ2(t)

)
dt+ Ŝ(t)Φ(t) dW (t)

= Ŝ(t)Φ(t)

(
Υ(t)−R(t)

Φ(t)
dt+ dW (t)

)
= Ŝ(t)Φ(t) d W̃(t),

since W̃(t) = W (t) +
∫ t

0
M(s) ds for all t ∈ [0, T ].

Theorem 6.2.2 implies that the discounted share prices satisfy

Ŝ(t) = Ŝ(0) +

∫ t

0

Φ(s)Ŝ(s) d W̃(s) for all t ∈ [0,T] .

Since W̃ is a Brownian motion under Q Theorem 4.4.9 implies that Ŝ is a local martingale
under Q. Furthermore, the measure Q is equivalent to the measure P according to Re-
mark 6.1.4 and thus, Theorem 6.2.1 guarantees that the model is arbitrage-free under the
conditions in Theorem 6.2.2, and thus we have proved:

Theorem 6.2.3. If the model (S,B) of a market described by (5.4.12) and (5.4.11) satisfies
the condition in Theorem 6.2.2, then the model is arbitrage-free.
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Theorem 6.2.2 gives also the explicit construction of the measure Q which is important
for pricing options on the share S. Not each model satisfies Condition (6.2.6) in Theorem
6.2.2, but this is the case in the standard Black-Scholes model:

Example 6.2.4. In the Black-Scholes model, see Example 5.4.1, the market price of risk is
given by

M(t) =
µ− r
σ

for all t ∈ [0,T],

where all parameters µ, r and σ are deterministic and constant. Thus, M(t) is also deter-
ministic and constant which yields that (6.2.6) is satisfied and the measure

Q : A → [0, 1], Q(A) := EP

[
1A exp

(
−µ−rσ W (T )− 1

2

(
µ−r
σ

)2
T
)]

is verified as an equivalent martingale measure in the Black-Scholes model.

By using (5.4.13) one can rewrite the dynamic of the share prices under the measure Q.

Corollary 6.2.5. Under the conditions of Theorem 6.2.2 the share price S satisfies

dS(t) = R(t)S(t) dt+ Φ(t)S(t) d W̃(t) for all t ∈ [0,T]

where W̃(t) := W (t) +
∫ t

0
M(s) ds for all t ∈ [0, T ]. Consequently, S can be represented by

S(t) = S(0) exp

(∫ t

0

(
R(s)− 1

2Φ2(s)
)
ds+

∫ t

0

Φ(s) d W̃(s)

)
for all t ∈ [0,T] .

Corollary 6.2.5 illustrates that the change from the measure P to Q changes only the
mean rate of return Υ but not the volatility Φ of the stock price S. Using the linearity of
the integrals we obtain S(t) = S(u)S(t− u) for all 0 6 u 6 t 6 T , that is

S(t) = S(u) exp

(∫ t

u

(
R(s)− 1

2Φ2(s)
)
ds+

∫ t

u

Φ(s) d W̃(s)

)
(6.2.7)

for all t ∈ [u, T ].

6.3. Exercises

1. Calculate the expected value of each of the following random variables:

(a) W (T ) exp

(
−
∫ T

0

s2dW (s)

)
.

(b) W (T ) exp

(∫ T

0

s2dW (s)

)
.
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2. Define a stochastic process X := (X(t) : t ∈ [0, T ]) by

X(t) := exp(W (t)) for all t ∈ [0, T ].

(a) Determine a stochastic process (L(t) : t ∈ [0, T ]) such that X becomes a martin-
gale under the probability measure

Q : A → [0, 1] Q(A) := E[1AL(T )].

(b) Compute EQ

[(
W (t) + 1

2 t
)6]

for t > 0, where the expectation is taken with re-

spect to the measure Q introduced in (a).

3. Find a probability measure Q which is equivalent to P such that

B(t) :=

{
W (t), if t ∈ [0, 1

2 ),

W (t) +
(
t− 1

2

)
W ( 1

2 ), if t ∈ [ 1
2 , 1],

forms a Brownian motion (B(t) : t ∈ [0, 1]) under Q.

4. Let (U(t) : t ∈ [0, T ]) be the solution of the stochastic differential equation

dU(t) = aU(t) dt+ bU(t) dW (t) for all t ∈ [0, T ],

U(0) = u0,

for some constants a ∈ R and b, u0 > 0.

(a) Let r be a non-negative constant. Use Girsanov’s Theorem to derive the existence

of a probability measure Q and the existence of a Brownian motion (W̃ (t) : t ∈
[0, T ]) under Q such that

U(t) = u0 exp
( (
r − 1

2b
2
)
t+ b W̃ (t)

)
for all t ∈ [0, T ].

(b) Show that the stochastic process (Û(t) : t ∈ [0, T ]) defined by Û(t) := e−rtU(t)
for a constant r > 0 is a martingale with respect to {FW

t }t>0 under the measure
Q derived in (a).

(c) We can consider U as a model for the price of a risky-asset and Û as the discounted
values assuming that the interest rate of the risk-free asset in the market is given
by r > 0.

Calculate the value EQ[C] of a digital option

C =

{
1, if U(T ) > K,

0, otherwise,

with maturity T and strike price K > 0 in this model under the measure Q from
(b).



Chapter 6. Girsanov’s Theorem 87

5. Define a stochastic process (W̃(t) : t ∈ [0, T ]) by

W̃(t) := W (t) +

∫ t

0

eW (s)1{|W (s)|61} ds for all t ∈ [0, T ].

Here we use the short hand notation 1{|W (s)|61} :=

{
1, if |W (s)| 6 1,

0, else.
.

(a) Determine a probability measure Q such that W̃ is a Brownian motion under Q.

(b) For each t ∈ [0, T ] compute

EQ

[∣∣∣∣W (t) +

∫ t

0

eW (s)1{|W (s)|61} ds

∣∣∣∣6
]
.

(c) For the stopping time τ := inf{t > 0 : |W (t)| = 1} compute EP [W̃(τ)]. (∗)

(d) For the stopping time σ := inf{t > 0 : W (t) = 1 −
∫ t

0
eW (s)1{|W (s)|61} ds}

compute (∗)

EQ[e−σ/2].





7
Martingale Representation

Theorem

In Theorem 4.3.1 we show that if the integrand Φ is in H then the stochastic integral
defines a martingale. In this chapter we ask the converse question: given a martingale can
it be represented by a stochastic integral? One can consider this question as an analogue
of differentiation in calculus: given a function f : [0, T ] → R does there exist a function
g : [0, T ]→ R such that

f(t) = f(0) +

∫ t

0

g(s) ds for all t ∈ [0, T ]?

If f is assumed to be differentiable then we can just choose g = f ′.
As in the other chapters we assume that W is a Brownian motion defined on a probability

space (Ω,A , P ). In the previous chapters we can consider any filtration {Ft}t>0 as long as
the Brownian motion satisfies

(i) W (t) is Ft-adapted for all t > 0;

(ii) W (t)−W (s) is independent of Fs for all 0 6 s 6 t,

see the introductory part to Chapter 4. Our main result in this chapter requires that we
consider only the augmented filtration {FWt }t>0 generated by the Brownian motion W ,
which we introduce in the end of Section 1.1.

7.1. The Theorem

From Example 6.1.9 we know already a class of random variables, for which we obtain a
representation by a stochastic integral.

89



90 7.1. The Theorem

Example 7.1.1. For a deterministic function ϕ : [0, T ]→ R with
∫ T

0
|ϕ(s)|2 ds <∞ define

E (t) := exp

(
−
∫ t

0

ϕ(s) dW (s)− 1
2

∫ t

0

ϕ2(s) ds

)
for all t ∈ [0, T ]. (7.1.1)

In Example 6.1.9 we show

dE (t) = −ϕ(t)E (t) dW (t).

Consequently, if we define the random variable Y := E (T ) : Ω→ R and Φ(t) := −ϕ(t)E (t)
for all t ∈ [0, T ] we obtain

Y = 1 +

∫ T

0

Φ(t) dW (t). (7.1.2)

Note, by the proof of Theorem 6.1.8 it follows that Φ ∈H .

By linearity we can extend the class of random variables which enables a representation
of the form (7.1.2). Let Y1, Y2 : Ω→ R be random variables of the form

Yi := αiEi(T ), i = 1, 2,

for some αi ∈ R and with

Ei(t) := exp

(
−
∫ t

0

ϕi(s) dW (s)− 1
2

∫ t

0

ϕ2
i (s) ds

)
for all t ∈ [0, T ],

where ϕi : [0, T ] → R satisfies
∫ T

0
ϕ2
i (s) ds < ∞. It follows from Example 7.1.1 that the

random variable Y := Y1 + Y2 can be represented as

Y = α+

∫ T

0

Φ(t) dW (t), (7.1.3)

where α := α1 +α2 and Φ(t) := −
(
α1ϕ1(t)E1(t)+α2ϕ2(t)E2(t)

)
for all t ∈ [0, T ]. Note, that

Φ ∈H . Consequently, all random variables in the set

L :=

{
Y =

m∑
k=1

αkEk(T ) : Ek(T ) := exp

(
−
∫ T

0

ϕk(s) dW (s)− 1
2

∫ T

0

ϕ2
k(s) ds

)

for ϕk : [0, T ]→ R with

∫ T

0

ϕ2
k(s) ds <∞, αk ∈ R, m ∈ N

}
can be represented in the form (7.1.3).

In our first theorem, Itô’s representation theorem, we extend the class L of random
variables which have a representation of the form (7.1.3) to all FWT -measurable random

variables X with E[|X|2] <∞. The idea of the proof is to approximate the random variable
X by a sequence {Yn}n∈N of random variables Yn ∈ L . For these random variables Yn
we know already that they obey the representation (7.1.3) and thus, we can hope that this
representation carries over to the limit. Fundamental for this argumentation is the following
approximation result:
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Lemma 7.1.2. For every FWT -measurable random variable X with E[|X|2] <∞ there exists
a sequence {Yn}n∈N ⊆ L with

lim
n→∞

E[|Yn −X|2] = 0.

Proof. See [16, L. 4.3.2].

We apply the approximation result above to obtain the following representation theorem:

Theorem 7.1.3. (Itô’s representation theorem)

For every FWT -measurable random variable X with E[|X|2] <∞ there exists an {FWt }t∈[0,T ]-
adapted stochastic process (Φ(t) : t ∈ [0, T ]) ∈H such that

X = E[X] +

∫ T

0

Φ(s) dW (s). (7.1.4)

The representation is unique in the sense that if there is another adapted process (Ψ(t) : t ∈
[0, T ]) ∈H satisfying (7.1.4) then Φ(t)(ω) = Ψ(t)(ω) for a.a. (t, ω) ∈ [0, T ]× Ω.

The important condition in Theorem 7.1.3 is that the random variableX is FWT -measurable
where {FWt }t>0 is the augmented filtration generated by the Brownian motion W . The need
for this can be seen by the representation (7.1.4) because the only source of uncertainty or
randomness is the process Φ and the Brownian motion W both measurable with respect to
the filtration generated by W ; see Example 7.1.5. From Theorem 7.1.3 one can conclude
the following dynamic version of this result.

Theorem 7.1.4. (Martingale representation theorem)

For every martingale (M(t) : t ∈ [0, T ]) with respect to {FWt }t∈[0,T ] and with E[|M(T )|2] <
∞ there exists an {FWt }t∈[0,T ]-adapted stochastic process (Φ(t) : t ∈ [0, T ]) ∈H such that

M(t) = E[M(0)] +

∫ t

0

Φ(s) dW (s) for all t ∈ [0, T ]. (7.1.5)

The stochastic process Φ is unique in the sense as in Theorem 7.1.3.

The proof of Theorem 7.1.4 is not constructive, i.e. we do not obtain an explicit formula
of Φ which satisfies (7.1.5). However, with another area of modern probability theory,
Malliavin calculus, one can express Φ in terms of X.

Example 7.1.5. Let (N(t) : t > 0) be a Poisson process with intensity λ > 0 independent

of the Brownian motion W . Define a filtration {FW,N
t }t>0 by defining

FW,N
t := σ

((
W (s), N(s)

)−1
([a1, b1]× [a2, b2]) : s ∈ [0, t], −∞ < ai 6 bi <∞, i = 1, 2

)
.

Since W and N are independent, the Brownian motion W satisfies the conditions (i) and (ii)
recalled in the introduction of this Chapter. The same reason implies that M := (N(t)−λt :

t > 0) is a martingale with respect to {FW,N
t }t>0, see Exercise 2.5.1. Since the paths of M

are not continuous whereas the martingale (
∫ t

0
Φ(s) dW (s) : t ∈ [0, T ]) has continuous paths

for every Φ ∈H according to Theorem 4.3.1, the Poisson process N can not be represented
in the form (7.1.5).
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7.2. Financial mathematics: complete models

We now assume the general setting of a model of a financial market as in Section 5.4. For
that purpose, let {Ft}t>0 be an arbitrary filtration satisfying the usual conditions and let
(W (t) : t ∈ [0, T ]) be a Brownian motion with respect to {Ft}t>0, i.e. it obeys the conditions
mentioned in the introduction of Chapter 4. Let S := (S(t) : t ∈ [0, T ]) model the prices of
a risky asset and (B(t) : t ∈ [0, T ]) be the values of a risk-free asset as described in Section
5.4. An option (with maturity T ) on the underlying share S is an FT -measurable random
variable C. A typical example is the European call option with strike price K > 0:

C = max{S(T )−K, 0}.

The option is purchased at time t = 0 and exercised at time t = T . The seller of an option
has to pay the amount C at time T . For that reason she is interested in hedging the option
by trading according to a strategy which has exactly the same value as the option at time
T .

Definition 7.2.1.

(a) An option C is called attainable if there exists a self-financing strategy (Γ,∆) such
that the value process V = V (Γ,∆) satisfies

V (T ) = C P -a.s.

In this case (Γ,∆) is called a replicating strategy for C.

(b) A model, that is (S,B), is called complete if every contingent claim is attainable.

It is easy to find examples of a model such that not every option is attainable. In complete
models every option has a unique arbitrage-free price which is given by the initial investment
V (0) required for the replicating strategy (Γ,∆). It is easy to see that any other price leads
to an arbitrage opportunity. A sufficient condition for completeness of a model is given in
the next result:

Theorem 7.2.2. Assume that Q is an equivalent local martingale measure and let C be an

option with EQ

[∣∣∣ 1
B(T )C

∣∣∣] < ∞. Let (Π̂C(t) : t ∈ [0, T ]) be the arbitrage-free discounted

price process of C defined by

Π̂C(t) := EQ

[
C

B(T )

∣∣∣∣Ft

]
for all t ∈ [0,T] .

If there exists an adapted process (H(t) : t ∈ [0, T ]) such that the discounted price process
Π̂C satisfies

Π̂C(t) = Π̂C(0) +

∫ t

0

H(s) dŜ(s) for all t ∈ [0,T],

then C is attainable and the replicating strategy ((Γ(t),∆(t)) : t ∈ [0, T ]) is given by

∆(t) = H(t) for all t ∈ [0,T],

Γ(t) = Π̂C(t)−∆(t)Ŝ(t) for all t ∈ [0,T] .
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We call the discounted price process Π̂C of the option C arbitrage-free if trading the option
C does not lead to an arbitrage opportunity. This can be formally defined by extending the
underlying market but we do not go into these details.

By applying the martingale representation Theorem 7.1.4 we obtain a more specific con-
dition for the existence of a replicating strategy. Note, that it is required that the filtration
{Ft} is generated by the Brownian motion.

Theorem 7.2.3. (Second Fundamental Theorem of Asset Pricing)
Assume that Q is an equivalent risk-neutral measure and that the volatility process (Φ(t) :
t ∈ [0, T ]) satisfies

P
(
Φ(t) 6= 0

)
= 1 for all t ∈ [0,T] .

Let C be an option with EQ

[∣∣∣ 1
B(T )C

∣∣∣2] <∞ and let (Π̂C(t) : t ∈ [0, T ]) be the arbitrage-free

discounted price process of C defined by

Π̂C(t) := EQ

[
C

B(T )

∣∣∣∣Ft

]
for all t ∈ [0,T] .

If Ft = FWt for all t ∈ [0, T ], then there exists an adapted stochastic process (H(t) : t ∈
[0, T ]) such that the discounted price process Π̂C satisfies

Π̂C(t) = Π̂C(0) +

∫ t

0

H(s) dŜ(s) for all t ∈ [0,T] .

Proof. (Sketch) After some arguments the martingale representation theorem 7.1.4 guaran-
tees that there exists a stochastic process (Z(t) : t ∈ [0, T ]) ∈H such that

Π̂C(t) = Π̂C(0) +

∫ t

0

Z(s) d W̃(s) for all t ∈ [0, T ].

By defining H(t) := Z(t)
(
Φ(t)Ŝ(t)

)−1
for all t ∈ [0, T ] the representation of Ŝ in Theorem

6.2.2 implies that

Π̂C(t) = Π̂C(0) +

∫ t

0

H(t)Φ(t)Ŝ(t) d W̃(s)

= Π̂C(0) +

∫ t

0

H(t)dŜ(t) for all t ∈ [0, T ].

By applying Theorem 7.2.2 it follows that under the conditions in Theorem 7.2.3 the
contingent claim C is attainable. Theorem 7.2.2 states the replicating strategy in terms of
the stochastic process H. However, the existence of this stochastic process H is derived
in Theorem 7.2.3 by applying the martingale representation theorem 7.1.4 and the latter
does not give an explicit construction of this stochastic process. Thus, the existence of
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a replicating strategy is guaranteed but still one does not know it explicitly. A possible
approach to obtain an explicit representation of the replicating strategy is to use a connection
between stochastic differential equations and partial differential equations. In the Black-
Scholes model this leads to the Black-Scholes partial differential equations.

Example 7.2.4. In the standard Black-Scholes model in Example 5.4.1 the share prices
evolves according to

dS(t) = µS(t) dt+ σS(t) dW (t).

Clearly, the solution is {FWt }t>0-adapted and thus, the model is complete.

Example 7.2.5. Consider the volatility model in Example 5.4.2:

dS(t) = µS(t) dt+ Φ(t)S(t) dW1(t) for all t ∈ [0,T], (7.2.6)

dΦ(t) = f(t,Φ(t)) dt+ g(t,Φ(t)) dW2(t) for all t ∈ [0,T], (7.2.7)

where W1 and W2 are two independent Brownian motions. Clearly, Φ is adapted with
respect to the filtration {FW2

t }t>0 since the Brownian motion W2 is the only random source

in equation (7.2.7). However, since Φ is {FW2
t }t>0-adapted and W1 is {FW1

t }t>0-adapted, we
have to consider the stochastic differential equation in (7.2.6) with respect to the filtration

{FW1,W2

t }t>0 defined by

FW1,W2

t := σ
((
W1(s),W2(s)

)−1
([a1, b1]× [a2, b2]) : s ∈ [0, t], −∞ < ai 6 bi <∞, i = 1, 2

)
.

In particular, an option C with maturity T on the share S is FW1,W2

T -measurable, and thus
we can not apply Theorem 7.2.3 to conclude the existence of a hedging strategy for C.

7.3. Exercise

1. In each of the following cases find an {FWt }t∈[0,T ]-adapted stochastic process (Φ(t) :
t ∈ [0, T ]) ∈H such that

X = E[X] +

∫ T

0

Φ(s) dW (s),

where

(a) X = W (T );

(b) X =
∫ T

0
W (s) ds;

(c) X = W 2(T );

(d) X =
∫ T

0
W 2(s) ds;

(e) X = W 3(T ).
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2. Let Z be an FWT -measurable random variable with E[|Z|2] <∞ and define

M(t) := E[Z|FWt ] for all t ∈ [0, T ].

Recall from Exercise 2.5.2 that (M(t) : t ∈ [0, T ]) is a martingale w.r.t. {FWt }t∈[0,T ].

(a) Show that E[|M(T )|2] <∞.

(b) Find in each of the following cases an {FWt }t∈[0,T ]-adapted stochastic process
(Φ(t) : t ∈ [0, T ]) ∈H such that

M(t) = E[M(0)] +

∫ T

0

Φ(s) dW (s) for all t ∈ [0, T ]

where

(i) Z = W 2(T ).

(ii) Z = W 3(T ).

3. The following result is a conclusion of a special martingale representation form which is
often applied in financial mathematics. We can assume an arbitrary filtration {Ft}t>0

such that (i) and (ii) in the introductory part of this chapter are satisfied.

Let (X(t) : t ∈ [0, T ]) be an Itô process of the form

X(t) = X(0) +

∫ t

0

Υ(s) ds+

∫ t

0

Φ(s) dW (s) for all t ∈ [0,T],

where (Υ(t) : t ∈ [0, T ]) and (Φ(t) : t ∈ [0, T ]) are adapted stochastic processes
satisfying

E

[∫ T

0

|Υ(s)| ds

]
+ E

[∫ T

0

|Φ(s)|2 ds

]
<∞.

(a) Show that if X is a martingale w.r.t. {Ft}t∈[0,T ], then it follows (\)

E
[
Υ(t)|Fs] = 0 for a.a. t > s.

(b) Show that if X is a martingale w.r.t. {Ft}t∈[0,T ], then it follows (\)

Υ(t)(ω) = 0 for a.a. (t, ω) ∈ [0, T ]× Ω.

Part (b) can be deduced from (a) by using the following result:

If X : Ω→ R is a random variable with E[|X|] <∞ and {Ck}k∈N is a family of
increasing σ-algebras Ck ⊆ A then

lim
k→∞

E[X|Ck] = E[X|C ] P -a.s. and in L1
P (Ω),

where C := σ(∪∞k=1Ck).





A
Solutions

A.1. Solution Chapter 1

1. (a) For every t0 ∈ I one has

{X(t) = Y (t) for all t ∈ I} ⊆ {X(t0) = Y (t0)},

which shows the claim by

1 = P (X(t) = Y (t) for all t ∈ I) 6 P (X(t0) = Y (t0)) .

(b) The continuity1 of the paths imply

C := {X(t) = Y (t) for all t ∈ [0,∞)} = {X(t) = Y (t) for all t ∈ [0,∞) ∩Q}.

Consequently, the set C is in A and we have

P (C) = P
(
X(t) = Y (t) for all t ∈ [0,∞) ∩Q

)
= 1− P

(
X(t) 6= Y (t) for some t ∈ [0,∞) ∩Q

)
= 1− P

 ⋃
t∈[0,∞)∩Q

{X(t) 6= Y (t)}


> 1−

∑
t∈[0,∞)∩Q

P
(
X(t) 6= Y (t)

)
= 1.

1for simplicity we assume that all paths are continuous, not only almost all
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2. For fixed t > 0 it follows that

P
(
X(t) = Y (t)

)
= P

(
0 = Y (t)

)
= P

(
T 6= t

)
= 1.

The last equality follows from the assumption that the distribution of T has a density,
say f : R→ R+. Then

P (T ∈ B) =

∫
B

f(u) du for all B ∈ B(R).

It follows for a set B of the form B = {a} for a constant a ∈ R that P (T ∈ {a}) = 0.
However,

{ω ∈ Ω : X(t)(ω) = Y (t)(ω) for all t > 0} = {ω ∈ Ω : 0 = Y (t)(ω) for all t > 0}
= ∅,

which shows that X and Y are not indistinguishable.

3. Since X and Y are modifications from each other the set Nt := {X(t) 6= Y (t)} obeys
P (Nt) = 0 for each t > 0. Consequently, for every t1, . . . , tn > 0 we have P (Nt1 ∪ · · · ∪
Ntn) = 0, and thus

P
(
X(t1) ∈ B1, . . . , X(tn) ∈ Bn

)
= P

(
(X(t1) ∈ B1, . . . , X(tn) ∈ Bn)\(Nt1 ∪ · · · ∪Ntn)

)
= P

(
(Y (t1) ∈ B1, . . . , Y (tn) ∈ Bn)\(Nt1 ∪ · · · ∪Ntn)

)
= P

(
Y (t1) ∈ B1, . . . , Y (tn) ∈ Bn

)
.

4. (a) C = {∅,Ω, {1, 2, 3}, {3, 4, 5}, {3}, {1, 2, 4, 5}, {1, 2}, {4, 5}}.

(b) The random variable X is measurable w.r.t. C since we have for each A ∈ B(R):

if 0 ∈ A, 1, 10 /∈ A : X−1(A) = {1, 2} ∈ C ;

if 1 ∈ A, 0, 10 /∈ A : X−1(A) = {4, 5} ∈ C ;

if 10 ∈ A, 0, 1 /∈ A : X−1(A) = {3} ∈ C ;

if 0, 1, 10 /∈ A : X−1(A) = ∅ ∈ C ;

if 0, 1, 10 ∈ A : X−1(A) = Ω ∈ C ;

All other cases can be reduced to these, e.g. if 0, 1,∈ A but 10 /∈ A then:

X−1(A) = X−1({0}) ∪X−1({1}) = {1, 2} ∪ {4, 5} = {1, 2, 4, 5} ∈ C .

(c) D = σ(Y ) = {Ω, ∅, {1}, {2, 3, 4, 5}}.
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5. For every n ∈ N and C ∈ B(R) the definition of Xn yields

(Xn(C))−1 =

{
1
2C ∩ [0, 1− 1

n ], if 0 /∈ C,(
1
2C ∩ [0, 1− 1

n ]
)⋃

(1− 1
n , 1], if 0 ∈ C,

=

{
1
2C ∩ (0, 1− 1

n ], if 0 /∈ C,(
1
2C ∩ (0, 1− 1

n ]
)⋃

(1− 1
n , 1]

⋃
{0}, if 0 ∈ C,

where we use the shorthand notation 1
2C := { 1

2y : y ∈ C}. Thus, the σ-field FX
n must

contain at least

C :=
{

1
2C ∩ (0, 1− 1

n ], 1
2C ∩ [0, 1− 1

n ] ∪ (1− 1
n , 1] ∪ {0} for all C ∈ B(R)

}
.

Since { 1
2C ∩ (0, 1− 1

n ] : C ∈ B(R)} = B
(
(0, 1− 1

n ]
)

this can be written in the form

C =
{
A ∪B : A ∈ B

(
(0, 1− 1

n ]
)
, B = ∅ or B = (1− 1

n , 1] ∪ {0}
}
.

Since this is already a σ-field (check!) and FX
n is the smallest σ-field which contains C

it follows FX
n = C.

6. For each t > 0 it follows from the very definition of stopping times that

{σ ∧ τ 6 t} = {σ 6 t} ∪ {τ 6 t} ∈ Ft,

{σ ∨ τ 6 t} = {σ 6 t} ∩ {τ 6 t} ∈ Ft,

which shows both part (b) and (c).

7. (a) The empty set ∅ is in Fτ since ∅ ∩ {τ 6 t} = ∅ ∈ Ft for all t > 0. If B ∈ Fτ it
follows that

Bc ∩ {τ 6 t} = {τ 6 t}\(B ∩ {τ 6 t}) ∈ Ft for all t > 0,

since both {τ 6 t} and B ∩ {τ 6 t} are in Ft for each t > 0. Thus, Bc ∈ Fτ . For
B1, B2, . . . ∈ Fτ we obtain( ∞⋃

k=1

Bk

)
∩ {τ 6 t} =

∞⋃
k=1

(Bk ∩ {τ 6 t}) ∈ Ft for all t > 0.

Thus,
⋃∞
k=1Bk ∈ Fτ .

(b) Since σ 6 τ we have that {τ 6 t} ⊆ {σ 6 t} for all t > 0 (this is NOT a typo; think!).
It follows for A ∈ Fσ that

A ∩ {τ 6 t} = A ∩ {σ 6 t}︸ ︷︷ ︸
∈Ft since A∈Fσ

∩ {τ 6 t}︸ ︷︷ ︸
∈Ft since τ stopping time

∈ Ft for all t > 0.

Thus, we obtain A ∈ Fτ .
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8. In order to establish (a)-(e) the same notations as in 1.1.2 are used. We use several times
the fact that if X and Y are two independent, non-negative random variables and Y has
the density fY then

P
(
X + Y > s, Y 6 s

)
=

∫ s

0

P
(
X > s− u

)
fy(u) du for all s > 0. (1.1.1)

(a) First we show for each n ∈ N that

P (Sn > t) = e−λt
n−1∑
k=0

(λt)k

k!
for all t > 0, (1.1.2)

which can be done by induction: for n = 1 the definition of X1 implies

P (S1 > t) = P (X1 > t) = e−λt for all t > 0.

Assume that (1.1.2) is true for n ∈ N. Then we obtain for every t > 0

P
(
Sn+1 > t

)
= P

(
Sn +Xn+1 > t

)
= P

(
Sn +Xn+1 > t,Xn+1 > t

)
+ P

(
Sn +Xn+1 > t,Xn+1 6 t

)
(1.1.3)

Due to the equality {Sn +Xn+1 > t, Xn+1 > t} = {Xn+1 > t} we obtain

P (Sn +Xn+1 > t,Xn+1 > t) = P (Xn+1 > t) = e−λt. (1.1.4)

SinceXn+1 is exponentially distributed with parameter λ, the density fX of its probability
distribution is given by fX(s) := λ exp(−λs) for all s > 0. By using (1.1.2) for n and
applying formula (1.1.1) (Sn and Xn+1 are independent) implies

P
(
Sn +Xn+1 > t,Xn+1 6 t

)
=

∫ t

0

P
(
Sn > t− s

)
fX(s) ds

=

∫ t

0

e−λ(t−s)
n−1∑
k=0

(λ(t− s))k

k!
λe−λs ds

= e−λt
n−1∑
k=0

λk+1

k!

∫ t

0

(t− s)k ds. (1.1.5)

By using (1.1.4) and (1.1.5) in (1.1.3) it follows (1.1.2) for n+ 1.

In order to show (a) note that {N(t) < n} = {Sn > t} for all t > 0 and n ∈ N0. Thus,

P
(
N(t) = n

)
= P

(
N(t) < n+ 1

)
− P

(
N(t) < n

)
= P

(
Sn+1 > t

)
− P

(
Sn > t

)
= e−λt

n∑
k=0

(λt)k

k!
− e−λt

n−1∑
k=0

(λt)k

k!

= e−λt
(λt)n

n!
.



Appendix A. Solutions 101

(b) The definition of Rtn yields for every t > 0 and n ∈ N

Rtn = SN(t)+1 − t+XN(t)+2 + · · ·+XN(t)+n = SN(t)+n − t.

Thus, we have for each s > 0 and t > 0

Qt(s) = max
{
k ∈ {0, 1, . . . , } : SN(t)+k − t 6 s

}
= max

{
k ∈ {0, 1, . . . , } : Sk 6 t+ s

}
−N(t)

= N(t+ s)−N(t).

Clearly, Qt(0) = 0 for all t > 0.

(c) We first show for every s, t > 0 and n ∈ N:

P
(
Y t1 > s|N(t) = n

)
= P

(
X1 > s

)
. (1.1.6)

For this purpose, note (draw a picture!) the equalities of the sets

{N(t) = n} = {Xn+1 > t− Sn, t > Sn} (1.1.7)

{Y t1 > s, N(t) = n} = {Xn+1 > s+ t− Sn, t > Sn}. (1.1.8)

Since Xk+1 is exponentially distributed its probability distribution obeys

P
(
Xk+1 > x+ y

)
= e−λ(x+y) = P

(
Xk+1 > x

)
P (
(
Xk+1 > y

)
for every x, y > 0.

Let fSn denote the density of the probability distribution for Sn for each n ∈ N. Since
Xn+1 and Sn are independent, equality (1.1.1) yields

P
(
Y t1 > s, N(t) = n

)
= P

(
Xn+1 > s+ t− Sn, Sn 6 t

)
=

∫ t

0

P
(
Xn+1 > s+ t− u

)
fSn(u) du

= P
(
Xn+1 > s

) ∫ t

0

P
(
Xn+1 > t− u

)
fSn(u) du

= P
(
X1 > s

)
P
(
Xn+1 > t− Sn, Sn 6 t

)
= P

(
X1 > s

)
P
(
N(t) = n

)
,

which shows (1.1.6). In order to consider the general case, not that equality (1.1.8) can
be extended to

{Y t1 > s1, Y
t
2 > s2, . . . , Y

t
k > sk, N(t) = n}

= {Xn+1 > s1 + t− Sn, t > Sn} ∩ {Xn+2 > s2} ∩ · · · ∩ {Xn+k > sk}

for all s1, . . . , sk, t > 0 and n ∈ N. By using this equality together with (1.1.8) and our
first result (1.1.6), we can conclude

P
(
Y t1 > s1, Y

t
2 > s2, . . . , Y

t
k > sk, N(t) = n

)
= P

(
Xn+1 > s1 + t− Sn, t > Sn

)
P
(
Xn+2 > s2

)
· · ·P

(
Xn+k > sk

)
= P

(
Y t1 > s1, N(t) = n

)
P
(
X2 > s2

)
. . . P

(
Xk > sk

)
= P

(
Y t1 > s1|N(t) = n

)
P
(
N(t) = n

)
P
(
X2 > s2

)
. . . P

(
Xk > sk

)
= P

(
X1 > s1

)
P
(
N(t) = n

)
P
(
X2 > s2

)
. . . P

(
Xk > sk

)
, (1.1.9)
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which shows the claim by dividing both sides with P (N(t) = n).

(d) Taking expectation at both sides of (1.3.1) yields for all si > 0, i = 1, . . . , k and
k ∈ N:

P
(
Y t1 > s1, . . . , Y

t
k > sk

)
= P (X1 > s1) · · ·P (Xk > sk). (1.1.10)

By choosing si = 0 for i = 1, . . . , k, i 6= j and sj > 0 we obtain

P
(
Y tj > sj

)
= P

(
Xj > sj

)
. (1.1.11)

Using this equality in (1.1.10) results for all k ∈ N in

P
(
Y t1 > s1, . . . , Y

t
k > sk

)
= P (Y t1 > s1) · · ·P (Y tk > sk) for all si > 0, i = 1, . . . , k,

which shows that Y t1 , . . . , Y
t
k are independent for all k ∈ N. Since the equality (1.1.11)

implies that Y ti is exponentially distributed for all i ∈ N it follows that the stochastic
process Qt is defined as N in Example 1.1.2, i.e. Qt is a Poisson process for each t > 0.

Equation (1.1.11) implies that for each t > 0 we have Qt(s)
D
= N(s) for all s > 0.

By applying (1.1.11) to (1.1.9) we obtain for all t > 0, si > 0, i = 1, . . . , k and k ∈ N:

P
(
Y t1 > s1, Y

t
2 > s2, . . . , Y

t
k > sk, N(t) = n

)
= P

(
Y t1 > s1

)
P
(
Y t2 > s2

)
. . . P

(
Y tk > sk

)
P
(
N(t) = n

)
,

which shows that N(t), Y t1 , . . . , Y
t
k are independent and thus, N(t) and Qt are indepen-

dent.

(e) Since for each u > 0 we have Qu(v)
D
= N(v) for all v > 0 it follows for all 0 6 s 6 t

from (b):

N(t)−N(s) = N(t− s+ s)−N(s) = Qs(t− s) D
= N(t− s).

The result from (a) implies (iii) in Definition 1.3.1.

The independence of the increments is shown by induction: if n = 2 then the result

in part (d) guarantees that Qt(s)
D
= N(t + s) − N(t) is independent of N(t)). For

0 6 t1 6 . . . 6 tn+1 we have(
N(t2)−N(t1), . . . , N(tn+1)−N(tn)

)
=
(
Qt1(t2 − t1), Qt1(t3 − t1)−Qt1(t2 − t1), . . . , Qt1(tn+1 − t1)−Qt1(tn − t1)

)
.

Since Qt1 is a Poisson process according to part (d) and since these are n increments, the
induction hypothesis guarantees that these random variables are independent. Moreover,
part (d) guarantees that Qt1 is independent of N(t1) which implies that

N(t1), N(t2)−N(t1), . . . , N(tn+1)−N(tn)
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are independent, completing the induction and showing Condition (ii) in Definition 1.3.1.

For proofing that Definition 1.3.1 implies the definition in Example 1.1.2, define recur-
sively σ0 := 0 and

σk := inf{t > σk−1 : N(t) > k} for k ∈ N .

Independent increments of N (Condition (ii)) and their Poisson distribution (Condition
(iii)) imply for every 0 6 a1 < b1 6 · · · 6 an < bn:

P

(
n⋂
k=1

{ak < σk 6 bk}

)

= P

( n−1⋂
k=1

{N(ak)−N(bk−1) = 0, N(bk)−N(ak) = 1}

∩ {N(an)−N(bn−1) = 0, N(bn)−N(an) > 1}
)

= e−λ(an−bn−1)
(
1− e−λ(bn−an)

) n−1∏
k=1

e−λ(ak−bk−1)λ(bk − ak)e−λ(bk−ak)

=
(
e−λan − e−λbn

)
λn−1

n−1∏
k=1

(bk − ak)

=

∫ b1

a1

. . .

∫ bn

an

λne−λyn dyn . . . dy1

=

∫ b1

a1

∫ b2−x1

a2−x1

. . .

∫ bn−y1−···−yn−1

an−y1−···−yn−1

λne−λ(y1+···+yn) dyn . . . dy1.

Thus, the random variables Yk := σk − σk−1 for k ∈ N obey

P

(
n⋂
k=1

{Yk ∈ (ak, bk]}

)
= P

(
n⋂
k=1

{σk ∈ (a1 + · · ·+ ak, b1 + · · ·+ bk]}

)

=

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

λne−λ(y1+···+yn) dyn . . . dy1

=

∫ b1

a1

λe−λy1 dy1 · · ·
∫ bn

an

λe−λyn dyn,

which implies that Y1, . . . , Yn are independent and exponentially distributed with param-
eter λ. Since the definition of σk, k ∈ N, implies for t > 0

N(t) = max{k ∈ {0, 1, 2, . . . } : σk 6 t}
= max{k ∈ {0, 1, 2, . . . } : Y1 + · · ·+ Yk 6 t},

it follows that N satisfies the Definition 1.1.2.
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9. Let t = 0 corresponds to the time 8pm and let (N(t) : t > 0) denote the Poisson process
with rate λ = 4. According to the Definition in Example 1.1.2 we can assume that there
exist independent, exponentially distributed random variables X1, X2, . . . with parameter
λ such that

N(t) :=

{
0, if t = 0,

max{k ∈ {0, 1, 2, . . . } : X1 + · · ·+Xk 6 t}, if t > 0,

(a) The expected waiting time for the next bus is modelled by X1. A simple calculation
to obtain the expectation of an exponentially distributed random variable shows that
E[X1] = 1

λ = 15min.

(b) Let Y model the waiting time for the next bus given that John has already waited
for 30min. Then it follows from the definition of conditional probability for each t > 0

P (Y > t) = P (X1 > 0.5 + t|X1 > 0.5)

= P (X1 > 0.5 + t)P (X > 0.5) = e−4(0.5+t)e−4(0.5) = e−4t.

Thus, also Y is exponentially distributed with the same parameter. It means that John
is not in a better situation than at 8pm; in particular the expected waiting time is again
E[Y ] = 1

λ = 15min.

This result is quite surprising but it can be explained. It is known as inspection paradox
of renewal processes.

10. It is easy to check the conditions in Definition 1.3.1.

A.2. Solution Chapter 2

Some of the solutions use results from Chapter 3, such as the formula in Proposition 3.2.1.(c).

1. It follows from Definition 1.3.1 that for each t > 0 the random variable N(t) has a Poisson
distribution with parameter λt and therefore

E[N(t)] = λt, E[N2(t)] = λt+ λ2t2. (1.2.12)

The stationary increments of the Poisson process imply E[(N(t) − N(s))k] = E[(N(t −
s))k] for each 0 6 s 6 t and k ∈ N.

(a) We check the conditions in Definition 2.1.1:

(i) for each t > 0 the random variable N(t)− λt is FN
t -measurable since the function

t 7→ λt is deterministic.

(ii) E
[
|N(t)− λt|

]
6 E

[
|N(t)|

]
+ λt 6 2λt for all t > 0.
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(iii) for every 0 6 s 6 t the independent increments and (1.2.12) imply

E[N(t)− λt|FN
s ] = E[N(t)−N(s)|FN

s ] + E[N(s)|FN
s ]− λt

= E[N(t)−N(s)] +N(s)− λt
= (t− s)λ+N(s)− λt
= N(s)− λs.

(b) We check the conditions in Definition 2.1.1:

(i) for each t > 0 the random variable (N(t) − λt)2 − λt is FN
t -measurable since it is

the image of the continuous function

f : R→ R, f(x) = (x− λt)2 − λt

applied to the FN
t -measurable random variable N(t).

(ii) for every t > 0 equation (1.2.12) implies

E
[ ∣∣∣(N(t)− λt)2 − λt

∣∣∣ ] 6 E
[

(N(t)− λt)2 ]
+ λt = λt+ λt <∞.

(iii) ffor every 0 6 s 6 t the independent and stationary increments and (1.2.12) imply

E
[

(N(t)− λt)2 − λt|FN
s

]
= E

[
(N(t)−N(s) +N(s)− λt)2 − λt|FN

s

]
= E

[
(N(t)−N(s))2|FN

s

]
+ 2E[(N(t)−N(s))(N(s)− λt)|FN

s ]

+ E
[
(N(s)− λt)2|FN

s

]
− λt

= E
[
(N(t)−N(s))2

]
+ 2(N(s)− λt)E[(N(t)−N(s))]

+ (N(s)− λt)2 − λt
= λ(t− s) + λ2(t− s)2 + 2(N(s)− λt)λ(t− s) + (N(s)− λt)2 − λt
= (N(s)− λs)2 − λs.

(c) Follows directly from part (a) and (b) as(
N(t)− λt

)2 −N(t) =
(
N(t)− λt

)2 − λt− (N(t)− λt
)

for all t > 0.

2. By the very definition of conditional expectation the stochastic process (Y (t) : t > 0)
is adapted to {Ft}t>0. Moreover, properties of conditional expectation yield for every
t > 0

E[|Y (t)|] = E
[
|E[X|Ft]|

]
6 E

[
E[|X| |Ft]

]
= E[|X|] <∞.

The tower property of conditional expectation implies for every 0 6 s 6 t

E
[
Y (t)|Fs

]
= E

[
E[X|Ft]|Fs

]
= E

[
X|Fs

]
= Y (s).
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3. (a) Yes, see Theorem 3.2.3.

(b) No, since for 0 6 s < t we obtain

E[W 2(t)] = t 6= s = E[W 2(s)],

which contradicts the fact that martingale has constant expectation.

(c) We check the conditions in Definition 2.1.1 (see also Corollary 3.2.4):

(i) for each t > 0 the random variable exp
(
cW (t)− c2

2 t
)

is FW
t -measurable since it is

the image of the continuous function

f : R→ R, f(x) = exp
(
cx− c2

2 t
)
,

applied to the FW
t -measurable random variable W (t).

(ii) for all t > 0 we have

E
[
|X(t)|

]
= E

[
exp(cW (t))

]
exp(− 1

2c
2t) = exp(1

2c
2t) exp(− 1

2c
2t) = 1 <∞.

(iii) for every 0 6 s 6 t the independent increments and Proposition 3.2.1.(c). imply

E

[
ecW (t)− c

2

2 t|FW
s

]
= X(s)E

[
ec(W (t)−W (s))|FW

s

]
e−

c2

2 (t−s)

= X(s)E
[
ec(W (t)−W (s))

]
e−

c2

2 (t−s)

= X(s)e
1
2 c

2(t−s)e−
c2

2 (t−s)

= X(s).

(d) We check the conditions in 2.1.1:

(i) for each t > 0 the random variable W 3(t) − 3tW (t) is FW
t -measurable since it is

the image of the continuous function

f : R→ R, f(x) = x3 − 3tx,

applied to the FW
t -measurable random variable W (t).

(ii) Since W (t) is normally distributed we obtain by Lemma 3.3.4 for all t > 0

E
[
|X(t)|

]
6 E

[
|W (t)|3

]
+ 3tE [|W (t)|] <∞.

(iii) for every 0 6 s 6 t we obtain by using (a)

E
[
W 3(t)− 3tW (t)|FW

s

]
= E

[(
W (t)−W (s) +W (s)

)3|FW
s

]
− E[3tW (t)|FW

s ]

= E
[
(W (t)−W (s))3|FW

s

]
+ E

[
3(W (t)−W (s))2W (s)|FW

s

]
+ E

[
3(W (t)−W (s))W 2(s)|FW

s

]
+ E

[
W 3(s)|FW

s

]
− 3tW (s)

= 0 + 3(t− s)W (s) + 0 +W 3(s)− 3tW (s)

= X(s).
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(e) We check the conditions in Definition 2.1.1:

(i) for each t > 0 the random variable t2W (t)− 2
∫ t

0
sW (s) ds is FW

t -measurable since
it is the image of the continuous function

f : R×R→ R, f(x, y) = t2x− 2y,

applied to the FW
t -measurable random variables W (t) and

∫ t
0
sW (s) ds. The latter

is FW
t measurable since it is the limit of FW

t measurable random variables in the
Riemann sum:∫ t

0

sW (s) ds = lim
|πn|→0

mn−1∑
i=0

ζ
(n)
i W

(
ζ

(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
,

where πn = {t(n)
i }i=0,...,mn is a partition of [0, t] for each n ∈ N and ζ

(n)
i ∈ [t

(n)
i , t

(n)
i+1].

(ii) for each t > 0 we obtain by using Fubini’s theorem for the second term:

E

[∣∣∣∣t2W (t)− 2

∫ t

0

sW (s) ds

∣∣∣∣] 6 t2E[|W (t)|] + 2

∫ t

0

sE[|W (s)|] ds

6 t2
(
E[W 2(t)]

)1/2
+ 2

∫ t

0

s
(
E[W 2(s)]

)1/2
ds

<∞.

(iii) for each 0 6 s 6 t Theorem 3.2.3 and Fubini’s theorem imply

E

[
t2W (t)− 2

∫ t

0

uW (u) du|FW
s

]
= t2E[W (t)|FW

s ]− 2

∫ t

0

E[uW (u)|FW
s ] du

= t2W (s)− 2

∫ s

0

uE[W (u)|FW
s ] du− 2

∫ t

s

uE[W (u)|FW
s ] du

= t2W (s)− 2

∫ s

0

uW (u) du− 2

∫ t

s

uW (s) du

= s2W (s)− 2

∫ s

0

uW (u) du.

We use in the second line above that the order of the conditional expectation and
the integral can be exchanged (Fubini’s theorem).

(f) No, since for 0 6 s < t we obtain

E[W 4(t)− 4t2W (t)] = 3t2 6= 3s2 = E[W 4(s)− 4s2W (s)],

which contradicts the fact that martingale has constant expectation.
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4. (a) For A := (−∞,−a] ∪ [a,∞) the random time τ obeys the equation

τ = inf{t > 0 : W (t) ∈ A}.

Since A is a closed set in R and W has continuous path, Proposition 1.2.7 implies that
τ is a stopping time

(b) Recall that cosh(x) = 1
2 (ex+e−x) for all x ∈ R. We check the conditions in Definition

2.1.1:

(i) For each t > 0 the random variable M(t) is FW
t -measurable since it is the image of

the continuous function f : R→ R, f(x) = exp(− c
2

2 t) cosh(cx), applied to W (t).

(ii) for all t > 0 we obtain

E

[∣∣∣∣e− c22 t cosh(cW (t))

∣∣∣∣] = 1
2e
− c

2

2 tE
[
ecW (t) + e−cW (t)

]
= e−

c2

2 te
c2

2 t = 1 <∞.

(iii) for each 0 6 s 6 t it follows from Exercise 2.5.3.c

E

[
e−

c2

2 t cosh(cW (t))|FW
s

]
=

1

2

(
E

[
e−

c2

2 t+cW (t)|FW
s

]
+ E

[
e−

c2

2 t−cW (t)|FW
s

])
=

1

2

(
e−

c2

2 s+cW (s) + e−
c2

2 s−cW (s)

)
= e−

c2

2 s cosh(cW (s)).

(c) Since (M(t) : t > 0) is a martingale according to (b), the optional sampling Theorem
2.3.1 implies

1 = E[M(0)] = E[M(t ∧ τ)] for all t > 0. (1.2.13)

Moreover, we haveM(t∧τ)→M(τ) P -a.s. as t→∞ and it follows from the monotonicity
and symmetry of the function x 7→ cosh(x) that

|M(t ∧ τ)| 6 |cosh(cW (t ∧ τ))| 6 cosh(ca)

E[|cosh(ca)|] = cosh(ca) <∞.

Consequently, Lebesgue’s dominated convergence theorem implies

E[M(τ)] = E[ lim
t→∞

M(t ∧ τ)] = lim
t→∞

E[M(t ∧ τ)] = 1, (1.2.14)

where we use equation (1.2.13). On the other hand, the symmetry of x 7→ cosh(x) implies

E[M(τ)] = E

[
e−

c2

2 τ cosh(cW (τ))1W (τ)=a

]
+ E

[
e−

c2

2 τ cosh(cW (τ))1W (τ)=−a

]
= E

[
e−

c2

2 τ1W (τ)=a

]
cosh(ca) + E

[
e−

c2

2 τ1W (τ)=−a

]
cosh(−ca)

= E

[
e−

c2

2 τ

]
cosh(ca).



Appendix A. Solutions 109

Together with equation (1.2.14) this results in

E
[
e−λτ

]
=
(

cosh(
√

2λ a)
)−1

for each λ > 0.

5. Define c := b +
√
b2 + 2λ and M(t) := exp(cW (t) − c2

2 t) for each t > 0. Since (M(t) :
t > 0) is a martingale according to Exercise 2.5.3.c, the optional sampling Theorem 2.3.1
implies

1 = E[M(0)] = E[M(t ∧ τ)] for all t > 0. (1.2.15)

Moreover, we have M(t ∧ τ)→M(τ) P -a.s. as t→∞ and

|M(t ∧ τ)| 6 exp
(
c(a+ b(t ∧ τ))− 1

2c
2(t ∧ τ)

)
= exp(ca) exp

(
(cb− 1

2c
2)(t ∧ τ)

)
6 exp(ca),

because cb− 1
2c

2 = −λ < 0. Since

E[|exp(ca)|] = exp(ca) <∞,

Lebesgue’s theorem of dominated convergence implies

E[M(τ)] = E[ lim
t→∞

M(t ∧ τ)] = lim
t→∞

E[M(t ∧ τ)] = 1, (1.2.16)

where we use Equation (1.2.15). On the other hand, a straightforward calculation yields

E[M(τ)] = E
[
exp

(
c(a+ bτ)− 1

2c
2τ
)]

= E
[
exp

(
(cb− 1

2c
2)τ
)]

exp(ca).

Together with equation (1.2.16) this results in

E
[
e−λτ

]
= exp

(
−a(b+

√
b2 + 2λ )

)
for each λ > 0.

Can somebody solve this exercise for b < 0?

6. To show existence define A0 := 0 and

Ak :=

k∑
i=1

E[Xi −Xi−1|Fi−1] for all k ∈ N .

Since X is a submartingale, the sequence (Ak : k ∈ N0) is increasing and by definition,
each Ak is Fk−1-measurable. Define Mk := Xk − Ak for each k ∈ N0, which is adapted
and satisfies E[|Mk|] <∞. By using the definition of Ak we obtain for ever k ∈ N

E[Mk|Fk−1] = E[Xk|Fk−1]−Ak
= E[Xk|Fk−1]− E[Xk −Xk−1|Fk−1]−Ak−1

= Xk−1 −Ak−1 = Mk−1.
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The power property shows that (Mk)k∈N0
is a martingale. To show uniqueness assume

that there are M and A with the same properties satisfying

Xk = Mk +Ak = M ′k +A′k for all k ∈ N0 .

It follows that Mk−M ′k = Ak−A′k is an Fk−1-measurable random variable which implies

Mk −M ′k = E[Mk −M ′k|Fk−1] = Mk−1 −M ′k−1.

It follows recursively

Mk −M ′k = Mk−1 −M ′k−1 = · · · = M0 −M ′0 = A0 −A′0 = 0,

which shows uniqueness.

7. This exercise is an example of the use of the following result from probability theory:

Lemma Let B be a sub-σ-algebra of A . Let X be a random variable which is B-
measurable and let Y be a random variable which is independent of B. If f : R×R→ R

is a function with E[|f(X,Y )|] <∞ then

E[f(X,Y )|B] = h(X) P -a.s.,

where h : R→ R is a function defined by

h(x) := E[f(x, Y )].

The payoff of the European call option is giving by g(S(T )) where g(x) = (x−K)+ for
all x ∈ R. The given representation of S yields that

S(t) = S(u) exp
((
r − 1

2σ
2
)

(t− u) + σ(W (t)−W (u))
)

for all 0 6 u 6 t. Applying this representation for t = T and u = t we obtain by the
lemma that

V (t) = E

e−r(T−t)g
 S(t)︸︷︷︸

Ft-meas.

exp

(r − 1
2σ

2
)

(T − t) + σ (W (T )−W (t))︸ ︷︷ ︸
ind. of Ft


 |Ft


= h(t, S(t))

for a function h : [0, T ]×R→ R where

h(t, x) = E
[
e−r(T−t)g

(
x exp

((
r − 1

2σ
2
)

(T − t) + σ(W (T )−W (t))
))]

=
1√
2π

∫ ∞
−∞

e−r(T−t)g
(
x exp

(
σ
√
T − t y +

(
r − 1

2σ
2
))

(T − t)
)
e−

1
2y

2

dy.
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Using the definition g(x) = (x−K)+ we can continue and evaluate the integral to obtain:

h(t, x)

=
1√
2π

∫ ∞
−∞

e−r(T−t)
(
x exp

((
r − 1

2σ
2
)

(T − t) + σ
√
T − t y

)
−K

)+

e−
1
2y

2

dy

...
...

= xFN (d+(T − t, x))−Ke−r(T−t)FN (d−(T − t, x)),

where FN denotes the distribution function of the standard normal distribution and the
constants d+ and d− are defined by

d±(τ, x) :=
1

σ
√
τ

(
ln
x

K
+ (r ± σ2

2 )τ
)
.

Remark for students in financial mathematics: in risk-neutral valuation you do this cal-
culation under the risk-neutral measure Q, i.e. the expectation here is with respect to
Q.

A.3. Solution Chapter 3

1. (a) Define W̃(t) := −W (t) for all t > 0. We show the conditions in Definition 3.0.1:

(i) W̃(0) = −W (0) = 0 P -a.s.

(ii) Note, that if X and Y are independent random variables then f(X) and g(Y ) are
also independent for any measurable functions f, g : R → R. By applying this
together with the independent increments of W it follows by induction that for
every 0 6 t1 6 . . . 6 tn and n ∈ N the random variables

−
(
W (t2)−W (t1)

)
, . . . ,−

(
W (tn)−W (tn−1)

)
are independent. Since

W̃(t2)− W̃(t1), . . . , W̃(tn)− W̃(tn−1)

= −
(
W (t2)−W (t1)

)
, . . . ,−

(
W (tn)−W (tn−1)

)
it follows that W̃ also has independent increments.

(iii) For every 0 6 s 6 t the symmetry of the standard normal distribution implies

W̃(t)− W̃(s) = −(W (t)−W (s))
D
= N(0, t− s).

(iv) Since the function f : R→ R defined by f(x) := −x is continuous, continuity of W
implies that the mapping t 7→ f(W (t)) is continuous, too.
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(b) Define W̃(t) := W (t+ t0)−W (t0) for all t > 0. We show the conditions in Definition
3.0.1:

(i) W̃(0) = W (t0)−W (t0) = 0 P -a.s.

(ii) For every 0 6 t1 6 . . . 6 tn and n ∈ N we obtain

W̃(t2)− W̃(t1), . . . , W̃(tn)− W̃(tn−1)

= W (t2 + t0)−W (t1 + t0), . . . ,W (tn + t0)−W (tn−1 + t0)

are independent, since W has independent increments and t1 + t0 6 t2 + t0 6 . . . 6
tn + t0.

(iii) For every 0 6 s 6 t we obtain

W̃(t)− W̃(s) = W (t+ t0)−W (s+ t0))
D
= N(0, t+ t0 − (s+ t0)) = N(0, t− s).

(iv) Clearly, the stochastic process (W (t+ t0) : t > 0) has continuous trajectories. Since

W̃(t) = W (t+ t0)−W (t0) and W (t0) does not depend on t, also W̃ has continuous
trajectories.

(c) Define W̃(t) := cW ( t
c2 ) for all t > 0. We show the conditions in Definition 3.0.1:

(i) W̃(0) = W (0) = 0 P -a.s.

(ii) For every 0 6 t1 6 . . . 6 tn and n ∈ N the independent increments of W guarantee
that (

W

(
t2
c2

)
−W

(
t1
c2

))
, . . . ,

(
W

(
tn
c2

)
−W

(
tn−1

c2

))
are independent, since t1

c2 6 . . . 6 tn
c2 . As multiplication by a constant preserves

independence (see part (a)), we obtain

W̃(t2)− W̃(t1), . . . , W̃(tn)− W̃(tn−1)

= c

(
W

(
t2
c2

)
−W

(
t1
c2

))
, . . . , c

(
W

(
tn
c2

)
−W

(
tn−1

c2

))
are also independent.

(iii) For every 0 6 s 6 t we obtain

W̃(t)− W̃(s) = c

(
W

(
t

c2

)
−W

( s
c2

))
D
= N

(
0, c2

(
t

c2
− s

c2

))
= N(0, t− s).

(iv) Clearly, the stochastic process (W ( t
c2 ) : t > 0) has continuous trajectories. Since

W̃(t) = cW ( t
c2 ), also W̃ has continuous trajectories.



Appendix A. Solutions 113

2. Let X be normally distributed with expectation 0 and variance σ2 > 0. For k ∈ N we
obtain by partial integration

E[Xk] =
1√

2πσ2

∫ ∞
−∞

xke−
1

2σ2 x
2

dx

=
1√

2πσ2

([
1

k + 1
xk+1e−

1
2σ2 x

2

]∞
x=−∞

−
∫ ∞
−∞

1

k + 1
xk+1−x

σ2
e−

1
2σ2 x

2

dx

)

=
1

(k + 1)σ2
E[Xk+2]. (1.3.17)

We show by induction that

E[Xk] =

{
0, if k is odd,

k!
2k/2(k/2)!

σk, if k is even.
(1.3.18)

Proof: If k is odd it follows from (1.3.17) that

0 = E[X] = E[X3] = · · · = E[Xk].

Let k be even. For k = 2 we know that E[X2] = σ2 and thus, the claim is satisfied. For
the induction, we assume that the claim is true for k and show that this implies the claim
for k + 2:

E[Xk+2] = (k + 1)σ2E[Xk] = (k + 1)σ2 k!

2k/2(k/2)!
σk =

(k + 2)!

2(k+2)/2((k + 2)/2)!
σk+2.

Thus, the proof of formula (1.3.18) is completed.

3. Fix 0 6 t1 6 · · · 6 tn and note that the n-dimensional random vector(
W (t1),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

)
is normally distributed as the entries of this random vector are independent and normally
distributed. Since

W (t1)
W (t2)

...
W (tn)

 =


1 0 0 . . . 0 0
1 1 0 . . . 0 0
...

...
...

...
1 1 1 . . . 1 1




W (t1)
W (t2)−W (t1)

...
W (tn)−W (tn−1)

 ,

it follows that (W (t1), . . . ,W (tn)) is normally distributed. Thus, the stochastic process
(W (t) : t > 0) is Gaussian.

4. By properties of the Brownian motion in Proposition 3.2.1 we obtain for each 0 6 s 6 t:

E[B(t)] = E[W (t)]− tE[W (1)] = 0,

Cov(B(s)B(t)) = E
[(
W (s)− sW (1)

)(
W (t)− tW (1)

)]
= E

[
W (s)W (t)

]
− tE

[
W (s)W (1)

]
− sE

[
W (1)W (t)

]
+ stE

[
W 2(1)

]
= s− st.
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Fix 0 6 t1 6 · · · 6 tn and note that the (n+ 1)-dimensional random vector(
W (t1),W (t2), . . . ,W (tn),W (1))

)
is normally distributed by Exercise 3.4.3. Since

W (t1)− t1W (1)
W (t2)− t2W (1)

...
W (tn)− tnW (1)

 =


1 0 0 . . . 0 −t1
0 1 0 . . . 0 −t2
...

...
...

...
0 0 0 . . . 0 −tn−1

0 0 0 . . . 1 −tn




W (t1)
W (t2)

...
W (tn)
W (1)

 ,

it follows that (W (t1)− t1W (1), . . . ,W (tn)− tnW (1)) is normally distributed. Thus, the
Brownian bridge (B(t) : t > 0) is a Gaussian process.

5. In this exercise we apply Fubini’s theorem, that is the interchange of the order of integra-
tion (including expectation), without showing that the necessary conditions are satisfied.
A rigorous mathematical proof would require that, of course!

(a) For every t > 0 we obtain

E[Y (t)] =

∫ t

0

E[W (s)f(s)] ds =

∫ t

0

E[W (s)] f(s) ds = 0.

Using the formula for the covariance of Browian motion we obtain for each 0 6 s 6 t
that

Cov(Y (s)Y (t)) = E[Y (s)Y (t)]

= E

[∫ s

0

∫ t

0

W (r)f(r)W (u)f(u) du dr

]
=

∫ s

0

∫ t

0

E[W (r)W (u)]f(r)f(u) du dr

=

∫ s

0

(∫ r

0

E[W (r)W (u)]f(r)f(u) du+

∫ t

r

E[W (r)W (u)]f(r)f(u) du

)
dr

=

∫ s

0

(∫ r

0

uf(r)f(u) du+

∫ t

r

rf(r)f(u) du

)
dr

=

∫ s

0

(∫ r

0

uf(r)f(u) du

)
dr +

∫ s

0

(∫ t

r

rf(r)f(u) du

)
dr.

Changing the order of integration in the first integral yields

=

∫ s

0

(∫ s

u

uf(r)f(u) dr

)
du+

∫ s

0

(∫ t

r

rf(r)f(u) du

)
dr

=

∫ s

0

uf(u)

(∫ s

u

f(r) dr

)
du+

∫ s

0

rf(r)

(∫ t

r

f(u) du

)
dr.
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Redefine u→ r and r → u in the first integral to obtain

=

∫ s

0

rf(r)

(∫ s

r

f(u) du

)
dr +

∫ s

0

rf(r)

(∫ t

r

f(u) du

)
dr

=

∫ s

0

rf(r)

(
2

∫ s

r

f(u) du+

∫ t

s

f(u) du

)
dr.

(b) By the definition of Riemann integrals we have for every ω ∈ Ω that

Y (t)(ω) =

∫ t

0

W (s)(ω)f(s) ds

= lim
|πn|→0

mn−1∑
i=0

W
(
ζ

(n)
i

)
(ω) f

(
ζ

(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
, (1.3.19)

where πn = {t(n)
i }i=0,...,mn is a partition of [0, t] for each n ∈ N and ζ

(n)
i ∈ [t

(n)
i , t

(n)
i+1].

Since (W (t) : t > 0) is a Gaussian process according to Exercise 3.4.3, it follows that the
sum

mn−1∑
i=0

W
(
ζ

(n)
i

)
f
(
ζ

(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
is a normally distributed random variable for every partition πn. Since the P -a.s. limit
of Gaussian random variables is again normally distributed2, it follows that the left hand
side in (1.3.19) is normally distributed.

6. We assume3 that the probability distribution of X has a density f .

(a) Since X is assumed to be a non-negative random variable, the density f has only
support in R+ and we obtain by Fubini’s theorem that

E[X] =

∫
R

yf(y) dy =

∫ ∞
0

f(y)

∫ y

0

dx dy =

∫ ∞
0

∫ ∞
x

f(y) dy dx =

∫ ∞
0

P (X > x) dx.

(b) Assume for a contradiction that there is δ > 0 such that P (|X| =∞) = δ. It follows
for every constant K > 0 that

E[|X|] > E[|X|1|X|>K ] > KE[1|X|>K ] = KP (|X| > K) > Kδ.

Since K is arbitrary we can take K → ∞ and it follows that E[|X|] = ∞ which is a
contradiction.

Measure theoretical proof: define B := {X =∞} and assume that P (B) > 0 for contra-
diction. Then

E[|X|] =

∫
Ω

|X(ω)| P (dω) >
∫
B

|X(ω)| P (dω) =∞ · P (B) =∞,

which is a contradiction.
2this is not given in the lecture notes, but it can be read out of the characteristic function
3if you know measure theory, then replace f(y) dy by P (dy) in the following
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7. (a) Since (WH(t) : t > 1) is a Gaussian process, it follows for every s, t > 0 that
the random vector (WH(s),WH(t)) is normally distributed, and, by its definition, with
expectation 0 and covariance matrix(

r(s, s) r(s, t)
r(t, s) r(t, t)

)
.

It follows for 0 6 s 6 t that WH(t)−WH(s) is normally distributed with expectation 0
and

Var[WH(t)−WH(s)] = E[(WH(t)−WH(s))2]

= E[(WH(t))2] + E[(WH(s))2]− 2E[WH(t)WH(s)]

= r(t, t) + r(s, s)− 2r(t, s)

= |t− s|2H

= r(t− s, t− s).

Consequently, the random variables WH(t)−WH(s) and WH(t− s) are both normally
distributed with the same expectations and variances, which implies in the case of a
Gaussian distribution that they are distributed according to the same distribution.

(b) For 0 6 s 6 t and n ∈ N it follows from part (a) and Lemma 3.3.4 that

E
[
|WH(t)−WH(s)|2n

]
= |t− s|2HnE[X2n] =

(2k)!

2kk!
|t− s|2Hn ,

where X
D
= N(0, 1). Consequently, for each n ∈ N we can choose α = 2n and β = 2Hn−1

in Kolmogorov’s Theorem 3.3.3 which implies that WH is Hölder continuous of each order
smaller than H − 1

2n . Since n is arbitrary the claim follows.

8. (a) Let {tk}k=0,...n be a partition of [a, b]. Since f is Hölder continuous of order 1 there
exists a constant c > 0 such that

|f(x)− f(y)| 6 c |x− y| for all x, y ∈ [a, b].

Consequently, we obtain that

n−1∑
k=0

|f(tk+1)− f(tk)| 6
n∑
k=1

c |tk+1 − tk| = c(b− a),

and therefore, f is of finite variation.

(b) Let n ∈ N be even and define

t0 = 0, tn = 1,

tk =
(
(n− 1− k)π + π

2

)−1
for k = 1, . . . , n− 1.
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Consequently, {tk}k=0,...,n is a partition of [0, 1] and

f(tk) =

{
−tk if k even,

tk if k odd,
for k = 0, . . . , n− 1.

It follows that

n−1∑
k=0

|f(tk+1)− f(tk)| >
n−2∑
k=0

|tk+1 + tk|

= 2

n−2∑
k=1

tk + tn−1 + t0

> 2

n−2∑
k=1

(kπ + π
2 )−1

→∞ as n→∞.

Consequently, f is not of finite variation. But f is continuous in x = 0, since

−x 6 f(x) 6 x for all x ∈ (0, 1].

A.4. Solution Chapter 4

1. (a) (Φ(t) : t ∈ [0, 4]) is adapted, since

for t ∈ [0, 1] : Φ(t) = 2 and thus Φ(t) is FW
t -measurable;

for t ∈ (1, 2] : Φ(t) = Y1 and thus Φ(t) is FW
t -measurable as Y1 is FW

1 -measurable;

for t ∈ (2, 3] : Φ(t) = Y2 and thus Φ(t) is FW
t -measurable as Y2 is FW

2 -measurable;

for t ∈ (3, 4] : Φ(t) = 0 and thus Φ(t) is FW
t -measurable.

(b) The linearity of the stochastic integral yields∫ 4

0

Φ(s) dW (s) =

∫ 1

0

Φ(s) dW (s) +

∫ 2

1

Φ(s) dW (s) +

∫ 3

2

Φ(s) dW (s) +

∫ 4

3

Φ(s) dW (s)

=

∫ 1

0

2 dW (s) +

∫ 2

1

Y1 dW (s) +

∫ 3

2

Y2 dW (s) +

∫ 4

3

0 dW (s)

= 2W (1) + Y1

(
W (2)−W (1)

)
+ Y2

(
W (3)−W (2)

)
.
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(c) The process (Φ(t) : t ∈ [0, 4]) is in H since∫ 4

0

E
[
|Φ(s)|2

]
ds

=

∫ 1

0

E
[
|Φ(s)|2

]
ds+

∫ 2

1

E
[
|Φ(s)|2

]
ds+

∫ 3

2

E
[
|Φ(s)|2

]
ds+

∫ 4

3

E
[
|Φ(s)|2

]
ds

= 4 + E
[
|Y1|2

]
+ E

[
|Y2|2

]
= 4 + 2 + 4 = 10 <∞.

Thus, Theorem 4.3.1 implies that the mean and expectation exist and that they are given
by

E

[∫ T

0

Φ(s) dW (s)

]
= 0,

Var

[∫ T

0

Φ(s) dW (s)

]
= E

∣∣∣∣∣
∫ T

0

Φ(s) dW (s)

∣∣∣∣∣
2
 =

∫ T

0

E
[
|Φ(s)|2

]
ds = 10.

2. (a) Let T > b. The stochastic process (|W (t)| : t ∈ [0, T ]) is in H since∫ T

0

E
[
|W (t)|2

]
dt =

∫ T

0

t dt <∞.

It follows from Theorem 4.3.1 that the mean and variance exists. For the expectation we
compute

E

[∫ b

a

|W (t)| dW (t)

]
= E

[∫ b

0

|W (t)| dW (t)

]
− E

[∫ a

0

|W (t)| dW (t)

]
= 0.

For the variance Itô’s isometry (4.3.11) implies

Var

[∫ b

a

|W (t)| dW (t)

]
= E

∣∣∣∣∣
∫ b

a

|W (t)| dW (t)

∣∣∣∣∣
2


=

∫ b

a

E[|W (t)|2] dt =

∫ b

a

t dt =
1

2
(b2 − a2).

(b) Let T > b. The stochastic process (
√
t exp(W (t)) : t ∈ [0, T ]) is in H since

Proposition 3.2.1.(c) enables us to conclude∫ T

0

E

[∣∣∣√t exp(W (t))
∣∣∣2] dt =

∫ T

0

te2t dt <∞.
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It follows from Theorem 4.3.1 that the mean and variance exists. For the expectation we
compute

E

[∫ b

a

√
t exp(W (t)) dW (t)

]
= 0.

For the variance Itô’s isometry (4.3.11) implies

Var

[∫ b

a

√
t exp(W (t)) dW (t)

]
= E

∣∣∣∣∣
∫ b

a

√
t exp(W (t)) dW (t)

∣∣∣∣∣
2


=

∫ b

a

E

[∣∣∣√t exp(W (t))
∣∣∣2] dt =

∫ b

a

te2t dt = 1
2 (b− 1

2 )e2b − 1
2 (a− 1

2 )e2a.

(c) Let T > b. The stochastic process (sgn(W (t)) : t ∈ [0, T ]) is in H since∫ T

0

E
[
|sgn(W (t))|2

]
dt =

∫ T

0

1 dt = T <∞.

It follows from Theorem 4.3.1 that that the mean and variance exists. For the expectation
we compute as before

E

[∫ b

a

sgn(W (t)) dW (t)

]
= 0

For the variance Itô’s isometry (4.3.11) implies

Var

[∫ b

a

sgn(W (t)) dW (t)

]
= E

∣∣∣∣∣
∫ b

a

sgn(W (t)) dW (t)

∣∣∣∣∣
2


=

∫ b

a

E[|sgn(W (t))|2] dt =

∫ b

a

1 dt = b− a.

3. For a first way see Exercise 2c in Section 2.5.3. For a second way define the function

f : [0, T ]×R→ R, f(t, x) := ex−
1
2 t.

The function f is in C1,2 and we obtain

ft(t, x) = − 1
2e
x− 1

2 t, fx(t, x) = ex−
1
2 t, fxx(t, x) = ex−

1
2 t.

Itô’s formula in Theorem 4.5.6 implies

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t)

=

(
− 1

2e
W (t)− 1

2 t + 1
2e
W (t)− 1

2 t

)
dt+ eW (t)− 1

2 t dW (t)

= eW (t)− 1
2 t dW (t).
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Since f(0,W (0)) = 1 this is

eW (t)− 1
2 t = 1 +

∫ t

0

eW (s)− 1
2 s dW (s) for all t ∈ [0, T ]. (1.4.20)

The stochastic process
(

exp(W (t)− 1
2 t) : t ∈ [0, T ]

)
is in H since Proposition 3.2.1.(c)

enables us to conclude∫ T

0

E
[∣∣exp(W (t)− 1

2 t)
∣∣2] dt =

∫ T

0

e−te2t dt =

∫ T

0

et dt <∞.

Consequently, Theorem 4.3.1 guarantees that
( ∫ t

0
exp(W (u)− 1

2u) dW (u) : t ∈ [0, T ]
)

is
a martingale which completes the exercise by equation (1.4.20).

4. (a) It follows directly from the definition of the sums R(π) and L(π) that

R(π)− L(π) =

m−1∑
k=0

(f(tk+1)− f(tk))
2
,

R(π) + L(π) =
m−1∑
k=0

(
f(tk+1)2 − f(tk)2

)
= f2(T )− f2(0).

By solving for R(π) and L(π) we obtain

L(π) =
1

2

(
f2(T )− f2(0)−

m−1∑
k=0

(
f(tk+1)− f(tk)

)2)
,

R(π) =
1

2

(
f2(T )− f2(0) +

m−1∑
k=0

(
f(tk+1)− f(tk)

)2)
.

(b) It follows from the Definition of the Riemann-Stieltjes integral that a necessary re-

quirement for the existence of the Riemann-Stieltjes integral
∫ T

0
f(s) df(s) is

lim
|πn|→0

R(πn) = lim
|πn|→0

L(πn)

for every sequence {πn}n∈N of partitions πn = {t(n)
k }k=0,...,mn in P [0, T ]. By part (a)

this is satisfied if and only if

lim
|πn|→0

mn−1∑
k=0

∣∣∣f(t
(n)
k+1)− f(t

(n)
k )
∣∣∣2 = 0.

5. Define the function

f : R→ R f(x) := xm.
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The function f is in C2 and we obtain

fx(x) = mxm−1, fxx(x) = m(m− 1)xm−2.

Itô’s formula in Theorem 4.5.1 implies

(W (t))m = f(W (t))

= f(0) +

∫ t

0

fx(W (s)) dW (s) +
1

2

∫ t

0

fxx(W (s)) ds

= m

∫ t

0

Wm−1(s) dW (s) +
1

2
m(m− 1)

∫ t

0

Wm−2(s) ds.

6. Let (H(u) : u ∈ [0, T ]) be a simple stochastic process in H0 of the form

H(u)(ω) =

m−1∑
k=0

1(uk,uk+1](u)Xk(ω) for all u ∈ [0, T ], ω ∈ Ω,

where Xk : Ω → R are Fuk -measurable random variables with E[|Xk|2] < ∞ and
0 = u0 < u1 < · · · < um = T . For the given 0 6 s 6 t we can assume without loss of
generality that there exist k0,m0 ∈ {0, . . . ,m} such that uk0 = s and um0 = t.

(a) The linearity of the stochastic integral yields

∫ t

s

H(u) dW (u) =

∫ t

0

H(u) dW (u)−
∫ s

0

H(u) dW (u) =

m0−1∑
k=k0

Xk

(
W (uk+1)−W (uk)

)
.

By using properties of conditional expectation and the fact that the Brownian motion W
is a martingale, we obtain

E

[∫ t

s

H(u) dW (u)

∣∣∣∣Fs

]
=

m0−1∑
k=k0

E
[
Xk(W (uk+1)−W (uk))

∣∣∣Fs

]

=

m−1∑
k=k0

E
[
XkE[W (uk+1)−W (uk)|Fuk ]

∣∣∣Fs

]
= 0.

(b) For every 0 6 i < j 6 m properties of conditional expectation and the fact that the
Brownian motion W yield

E
[
XiXj

(
W (ui+1)−W (ui)

)(
W (uj+1)−W (uj)

)∣∣Fs

]
= E

[
XiXj

(
W (ui+1)−W (ui)

)
E
[
(W (uj+1)−W (uj))|Fuj

]∣∣Fs

]
= 0.
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It follows that the mixed terms vanish in the following calculation:

E

[(∫ t

s

H(u) dW (u)

)2
∣∣∣∣∣Fs

]

=

m0−1∑
k=k0

E
[
(Xk(W (uk+1)−W (uk)))

2
∣∣∣Fs

]
+ 2

∑
06i<j6m0−1

E
[
XiXj

(
W (ui+1)−W (ui)

)(
W (uj+1)−W (uj)

)∣∣Fs

]
=

m0−1∑
k=k0

E

[
X2
kE
[(
W (uk+1)−W (uk)

)2∣∣Fuk

] ∣∣∣∣Fs

]

=

m0−1∑
k=k0

E

[
X2
kE
[(
W (uk+1)−W (uk)

)2] ∣∣∣∣Fs

]

=

m0−1∑
k=k0

E
[
X2
k(uk+1 − uk)

∣∣Fs

]
=

m0−1∑
k=k0

∫ uk+1

uk

E
[
X2
k

∣∣Fs

]
du

=

∫ t

s

E[H2(u)
∣∣Fs] du.

(c) For each X ∈ H there exists a sequence {Hn}n∈N of simple stochastic processes in

H0 such that ‖Hn −X‖H → 0 and E[|I(Hn)− I(X)|2] → 0 as n → ∞. By properties
of conditional expectation4 it follows by part (a) that

E

[∫ t

s

X(u) dW (u)

∣∣∣∣Fs

]
= lim
n→∞

E

[∫ t

s

Hn(u) dW (u)

∣∣∣∣Fs

]
= 0,

where the limit takes place in L1
P (Ω). Analogously, we conclude from part (a), again for

limits in L1
P (Ω), that

E

[(∫ t

s

X(u) dW (u)

)2 ∣∣∣∣Fs

]
= lim
n→∞

E

[(∫ t

s

Hn(u) dW (u)

)2 ∣∣∣∣Fs

]

= lim
n→∞

E

[∫ t

s

H2
n(u) du

∣∣∣Fs

]
= E

[∫ t

s

X2(u) du|Fs

]
,

where the last equality follows from ‖Hn −X‖H → 0.

4If E[|Yn → Y |]→ 0 then E[|Yn − Y | |C ]→ 0 in mean for each sub-σ-algebra C .
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7. (i) The stochastic process (W 2(t) : t ∈ [0, T ]) is in H since Lemma 3.3.4 guarantees

∫ T

0

E
[∣∣W 2(s)

∣∣2] ds =

∫ T

0

3s2 ds <∞.

(ii) Define a simple stochastic process (Hn(t) : t ∈ [0, T ]) in H0 by

Hn(t) :=

n−1∑
k=0

1(tk,tk+1](t)W
2(tk),

where tk := k
nT for k = 0, . . . , n. For each 0 6 t 6 s, the independent increments of W

implies

E[W 2(t)W 2(s)]

= E
[
W 2(t)

(
W (s)−W (t) +W (t)

)2]
= E

[
W 2(t)

(
W (s)−W (t)

)2]
+ 2E

[
W 3(t)

(
W (s)−W (t)

)]
+ E

[
W 4(t)

]
= E

[
W 2(t)

]
E
[(
W (s)−W (t)

)2]
+ 2E

[
W 3(t)

]
E
[(
W (s)−W (t)

)]
+ E

[
W 4(t)

]
= t(s− t) + 2 0 + 3t3 = st+ 2t2.

Thus, we obtain for every n ∈ N

∥∥Hn −W 2
∥∥2

H
=

∫ T

0

E
[∣∣Hn(s)−W 2(s)

∣∣2] ds
=

n−1∑
k=0

∫ tk+1

tk

E
[∣∣W 2(tk)−W 2(s)

∣∣2] ds
=

n−1∑
k=0

∫ tk+1

tk

(
E[W 4(tk)] + E[W 4(s)]− 2E[W 2(tk)W 2(s)]

)
ds

=

n−1∑
k=0

∫ tk+1

tk

(
3t2k + 3s2 − 2(tks+ 2t2k)

)
ds.
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Using the inequality −t2k + 3s2− 2tks 6 −t2k + 3s2− 2t2k = 3(s2− t2k) for tk 6 s we obtain

∥∥Hn −W 2
∥∥2

H
6
n−1∑
k=0

∫ tk+1

tk

3(s2 − t2k) ds

6
n−1∑
k=0

3(t2k+1 − t2k)(tk+1 − tk)

= 3
T

n

n−1∑
k=0

t2k+1 − t2k

= 3
T

n
T 2

→ 0 as n→∞.

(iii) Since Hn →W 2 in H by (ii), we obtain according to Definition 4.2.7∫ T

0

W 2(s) dW (s) = lim
n→∞

n−1∑
k=0

W 2(tk)
(
W (tk+1)−W (tk)

)
where the limit takes place in L2

P (Ω). By using the algebraic identity

(b− a)3 = b3 − a3 − 3ab2 + 3a2b = b3 − a3 − 3a2(b− a)− 3a(b− a)2 for all a, b ∈ R,

we obtain for every n ∈ N

n−1∑
k=0

W 2(tk)
(
W (tk+1)−W (tk)

)
=

1

3
W 3(T )− 1

3

n−1∑
k=0

(
W (tk+1)−W (tk)

)3 − n−1∑
k=0

W (tk)
(
W (tk+1)−W (tk)

)2
.

Independent increments of W and Lemma 3.3.4 yield for the first sum

E

∣∣∣∣∣
n−1∑
k=0

(
W (tk+1)−W (tk)

)3∣∣∣∣∣
2
 =

n−1∑
k=0

E

[∣∣∣(W (tk+1)−W (tk)
)3∣∣∣2]

= 15

n−1∑
k=0

(tk+1 − tk)3

6 15 sup
k∈{0,...,n−1}

|tk+1 − tk|2
n−1∑
k=0

tk+1 − tk

= 15
T 3

n2
→ 0 as n→∞.
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For the second sum we show

lim
n→∞

n−1∑
k=0

W (tk)
(
W (tk+1)−W (tk)

)2
=

∫ T

0

W (s) ds in L2
P (Ω). (1.4.21)

The integral on the right hand side is a classical Riemann integral, thus we have by (4.1.1)

lim
n→∞

n−1∑
k=0

W (tk)(tk+1 − tk) =

∫ T

0

W (s) ds P -a.s.

Independent increments of W imply for every n ∈ N

E

∣∣∣∣∣
n−1∑
k=0

W (tk)
(
W (tk+1)−W (tk)

)2 − n−1∑
k=0

W (tk)(tk+1 − tk)

∣∣∣∣∣
2


=

n−1∑
k=0

E

[
W 2(tk)

((
W (tk+1)−W (tk)

)2 − (tk+1 − tk
))2
]

+ 0

=
n−1∑
k=0

E
[
W 2(tk)

]
E

[((
W (tk+1)−W (tk)

)2 − (tk+1 − tk
))2
]

=

n−1∑
k=0

tk

(
E
[(
W (tk+1)−W (tk)

)4]− (E [(W (tk+1)−W (tk)
)2])2

)

=

n−1∑
k=0

tk(tk+1 − tk)2
(
3(tk+1 − tk)− 1

)2
6
T 3

n

(
3
T

n
− 1

)2

→ 0,

which establishes (1.4.21). The last two estimates show that

lim
n→∞

(1

3
W 3(T )− 1

3

n−1∑
k=0

(
W (tk+1)−W (tk)

)3 − n−1∑
k=0

W (tk)
(
W (tk+1)−W (tk)

)2
=

1

3
W 3(T )− 0−

∫ T

0

W (s) ds,

which completes part (a).

(b) Define the function

f : R→ R f(x) := x3.

The function f is in C2 and we obtain

fx(x) = 3x2, fxx(x) = 6x.
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Itô’s formula in Theorem 4.5.1 implies

(W (t))3 = f(W (t)) = f(0) +

∫ t

0

fx(W (s)) dW (s) +
1

2

∫ t

0

fxx(W (s)) ds

= 3

∫ t

0

W 2(s) dW (s) + 3

∫ t

0

W (s) ds.

8. Define the function

f : [0, T ]×R→ R f(t, x) := tx.

The function f is in C1,2 and we obtain that

ft(t, x) = x, fx(t, x) = t, fxx(t, x) = 0.

Itô’s formula in Theorem 4.5.6 implies

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t)

= (W (t) + 0) dt+ t dW (t)

= W (t) dt+ t dW (t).

Since f(0,W (0)) = 0 this means

tW (t) =

∫ t

0

W (s) ds+

∫ t

0

s dW (s).

(b) Define the function

f : [0, T ]×R→ R f(t, x) := e
1
2 t cosx.

The function f is in C1,2 and we obtain that

ft(t, x) = 1
2e

1
2 t cosx, fx(t, x) = −e

1
2 t sinx, fxx(t, x) = −e

1
2 t cosx.

Itô’s formula in Theorem 4.5.6 implies

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t)

= ( 1
2e

1
2 t cosW (t)− 1

2e
1
2 t cosW (t)) dt− e

1
2 t sinW (t) dW (t)

= −e
1
2 t sinW (t) dW (t).

Since f(0,W (0)) = 1 this means

e
1
2 t cosW (t) = 1−

∫ t

0

e
1
2 s sinW (s) dW (s).
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(c) Define the function

f : [0, T ]×R→ R f(t, x) := 1
3x

3 − tx.

The function f is in C1,2 and we obtain

ft(t, x) = −x, fx(t, x) = x2 − t, fxx(t, x) = 2x.

Itô’s formula in Theorem 4.5.6 implies

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t)

= (−W (t) +W (t)) dt+ (W 2(t)− t) dW (t)

= (W 2(t)− t) dW (t).

Since f(0,W (0)) = 0 this means

1
3W

3(t)− tW (t) =

∫ t

0

(W 2(s)− s) dW (s). (1.4.22)

The stochastic process (W 2(t)− t : t ∈ [0, T ]) is in H since∫ T

0

E
[∣∣W 2(s)− s

∣∣2] ds 6 2

∫ T

0

E[|W (s)|4] + s2 ds = 8

∫ T

0

s2 ds <∞.

Consequently, (
∫ t

0
(W 2(s) − s) dW (s) : t ∈ [0, T ]) is a martingale which completes the

exercise due to the equality (1.4.22).

9. Follows later ...

10. (a) Brownian motion ((W1(t), . . . ,Wn(t)) : t > 0) in Rn is an Itô process of the form
(4.7.21) with Υ = 0 and Φ(s) = Idn for all s > 0 since

W1(t)
W2(t)

...
Wn(t)

 = 0 +

∫ t

0


1 0 . . . . . . 0
0 1 . . . . . . 0
...

...
...

0 0 . . . . . . 1

 dW (s) for all t > 0.

Since f ∈ C2(Rn) Theorem 4.7.2 implies for all t ∈ [0, T ]

f(W (t)) = f(W (0)) +
1

2

n∑
i=1

∫ t

0

Φii(s)Φii(s)
∂2f

∂xi∂xi
(W (s)) ds

+

n∑
i=1

∫ t

0

Φii(s)
∂f

∂xi
(W (s)) dWi(s)

= f(W (0)) +
1

2

∫ t

0

∆f(W (s)) ds+

∫ t

0

∇f(s) dW (s).
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(b) Note that for all i ∈ {1, . . . , n} Theorem 4.3.3 implies

Wi(t ∧ τ) =

∫ t∧τ

0

dWi(s) =

∫ t

0

1[0,τ ](s) dWi(s) for all t > 0.

Thus, stopped Brownian motion ((W1(t ∧ τ), . . . ,Wn(t ∧ τ)) : t > 0) in Rn is an Itô
process of the form (4.7.21) with Υ = 0 and Φ(s) = 1[0,τ ](s) Idn for all s > 0 since
W1(t ∧ τ)
W2(t ∧ τ)

...
Wn(t ∧ τ)

 = 0 +

∫ t

0


1[0,τ ](s) 0 . . . . . . 0

0 1[0,τ ](s) . . . . . . 0
...

...
...

0 0 . . . . . . 1[0,τ ](s)

 dW (s) for all t > 0.

Since f is in C2(Rn) and it is harmonic on D Theorem 4.7.2 implies for all t ∈ [0, T ]

f(W (t ∧ τ)) = f(W (0)) +
1

2

n∑
i=1

∫ t

0

Φii(s)Φii(s)
∂2f

∂xi∂xi

(
W (s ∧ τ)

)
ds

+

n∑
i=1

∫ t

0

Φii(s)
∂f

∂xi

(
W (s ∧ τ)

)
dWi(s)

= f(W (0)) +

∫ t

0

1[0,τ ](s)∇f(W (s ∧ τ)) dW (s).

Consequently, (f(W (t ∧ τ)) : t ∈ [0, T ]) is a local martingale.

A.5. Solution Chapter 5

1. Define the function

f : [0, T ]×R→ R f(t, x) := xm.

The function f is in C1,2 and we obtain

ft(t, x) = 0, fx(t, x) = mxm−1, fxx(t, x) = m(m− 1)xm−2.

Since S is the solution of a stochastic differential equation it is an Itô process. Conse-
quently, Itô’s formula in Theorem 4.6.5 implies

dZ(t) = df(t, S(t)) =
(
ft(t, S(t)) + fx(t, S(t))Υ(t) + 1

2fxx(t, S(t))Φ2(t)
)
dt

+ fx
(
t, S(t)

)
Φ(t) dW (t)

=
(
mSm−1(t)αS(t) + 1

2m(m− 1)Sm−2(t)σ2S2(t)
)
dt

+mSm−1(t)σS(t) dW (t)

=
(
mα+ 1

2m(m− 1)σ2
)
Z(t) dt+mσZ(t) dW (t).
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Since the application of Itô’s formula above implies all other conditions in Definition 5.1.1
the stochastic process Z is the solution of the stochastic differential equation

dZ(t) =
(
mα+ 1

2m(m− 1)σ2
)
Z(t) dt+mσZ(t) dW (t)

Z(0) = Sm(0).

2. (a) Define the function

f : R→ R f(x) :=

{
(x− a)

3
, if x > a,

0, else.

By considering the function f on (−∞, a) and [a,∞) and realising that the derivate of f
from the left and right in a coincide, it follows that f is in C2. The derivatives are given
by

fx(x) =

{
3(x− a)2, if x > a,

0, else,
fxx(x) =

{
6(x− a), if x > a,

0, else.

Since fx(x) > 0 and fxx(x) > 0 for all x ∈ R the roots in the following are well defined,
and the derivatives can be written as

fx(x) = 3
(
f(x)

)2/3
, fxx(t, x) = 6

(
f(x)

)1/3
.

Itô’s formula in Theorem 4.5.1 implies

dX(t) = df(W (t)) = fx(W (t)) dW (t) + 1
2fxx(W (t)) dt

= 3
(
f(W (t)

)2/3
dW (t) + 3

(
f(W (t))

)1/3
dt

= 3 (X(t))
2/3

dW (t) + 3 (X(t))
1/3

dt.

Since the application of Itô’s formula above implies all other conditions in Definition 5.1.1
and since we have X(0) = 0 by the definition of X, it follows that X is a solution of the
given stochastic differential equation.

(b) In part (a) we show that the stochastic process

X(t) =

{
(W (t)− a)

3
, if W (t) > a,

0, else

is a solution of the stochastic differential equation (5.7.21) for all a > 0. Consequently,
there exists infinitely many solutions of (5.7.21).

The coefficients of this stochastic differential equation are

f : R+ → R, f(x) = 3x1/3 and g : R+ → R, g(x) = 3x2/3.

Both functions are not Lipschitz continuous on any interval [0, h] for every h > 0 since
their derivatives tend to infinity for x↘ 0.

I am a bit sloppy here since the functions f and g are only defined on R+ whereas Theorem 5.1.5

considers functions defined on the whole line R. This can be easily fixed by taking the modulus in the

considered stochastic differential equation.
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3. The exercise assumes that X is a solution which makes only sense if X(t) > 0 P -a.s. for
all t ∈ [0, T ]. Part (d) finally confirms that the representation of X – derived under this
assumption – solves the stochastic differential equation.

(a) Define the function

f : [0, T ]× (0,∞)→ R f(t, x) := ln(x).

The function f is in C1,2([0, T ]× (0,∞) and we obtain

ft(t, x) = 0, fx(t, x) =
1

x
, fxx(t, x) = − 1

x2
.

The stochastic process (X(t) : t ∈ [0, T ]) defined by

X(t) := X(0) +

∫ t

0

b(a− ln(X(s)))X(s)︸ ︷︷ ︸
=:Υ(s)

ds+

∫ t

0

σX(s)︸ ︷︷ ︸
=:Φ(s)

dW (s)

is an Itô process. Since the stochastic process X satisfies X(t) ∈ (0,∞) P -a.s. for all
t ∈ [0, T ] we can apply the usual Itô’s formula although the function f is not defined on
the complete space R, see Remark 4.7.3. Consequently, Itô’s formula in Theorem 4.6.5
implies

dY (t) = df(t,X(t)) =
(
ft(t,X(t)) + fx(t,X(t))Υ(t) + 1

2fxx(t,X(t))Φ2(t)
)
dt

+ fx(t,X(t))Φ(t) dW (t)

=

(
1

X(t)
b(a− ln(X(t)))X(t) +

−1

2X2(t)
σ2X2(t)

)
dt

+
1

X(t)
σX(t) dW (t)

=
(
ab− σ2

2 − bY (t)
)
dt+ σ dW (t).

Since the application of Itô’s formula above implies all other conditions in Definition 5.1.1
and since we have Y (0) = ln(X(0)) = ln(x0) by the definition of Y , it follows that Y is
a solution of the stochastic differential equation

dY (t) =
(
ab− σ2

2 − bY (t)
)
dt+ σ dW (t) for all t ∈ [0,T],

Y (0) = ln(x0).

(b) Define the function

g : [0, T ]×R→ R g(t, x) := ebtx.

The function g is in C1,2([0, T ]×R) and we obtain

gt(t, x) = bebtx, gx(t, x) = ebt, gxx(t, x) = 0.
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The stochastic process (Y (t) : t ∈ [0, T ]) defined by

Y (t) := Y (0) +

∫ t

0

(
ab− σ2

2 − bY (s)
)

︸ ︷︷ ︸
=:Υ(s)

ds+

∫ t

0

σ︸︷︷︸
=:Φ(s)

dW (s),

is an Itô process. Consequently, for Z(t) := Y (t) exp(bt), Itô’s formula in Theorem 4.6.5
implies

dZ(t) = dg(t, Y (t)) =
(
gt(t, Y (t)) + gx(t, Y (t))Υ(t) + 1

2gxx(t, Y (t))Φ2(t)
)
dt

+ gx(t, Y (t))Φ(t) dW (t)

=
(
bebtY (t) + ebt

(
ab− σ2

2 − bY (t)
))

dt+ ebtσ dW (t)

=
(
ab− σ2

2

)
ebt dt+ σebt dW (t).

This means that for all t ∈ [0, T ] we have

Z(t) = Z(0) +

∫ t

0

(
ab− σ2

2

)
ebs ds+

∫ t

0

σebs dW (s) (1.5.23)

= ln(x0) +
1

b

(
ab− σ2

2

) (
ebt − 1

)
+ σ

∫ t

0

ebs dW (s).

(c) It follows from (b) for all t ∈ [0, T ]

Y (t) = e−btZ(t)

= e−bt ln(x0) +
1

b

(
ab− σ2

2

) (
1− e−bt

)
+ σ

∫ t

0

e−b(t−s) dW (s).

By the definition of Y we obtain for all t ∈ [0, T ]

X(t) = exp(Y (t))

= exp

(
e−bt ln(x0) +

(
ab− σ2

2

) (
1− e−bt

)
+ σ

∫ t

0

e−b(t−s) dW (s)

)
. (1.5.24)

(d) Define the function

f : [0, T ]×R→ R f(t, x) := exp
(

exp(−bt)x
)
.

The function f is in C1,2 and we obtain

ft(t, x) = −bxe−btf(t, x), fx(t, x) = e−btf(t, x), fxx(t, x) = e−2btf(t, x).
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Since Z is an Itô process as it can be seen in (1.5.23), Itô’s formula in Theorem 4.6.5
implies

df(t, Z(t)) =
(
ft(t, Z(t)) + fx(t, Z(t))Υ(t) + 1

2fxx(t, Z(t))Φ2(t)
)
dt

+ fx(t, Z(t))Φ(t) dW (t)

= f(t, Z(t))
(
− bZ(t)e−bt + e−bt

(
ab− σ2

2

)
ebt + 1

2e
−2btσ2e2bt

)
+ f(t, Z(t))e−btσebt dW (t)

= b f(t, Z(t))
(
a− e−btZ(t)

)
dt+ σf(t, Z(t)) dW (t).

Note that according to the representation (1.5.24), we have X(t) = f(t, Z(t)) for all
t ∈ [0, T ] and thus, ln(X(t)) = Z(t) exp(−bt). Since the application of Itô’s formula above
implies all other conditions in Definition 5.1.1 and since we have X(0) = f(0, Z(0)) = x0

by the definition of Z, it follows that X is a solution of the stochastic differential equation

dX(t) = bX(t)
(
a− ln(X(t)

)
dt+ σX(t) dW (t) for all t ∈ [0, T ],

X(0) = x0.

4. Define the function

f : [0, T ]× (0,∞)→ R f(t, x) :=
1

x
.

The function f is in C1,2([0, T ]× (0,∞) and we obtain

ft(t, x) = 0, fx(t, x) = −x−2, fxx(t, x) = 2x−3.

The stochastic process (X(t) : t ∈ [0, T ]) defined by

X(t) := X(0) +

∫ t

0

αX(s)︸ ︷︷ ︸
=:Υ(s)

ds+

∫ t

0

σX(s)︸ ︷︷ ︸
=:Φ(s)

dW (s),

is an Itô process. According to Proposition 5.3.2 the stochastic process X satisfies X(t) ∈
(0,∞) P -a.s. for all t ∈ [0, T ]. Thus, we can apply the usual Itô’s formula although the
function f is not defined on the complete space R, see Remark 4.7.3. Consequently, Itô’s
formula in Theorem 4.6.5 implies

dX−1(t) = df(t,X(t)) =
(
ft(t,X(t)) + fx(t,X(t))Υ(t) + 1

2fxx(t,X(t))Φ2(t)
)
dt

+ fx(t,X(t))Φ(t) dW (t)

= (−X−2(t)αX(t) + 1
22X−3(t)σ2X2(t)) dt

−X−2(t)σX(t) dW (t)

= (−α+ σ2)X−1(t) dt− σX−1(t) dW (t).
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Since the application of Itô’s formula above implies all other conditions in Definition
5.1.1, it follows that X−1 is a solution of the stochastic differential equation

dZ(t) = (−α+ σ2)Z(t) dt− σZ(t) dW (t), for all t ∈ [0,T],

Z(0) =
1

x0
.

5. Define the function

f : [0, T ]×R2 → R f(t, x, y) := xy.

The function f is in C1,2,2 and we obtain

fx(t, x, y) = y, fy(t, x, y) = x, fxy(t, x, y) = fyx(t, x, y) = 1,

and all other derivatives vanish.

The two-dimensional stochastic process ((X(t), Y (t)) : t ∈ [0, T ]) is of form(
X(t)
Y (t)

)
=

(
X(0)
Y (0)

)
+

∫ t

0

(
Υ1(s)
Υ2(s)

)
ds+

∫ t

0

(
Φ1(s)
Φ2(s)

)
dW (s).

Since X and Y are assumed to be real-valued Itô processes it follows that ((X(t), Y (t)) :
t ∈ [0, T ]) is a two-dimensional Itô processes of the form (4.7.21) with n = 2 and d = 1.
Itô’s formula in Theorem 4.7.2 implies

d(X(t)Y (t))

= df(t,X(t), Y (t))

=
(

Υ1(t)fx(t,X(t), Y (t)) + Υ2(t)fy(t,X(t), Y (t))
)
dt

+ 1
2

(
Φ1(t)Φ2(t)fx,y(t,X(t), Y (t)) + Φ2(t)Φ1(t)fy,x(t,X(t), Y (t))

)
dt

+ Φ1(t)fx(t,X(t), Y (t)) dW (t) + Φ2(t)fy(t,X(t), Y (t)) dW (t)

=
(

Υ1(t)Y (t) + Υ2(t)X(t)
)
dt+ Φ1(t)Φ2(t) dt+ Φ1(t)Y (t) dW (t) + Φ2(t)X(t) dW (t)

= Y (t) dX(t) +X(t) dY (t) + Φ1(t)Φ2(t) dt.

6. (a) The coefficients are given by the functions

f(t, z) =

(
αx
αy

)
, g(t, z) =

(
−y
x

)
for t ∈ [0, T ] and z = (x, y) ∈ R2. For each t ∈ [0, T ] and zi = (xi, yi) ∈ R2, i = 1, 2, we
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obtain

‖f(t, z1)− f(t, z2)‖2 = |α|
(
|x1 − x2|2 + |y1 − y2|2

)1/2

= |α| ‖z1 − z2‖2 ,

‖f(t, z1)‖22 = α2 ‖z1‖22 6 α2(1 + ‖z1‖22)

‖g(t, z1)− g(t, z2)‖HS =
(
|−y1 + y2|2 + |x1 − x2|2

)1/2

= ‖z1 − z2‖2 ,

‖g(t, z1)‖2HS =
(
|−y1|2 + |x1|2

)
= ‖z1‖22 6 1 + ‖z1‖22 .

Thus, the functions f and g satisfy the Lipschitz and linear growth conditions in Theo-
rem 5.5.2 and it follows that there exists a unique solution of the stochastic differential
equation.

(b) Define the function

f : [0, T ]×R→ R f(t, x) := x2.

The function f is in C1,2 and we obtain

ft(t, x) = 0, fx(t, x) = 2x, fxx(t, x) = 2.

Let (Z(t) : t ∈ [0, T ]) be the solution of the given stochastic differential equation and
denote Z(t) =

(
X(t), Y (t)

)
for all t ∈ [0, T ]. Then the stochastic process (X(t) : t ∈

[0, T ]) obeys

X(t) := X(0) +

∫ t

0

αX(s)︸ ︷︷ ︸
=:Υ(s)

ds+

∫ t

0

−Y (s)︸ ︷︷ ︸
=:Φ(s)

dW (s),

and thus, X is an Itô process. Consequently, Itô’s formula in Theorem 4.6.5 implies

dX2(t) = df(t,X(t)) =
(
ft(t,X(t)) + fx(t,X(t))Υ(t) + 1

2fxx(t,X(t))Φ2(t)
)
dt

+ fx(t,X(t))Φ(t) dW (t)

= (2X(t)αX(t) + 1
22Y 2(t)) dt+ 2X(t)Y (t) dW (t)

=
(
2αX2(t) + Y 2(t)

)
dt− 2X(t)Y (t) dW (t).

Analogously, we obtain that

dY 2(t) =
(
2αY 2(t) +X2(t)

)
dt+ 2X(t)Y (t) dW (t).

Applying the representations above of X and Y we obtain for R(t) := X2(t) + Y 2(t),
t ∈ [0, T ]:

R(t) = R(0) +

∫ t

0

(
2αX2(s) + Y 2(s) + 2αY 2(t) +X2(t)

)
ds

+

∫ t

0

(−2X(s)Y (s) + 2X(s)Y (s)) dW (s)

= x2
0 + y2

0 +

∫ t

0

(
1 + 2α)R(s) ds.
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Since the integral on the right hand side is a standard integral it follows from the funda-
mental theorem of calculus that for each ω ∈ Ω the function t 7→ R(t)(ω) is differentiable,
which results in

R′(t) = (1 + 2α)R(t) for all t ∈ [0, T ].

Thus, for each ω ∈ Ω the function gω(·) := R(·)(ω) solves the ordinary differential
equation

h′(t) = (1 + 2α)h(t) for all t ∈ [0, T ]

h(0) = x2
0 + y2

0 .

This ordinary differential equation has a unique solution h given by h(t) = h(0) exp((1 +
2α)t) for t ∈ [0, T ]. Since this solution is unique it follows

R(t)(ω) = h(t) for all t ∈ [0, T ] and ω ∈ Ω,

which shows that R does not depend on ω.

(c) Theorem 5.5.2 implies that there exists a constant α > 0 such that

E
[
‖(X(t), Y (t))‖22

]
6 α(1 + ‖(x0, y0)‖22) for all t ∈ [0, T ].

Thus, the moments E[X(t)], E[Y (t)] and E[X(t)Y (t)] exist and we also have∫ T

0

E
[
|X(s)|2

]
ds 6 α(1 + ‖(x0, y0)‖22)T,∫ T

0

E
[
|Y (s)|2

]
ds 6 α(1 + ‖(x0, y0)‖22)T.

It follows that the stochastic processes X, Y are in H . Taking expectation of the
stochastic differential equation solved by X we obtain

E[X(t)] = E

[
x0 + α

∫ t

0

X(s) ds−
∫ t

0

Y (s) dW (s)

]
= x0 + α

∫ t

0

E [X(s)] ds.

Thus, the function g(t) := E[X(t)] satisfies

g′(t) = αg(t) for all t ∈ [0, T ]

and therefore we obtain that E[X(t)] = x0 exp(αt) for all t ∈ [0, T ]. Analogously, we
derive E[Y (t)] = y0 exp(αt) for all t ∈ [0, T ].

Since X and Y are real-valued Itô processes it follows from Exercise 5 that

d(X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t) + Φ1(t)Φ2(t) dt

= Y (t)αX(t) dt+ Y 2(t) dW (t) +X(t)αY (t) dt−X2(t) dW (t)− Y (t)X(t) dt

=
(

2α− 1
)
X(t)Y (t) dt+

(
Y 2(t)−X2(t)

)
dW (t).
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Taking expectation from this stochastic differential equation results in

E[X(t)Y (t)] = x0y0(2α− 1)

∫ t

0

E[X(s)Y (s)] ds for all t ∈ [0,T] .

As above we obtain that E[X(t)Y (t)] = x0y0 exp((2α − 1)t) for all t ∈ [0, T ], which
enables us to calculate

Cov(X(t), Y (t)) = E[X(t)Y (t)]− E[X(t)]E[Y (t)] = x0y0e
2αt
(
e−t − 1

)
.

7. (a) Define the function

f : [0, T ]×R→ R f(t, x) := x exp

(
−1

2

∫ t

0

α(u) du

)
.

The function f is in C1,2 and we obtain

ft(t, x) = − 1
2α(t)f(t, x), fx(t, x) = exp

(
−1

2

∫ t

0

α(u) du

)
, fxx(t, x) = 0.

Since the functions α and σ are assumed to be continuous, the function

Φ: [0, T ]→ R, Φ(t) := 1
2σ(t) exp

(
1
2

∫ t

0

α(u) du

)
is also continuous, and thus satisfies∫ T

0

E
[
|Φ(s)|2

]
ds =

∫ T

0

|Φ(s)|2 ds 6 T sup
t∈[0,T ]

|Φ(s)|2 <∞.

Consequently, we can define a stochastic process (Yi(t) : t ∈ [0, T ]) for i = 1, 2 by

Yi(t) := xi +

∫ t

0

0︸︷︷︸
=:Υ(s)

ds+

∫ t

0

(
1
2σ(s) exp

(
1
2

∫ s

0

α(u) du

))
︸ ︷︷ ︸

=Φ(s)

dWi(s),

and Yi is seen to be an Itô process. Itô’s formula in Theorem 4.6.5 implies

df(t, Yi(t)) =
(
ft(t, Yi(t)) + fx(t, Yi(t))Υ(t) + 1

2fxx(t, Yi(t))Φ
2(t)

)
dt

+ fx(t, Yi(t))Φ(t) dWi(t)

=
(
− 1

2α(t)f(t, Yi(t))
)
dt+ 1

2σ(t) dWi(t).

Since Xi(t) = f(t, Yi(t)) for all t ∈ [0, T ] by definition of Xi, this shows that Xi is the
solution of the stochastic differential equation

dXi(t) = − 1
2α(t)Xi(t) dt+ 1

2σ(t) dWi(t) for all t ∈ [0, T ],

Xi(0) = xi.
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(b) Lemma 5.2.3 implies that for each t ∈ [0, T ] the random variable Yi(t) is normally
distributed with

Yi(t)
D
= N

(
xi,

∫ t

0

Φ2(s) ds

)
.

Since Xi(t) = f(t, Yi(t)) and f(t, x) is for fixed t ∈ [0, T ] just the multiplication of x by
a constant, it follows that Xi(t) is also normally distributed with

E [Xi(t)] = xi exp

(
− 1

2

∫ t

0

α(u) du

)
Var [Xi(t)] = exp

(
−
∫ t

0

α(u) du

)∫ t

0

Φ2(s) ds.

c) Define the function

f : [0, T ]×R2 → R f(t, x, y) := x2 + y2.

The function f is in C1,2,2 and we obtain

fx(t, x, y) = 2x, fy(t, x, y) = 2y, fxx(t, x, y) = fyy(t, x, y) = 2,

and all other derivatives vanish. The 2-dimensional process ((X1(t), X2(t)) : t ∈ [0, T ])
can be written in the form as in (4.7.21):(

X1(t)
X2(t)

)
=

(
x1

x2

)
+

∫ t

0

(
Υ1(s)
Υ2(s)

)
ds+

∫ t

0

(
Φ1,1(s) Φ1,2(s)
Φ2,1(s) Φ2,2(s)

)
d

(
W1(s)
W2(s)

)
:=

(
x1

x2

)
+

∫ t

0

(
− 1

2α(s)X1(s)
− 1

2α(s)X2(s)

)
ds+

∫ t

0

(
1
2σ(s) 0

0 1
2σ(s)

)
d

(
W1(s)
W2(s)

)
.

Since both X1 and X2 are real-valued Itô processes, the two-dimensional stochastic pro-
cess ((X1(t), X2(t)) : t ∈ [0, T ]) is an Itô process. Itô’s formula in Theorem 4.7.2 implies

d(R(t))

= df(t,X1(t), X2(t))

=
(

Υ1(t)fx(t,X1(t), X2(t)) + Υ2(t)fy(t,X1(t), X2(t)
)
dt

+ 1
2

(
Φ1,1(t)Φ1,1(t)fx,x(t,X1(t), X2(t)) + Φ2,2(t)Φ2,2(t)fy,y(t,X1(t), X2(t))

)
dt

+ Φ1,1(t)fx(t,X1(t), X2(t)) dW1(t) + Φ2,2(t)fy(t,X1(t), X2(t)) dW2(t)

=
(
− 1

2
α(t)X1(t)2X1(t)− 1

2α(t)X2(t)2X2(t)
)
dt+ 1

2

(
1
4σ

2(t)2 + 1
4σ

2(t)2
)
dt

+ 1
2σ(t)2X1(t) dW1(t) + 1

2σ(t)2X2(t) dW2(t)

=
(

1
2σ

2(t)− α(t)R(t)
)
dt+ σ(t)X1(t) dW1(t) + σ(t)X2(t) dW2(t).
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8. Since the stochastic differential equation looks very similar to the one which defines the
Ornstein-Uhlenbeck process in Definition 5.2.1 we try the same approach as in the proof
of Proposition 5.2.2. Define the function

f : [0, T ]×R→ R f(t, x) := e−atx.

The function f is in C1,2 and we obtain

ft(t, x) = −ae−atx, fx(t, x) = e−at, fxx(t, x) = 0.

The stochastic process (Y (t) : t ∈ [0, T ]) defined by

Y (t) : = r0 − b︸ ︷︷ ︸
=:Y (0)

+

∫ t

0

0︸︷︷︸
=:Υ(s)

ds+

∫ t

0

σeas︸︷︷︸
=:Φ(s)

dW (s),

is an Itô process. Consequently, Itô’s formula in Theorem 4.6.5 implies

df(t, Y (t)) =
(
ft(t, Y (t)) + fx(t, Y (t))Υ(t) + 1

2fxx(t, Y (t))Φ2(t)
)
dt

+ fx(t, Y (t))Φ(t) dW (t)

= −ae−atY (t) dt+ e−atσeatσ dW (t).

This means that

e−atY (t) = r0 − b+

∫ t

0

−ae−asY (s) ds+ σW (t) for all t ∈ [0,T] .

If we define R(t) := e−atY (t) + b for all t ∈ [0, T ], a simple rewriting shows

R(t) = r0 +

∫ t

0

−ae−asY (s) ds+ σW (t)

= r0 +

∫ t

0

−a(e−asY (s) + b− b) ds+ σW (t)

= r0 +

∫ t

0

−a(R(s)− b) ds+ σW (t).

Thus, the stochastic process R solves the stochastic differential equation.

A.6. Solution Chapter 6

1. (a) The random variable Y := W (T ) exp(−
∫ T

0
s2 dW (s)) can be written as

Y = W (T ) exp

(
1
2

∫ T

0

s4 ds

)
exp

(
−
∫ T

0

s2 dW (s)− 1
2

∫ T

0

s4 ds

)

= W (T ) exp
(
T 5

10

)
exp

(
−
∫ T

0

s2 dW (s)− 1
2

∫ T

0

s4 ds

)
. (1.6.25)



Appendix A. Solutions 139

Define the stochastic process L := (L(t) : t ∈ [0, T ]) by

L(t) := exp

(
−
∫ t

0

s2 dW (s)− 1
2

∫ t

0

s4 ds

)
.

Due to

P

(∫ T

0

s4(s) ds <∞

)
= P

(
T 5

5 <∞
)

= 1,

E

[
exp

(
1
2

∫ T

0

s4 ds

)]
= exp

(
T 5

10

)
<∞,

Novikov’s Theorem 6.1.8 implies that L is a martingale, and thus we can conclude from
Girsanov’s Theorem 6.1.3 that

Q : A → [0,∞], Q(A) :=

∫
A

L(T )(ω)P (dω) = EP [1AL(T )]

is a probability measure and

W̃(t) := W (t) +

∫ t

0

X(s) ds = W (t) +

∫ t

0

s2 ds = W (t) + t3

3 (1.6.26)

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the probability measure Q. By
Lemma 6.1.5, equality (1.6.25) yields

EP [Y ] = exp
(
T 5

10

)
EP [W (T )L(T )] = exp

(
T 5

10

)
EQ[W (T )].

By solving for W in (1.6.26) we obtain

exp
(
T 5

10

)
EQ[W (T )] = exp

(
T 5

10

)
EQ

[
W̃(T )− T 3

3

]
,= − exp

(
T 5

10

)
T 3

3 ,

and thus E[Y ] = − exp
(
T 5

10

)
T 3

3 .

(b) Just replace s2 by −s2 in (a) and observe that (−s2)2 = s4. Then one obtains that

E

[
W (T ) exp

(∫ T

0

s2 dW (s)

)]
= exp

(
T 5

10

)
T 3

3 .

2. (a) We first find the stochastic differential equation which is satisfied by X. For that
purpose, define the function

f : R→ R f(x) := ex.

The function f is in C2 and we obtain

fx(t, x) = ex, fxx(x) = ex.
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Itô’s formula in Theorem 4.5.1 implies

dX(t) = df(W (t)) = fx(W (t)) dW (t) +
1

2
fxx(W (t)) dt

= X(t) dW (t) +
1

2
X(t) dt. (1.6.27)

Assume that there exists an adapted stochastic process (Y (t) : t ∈ [0, T ]) such that

P

(∫ T

0

Y 2(s) ds <∞

)
= 1,

and that

L(t) := exp

(
−
∫ t

0

Y (s) dW (s)− 1
2

∫ t

0

Y 2(s) ds

)
defines a martingale (L(t) : t ∈ [0, T ]). Then Girsanov’s Theorem 6.1.3 implies

Q : A → [0,∞], Q(A) :=

∫
A

L(T )(ω)P (dω) = EP [1AL(T )]

is a probability measure and

W̃(t) := W (t) +

∫ t

0

Y (s) ds

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the measure Q. It follows from
equation (1.6.27) that

dX(t) =
1

2
X(t) dt+X(t) dW (t)

=

(
1

2
X(t)−X(t)Y (t)

)
dt+X(t) d W̃(t).

Since W̃ is a Brownian motion under Q the stochastic process X is a martingale under
Q if the dt-terms vanish and if X is in H , where expectation is taken with respect to
the probability measure Q. The dt-terms vanishes if

Y (t) =
1

2
for all t ∈ [0, T ].

For this choice of the stochastic process (Y (t) : t ∈ [0, T ]) we have W̃(t) = W (t) + 1
2 t for

all t ∈ [0, T ]. Solving for W we obtain∫ T

0

EQ

[
|X(s)|2

]
ds =

∫ T

0

EQ
[

exp(2 W̃(s)− s)
]
ds

=

∫ T

0

e−sEQ
[

exp(2 W̃(s))
]
ds

=

∫ T

0

e−se2s ds = eT − 1 <∞.
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Consequently, we obtain X ∈H under the probability measure Q. Since

dX(t) = X(t) d W̃(t) for all t ∈ [0, T ],

and since W̃ is a Brownian motion under Q, it follows from Theorem 4.3.1 that the
stochastic process X is a martingale under Q.

Finally, we have to check that the stochastic process (Y (t) : t ∈ [0, T ]) for Y (t) = 1
2

satisfies the conditions assumed above:∫ T

0

Y 2(s) ds =

∫ T

0

1
4 ds <∞ P -a.s.,

EP

[
exp

(
1
2

∫ T

0

Y 2(s) ds

)]
= exp

(
1
8T
)
<∞. (Novikov’s condition)

Thus, our assumptions in the beginning are verified and we can conclude that X is a
martingale under the measure Q.

(b) Since W̃ is a Brownian motion under Q it follows from Lemma 3.3.4 that

EQ
[
(W (t) + 1

2 t)
6
]

= EQ

[
(W̃(t))6

]
= 15t3 for all t ∈ [0, T ].

3. For each t ∈ [0, 1] define

X(t) :=

{
0, if t ∈ [0, 1

2 ),

W ( 1
2 ), if t ∈ [ 1

2 , 1].

It follows that (X(t) : t ∈ [0, 1]) is an adapted, stochastic process satisfying

P

(∫ 1

0

X2(s) ds <∞
)

= P
(

1
2W

2( 1
2 ) <∞

)
= 1,

E

[
exp

(
1
2

∫ 1

0

X2(s) ds

)]
= E

[
exp

(
1
4W

2( 1
2 )
)]

= 1√
π

∫
R

e
1
4u

2

e−u
2

du =
√

4
6 <∞.

Novikov’s condition in Theorem 6.1.8 implies that

L(t) : = exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
=

{
1, if t ∈ [0, 1

2 ),

exp
(
−W

(
1
2

) (
W (t)−W ( 1

2 )
)
− 1

2

(
t− 1

2

)
W 2( 1

2 )
)
, if t ∈ ( 1

2 , t],

=

{
1, if t ∈ [0, 1

2 ),

exp
(
−W

(
1
2

)
W (t)− 1

2

(
t− 5

2

)
W 2( 1

2 )
)
, if t ∈ ( 1

2 , t],
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defines a martingale (L(t) : t ∈ [0, 1]) under the measure P . From Girsanov’s Theorem
6.1.3 we can conclude that

Q : A → [0,∞], Q(A) := EP [1AL(1)]

is a probability measure and that

W̃(t) := W (t) +

∫ t

0

X(s) ds =

{
W (t), if t ∈ [0, 1

2 ),

W (t) + (t− 1
2 )W ( 1

2 ), if t ∈ [ 1
2 , 1],

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the measure Q.

If you wander how to find X, see the solution to Exercise 6.3.2.

4. Let (U(t) : t ∈ [0, T ]) denote the solution of the given stochastic differential equation.

(a) For each t ∈ [0, T ] define

X(t) := a−r
b .

Then (X(t) : t ∈ [0, T ]) is an adapted stochastic process satisfying

P

(∫ T

0

X2(s) ds <∞

)
= P

(
T
(
a−r
b

)2
<∞

)
= 1.

For each t ∈ [0, T ] define

L(t) : = exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

(X(s))
2
ds

)
= exp

(
−a−rb W (t)− 1

2

(
a−r
b

)2
t
)
.

Corollary 3.2.4 guarantees that (L(t) : t ∈ [0, T ]) is a martingale. Consequently, Gir-
sanov’s Theorem 6.1.3 implies that

Q : A → [0,∞], Q(A) := EP [1AL(T )]

is a probability measure and

W̃(t) := W (t) +

∫ t

0

X(s) ds = W (t) + a−r
b t (1.6.28)

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the measure Q. According to
Proposition 5.3.2, the stochastic process (U(t) : t ∈ [0, T ]) is of the form

U(t) = u0 exp
(

(a− 1
2b

2)t+ bW (t)
)

for all t ∈ [0, T ].
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By applying (1.6.28) we can represent U as

U(t) = u0 exp
(
(a− 1

2b
2)t+ bW (t)

)
= u0 exp

(
(a− 1

2b
2)t+ b W̃(t)− (a− r)t)

)
= u0 exp

(
(r − 1

2b
2)t+ b W̃(t)

)
for all t ∈ [0, T ].

(b) For each t > 0 the random variable Û(t) is FW
t -measurable since it is the image of

the continuous function

f : R→ R, f(x) = e−rtu0 exp
(
(a− 1

2b
2)t+ bx

)
applied to the FW

t -measurable random variable W (t). For each t ∈ [0, T ] we have

EQ

[∣∣∣Û(t)
∣∣∣] = e−rtEQ

[
|u0)| exp

(
(r − 1

2b
2)t+ b W̃(t)

)]
= e−rtu0 exp

(
(r − 1

2b
2)t
)
EQ

[
exp

(
b W̃(t)

)]
= e−rtu0 exp

(
(r − 1

2b
2)t
)

exp
(

1
2b

2t
)

<∞.

For each 0 6 s 6 t we obtain

EQ[Û(t)|Fs] = e−rtEQ

[
u0 exp

(
(r − 1

2b
2)t+ b W̃(t)

)
|Fs

]
= e−

1
2 b

2tu0EQ

[
exp

(
b(W̃(t)− W̃(s) + W̃(s))

)
|Fs

]
= e−

1
2 b

2tu0 exp
(
b W̃(s)

)
EQ

[
exp

(
b(W̃(t)− W̃(s))

)]
= e−

1
2 b

2tu0 exp
(
b W̃(s)

)
exp

(
1
2b

2(t− s)
)

= u0 exp
(
b W̃(s) + (r − 1

2b
2)s
)
e−rs

= Û(s).

Easier but less educational is to cite Corollary 3.2.4.

(c) By using the representation of U(T ) derived in (a) and the fact that W̃ is a Brownian
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motion under Q, we obtain

EQ[C] = EQ

[
1{

u0 exp
(

(r− 1
2 b

2)T+b W̃(T )
)}

>K

]
= Q

(
u0 exp

(
(r − 1

2b
2)T + b W̃(T )

)
> K

)
= Q

(
W̃(T ) >

1

b

(
ln
K

u0
− (r − 1

2b
2)T

))
= Q

(
W̃(1) >

1

b
√
T

(
ln
K

u0
− (r − 1

2b
2)T

))
= FN

(
1

b
√
T

(
ln
u0

K
+ (r − 1

2b
2)T
))

,

where FN denotes the probability distribution function of the standard normal distribu-
tion.

5. By defining for each t ∈ [0, T ]

X(t) := exp(W (t))1{|W (t)|61}

we obtain an adapted stochastic process (X(t) : t ∈ [0, T ]). Since |X(t)| 6 exp(1) P -a.s.
for all t ∈ [0, T ] we conclude

P

(∫ T

0

X2(s) ds <∞

)
= 1,

E

[
exp

(
1
2

∫ T

0

X2(s) ds

)]
6 exp

(
1
2e

2T
)
<∞.

Novikov’s condition in Theorem 6.1.8 implies that

L(t) : = exp

(
−
∫ t

0

X(s) dW (s)− 1
2

∫ t

0

X2(s) ds

)
= exp

(
−
∫ t

0

exp(W (s))1{|W (s)|61} ds− 1
2

∫ t

0

exp(2W (s))1{|W (s)|61} ds

)
defines a martingale (L(t) : t ∈ [0, T ]). Girsanov’s Theorem 6.1.3 yields that

Q : A → [0,∞], Q(A) := EP [1AL(T )]

is a probability measure and

W̃(t) := W (t) +

∫ t

0

X(s) ds = W (t) +

∫ t

0

eW (s)1{|W (s)|61} ds

defines a Brownian motion (W̃(t) : t ∈ [0, T ]) under the measure Q.
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(b) Since W̃ is a Brownian motion under Q it follows from Lemma 3.3.4 that

EQ

[∣∣∣∣W (t) +

∫ t

0

eW (s)1{|W (s)|61} ds

∣∣∣∣6
]

= EQ

[
(W̃(t))6

]
= 15t3.

(c) Proposition 3.3.1 enables us to conclude

EP [W (τ)] = −1P (W (τ) = −1) + 1P (W (τ) = 1) = −1
1

2
+ 1

1

2
= 0.

Thus, we obtain

EP [W̃(τ)] = EP

[
W (τ) +

∫ τ

0

eW (s)1{|W (s)|61} ds

]
= EP

[∫ τ

0

eW (s)1{|W (s)|61} ds

]
= EP

[∫ τ

0

eW (s) ds

]
. (1.6.29)

On the other hand Itô’s formula in Theorem 4.5.1 yields

eW (t) = 1 +

∫ t

0

eW (s) dW (s) + 1
2

∫ t

0

eW (s) ds, (1.6.30)

which can be written as∫ τ

0

eW (s) ds = 2eW (τ) − 2− 2

∫ τ

0

eW (s) dW (s). (1.6.31)

Define M(t) :=
∫ t

0
eW (s) dW (s) for all t > 0. Since Proposition 3.2.1 yields∫ T

0

EP

[
e2W (s)

]
ds =

∫ T

0

e2s ds <∞,

it follows that (eW (t) : t ∈ [0, T ]) ∈ H (for each T > 0) and thus, M is a martingale
according to Theorem 4.3.1. The optional sampling Theorem 2.3.1 implies

0 = EP [M(0)] = EP [M(t ∧ τ)] for all t > 0.

Moreover, we have M(t ∧ τ)→M(τ) P -a.s. as t→∞ and by using (1.6.30) we obtain

|M(t ∧ τ)| =
∣∣∣∣eW (t∧τ) − 1− 1

2

∫ t∧τ

0

eW (s) ds

∣∣∣∣
6
∣∣∣eW (t∧τ)

∣∣∣+ 1 + 1
2

∣∣∣∣∫ t∧τ

0

eW (s) ds

∣∣∣∣ 6 1 + 1 + 1
2 (t ∧ τ) 6 2 + 1

2τ.



146 A.6. Solution Chapter 6

Since Proposition 3.3.1 guarantees EP [τ ] <∞, Lebesgue’s dominated convergence theo-
rem implies

EP [M(τ)] = EP [ lim
t→∞

M(t ∧ τ)] = lim
t→∞

EP [M(t ∧ τ)] = 0.

Thus, we have
∫ τ

0
eW (s) dW (s) = 0, and taking expectation in (1.6.31) results in

EP

[∫ τ

0

eW (s) ds

]
= 2 1

2

(
e+1 + e−1

)
− 2,

which together with (1.6.29) implies

EP [W̃(τ)] =
(
e+1 + e−1

)
− 2.

(d) Corollary 3.2.4 guarantees that

M(t) := exp
(

W̃(t)− 1
2 t
)

defines a martingale (M(t) : t > 0) under Q. Thus, the optional sampling Theorem 2.3.1
implies

1 = EQ[M(0)] = EQ[M(t ∧ σ)] for all t > 0. (1.6.32)

Moreover, we have M(t ∧ σ)→M(σ) Q-a.s. as t→∞ and it follows that

|M(t ∧ σ)| 6 exp
(

W̃(t ∧ σ)− 1
2 t ∧ σ

)
6 exp

(
W̃(t ∧ σ)

)
6 exp(1),

EQ[exp(1)] = exp(1) <∞.

By using (1.6.32), Lebesgue’s theorem of dominated convergence implies

EQ[M(σ)] = EQ[ lim
t→∞

M(t ∧ σ)] = lim
t→∞

EQ[M(t ∧ σ)] = 1. (1.6.33)

On the other hand, since W̃(σ) = 1 we have

EQ[M(σ)] = EQ

[
e1− 1

2σ

]
,

which together with equation (1.6.33) result in

EQ

[
e−σ/2

]
=

1

e
.
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A.7. Solution Chapter 7

1. (a) If we define Φ(s) = 1 for all s ∈ [0, T ] it follows

W (T ) =

∫ T

0

dW (s) = E[X] +

∫ T

0

Φ(s) dW (s).

The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since it is deterministic
and in H since ∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

ds = T <∞.

(b) By partial integration, see Lemma 5.2.4, we obtain∫ T

0

s dW (s) = TW (T )−
∫ T

0

W (s) ds.

Consequently, if we define Φ(s) = T − s for all s ∈ [0, T ] we obtain∫ T

0

W (s) ds = TW (T )−
∫ T

0

s dW (s) =

∫ T

0

(T − s) dW (s) = E[X] +

∫ T

0

Φ(s) dW (s).

The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since it is deterministic
and in H since ∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

(T − s)2 ds = 1
3T

3 <∞.

(c) Define the function

f : R→ R f(x) := x2.

The function f is in C2 and we obtain that

fx(x) = 2x, fxx(x) = 2.

Itô’s formula in Theorem 4.5.1 implies

d(W 2(t)) = fx(W (t)) dW (t) +
1

2
fxx(W (t)) dt = 2W (t) dW (t) +

1

2
2 dt.

Consequently, if we define Φ(s) = 2W (s) for all s ∈ [0, T ] we obtain

W 2(T ) = T +

∫ T

0

2W (s) dW (s) = E[X] +

∫ T

0

Φ(s) dW (s).
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The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since Φ(s) = f(W (s)) for
every s ∈ [0, T ] for the continuous function f : R→ R, f(x) = 2x, and it is in H since∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

E[|2W (s)|2] ds = 4

∫ T

0

s ds = 2T 2 <∞.

(d) Define the function

f : [0, T ]×R→ R f(t, x) := tx2.

The function f is in C1,2 and we obtain

ft(t, x) = x2, fx(t, x) = 2tx, fxx(t, x) = 2t.

Itô’s formula in Theorem 4.5.6 implies

df(t,W (t)) =
(
ft(t,W (t)) + 1

2fxx(t,W (t))
)
dt+ fx(t,W (t)) dW (t)

= (W 2(t) + t) dt+ 2tW (t) dW (t).

Consequently, if we define Φ(s) = 2(T − s)W (s) for all s ∈ [0, T ], part (c) implies∫ T

0

W 2(s) ds = TW 2(T )−
∫ T

0

s ds−
∫ T

0

2sW (s) dW (s)

= T

(
T +

∫ T

0

2W (s) dW (s)

)
− 1

2T
2 −

∫ T

0

2sW (s) dW (s)

= 1
2T

2 +

∫ T

0

2(T − s)W (s) dW (s)

= E[X] +

∫ T

0

Φ(s) dW (s).

The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since Φ(s) = f(W (s)) for
every s ∈ [0, T ] for the continuous function f : R→ R, f(x) = 2(T − s)x, and it is in H
since ∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

4(T − s)E[|W (s)|2] ds =

∫ T

0

4(T − s)2s ds <∞.

(e) Define the function

f : R→ R f(x) := x3.

The function f is in C2 and we obtain

fx(x) = 3x2, fxx(x) = 6x.
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Itô’s formula in Theorem 4.5.1 implies

d(W 3(t)) = fx(W (t)) dW (t) +
1

2
fxx(W (t)) dt

= 3W 2(t) dW (t) + 3W (t) dt.

Consequently, if we define Φ(s) = 3(T − s) + 3W 2(s) for all s ∈ [0, T ] part (b) implies

W (T )3 =

∫ T

0

3W (s) ds+

∫ T

0

3W 2(s) dW (s)

=

∫ T

0

3
(

(T − s) +W 2(s)
)
dWs)

= E[W 3(T )] +

∫ T

0

Φ(s) dW (s).

The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since Φ(s) = f(W (s)) for
every s ∈ [0, T ] for the continuous function f : R→ R, f(x) = 3(T − s) + 3x2, and it is
in H since∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

E
[
9(T − s)2 + 18(T − s)W 2(s) + 9W 4(s)

]
ds

=

∫ T

0

(
9(T − s)2 + 18(T − s)s+ 27s2

)
ds <∞.

2. (a) By Jensen’s inequality for conditional expectation one obtains

E[|M(T )|2] = E
[
|E[Z|FT ]|2

]
6 E

[
E[|Z|2 |FT ]

]
= E[|Z|2] <∞.

(b) (i) Since (W 2(t) − t : t ∈ [0, T ]) is a martingale according to Corollary 3.2.4, we
obtain for every 0 6 t 6 T :

M(t) = E
[
W 2(T )− T + T |Ft

]
= E

[
W 2(T )− T |Ft

]
+ T = W 2(t)− t+ T.

Define Φ(s) = 2W (s) for each s ∈ [0, T ]. Part (c) of Exercise 7.3.1 yields for each t ∈ [0, T ]

M(t) = W 2(t)− t+ T = t+

∫ t

0

2W (s) dW (s)− t+ T = E[M(0)] +

∫ t

0

Φ(s) dW (s).

The stochastic process (Φ(s) : s ∈ [0, T ]) is {FWt }t>0-adapted since Φ(s) = f(W (s)) for
every s ∈ [0, T ] for the continuous function f : R→ R, f(x) = 2x, and it is in H since∫ T

0

E[|Φ(s)|2] ds =

∫ T

0

4s ds = 2T 2 <∞.

(ii) Part (d) in Exercise 2.5.3 guarantees that (W (t)3−3tW (t) : t ∈ [0, T ]) is a martingale.
Together with the fact that W is also a martingale this implies

M(t) = E
[
W 3(T )− 3TW (T ) + 3TW (T )|Ft

]
= W 3(t)− 3tW (t) + 3TW (t).
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We define Φ(s) = 3(T − s) + 3W 2(s) for all s ∈ [0, T ]. Part (e) of Exercise 7.3.1 yields
for each t ∈ [0, T ]

M(t) = W 3(t) + 3(T − t)W (t)

=

∫ t

0

3
(

(t− s) +W 2(s)
)
dW (s) + 3(T − t)W (t)

=

∫ t

0

3
(

(T − s) +W 2(s)
)
dW (s)

= E[M(0)] +

∫ t

0

Φ(s) dW (s).

In Part (e) of Exercise 7.3.1 it is shown that the stochastic process (Φ(s) : s ∈ [0, T ]) is
{FWt }t>0-adapted and in H .

3. a) Theorem 4.3.1 implies for every 0 6 s 6 t that

E[X(t)|Fs] = X(0) + E

[∫ t

0

Υ(u) du

∣∣∣∣Fs

]
+ E

[∫ t

0

Φ(u) dW (u)

∣∣∣∣Fs

]
= X(0) +

∫ s

0

Υ(u) du+

∫ s

0

Φ(u) dW (u) + E

[∫ t

s

Υ(u) du

∣∣∣∣Fs

]
= X(s) + E

[∫ t

s

Υ(u) du

∣∣∣∣Fs

]
.

Since X is a martingale we obtain

E

[∫ t

s

Υ(u) du|FW
s

]
= 0 for all 0 6 s 6 t.

Interchanging the conditional expectation and integration results in∫ t

s

E
[
Υ(u)|FW

s

]
du = 0 for all 0 6 s 6 t.

By differentiating with respect to t we derive that

E[Υ(t)|FW
s ] = 0 for all 0 6 s 6 t.

(b) For t fixed and sn ↗ t it follows from (a) and the hint that

Υ(t) = E
[
Υ(t)|FW

t

]
= lim
sn↑t

E
[
Υ(t)|FW

sn

]
= 0.



B
FAQ

Symbols

N {1, 2, 3, . . . }
N0 {0, 1, 2, 3, . . . }
R real numbers
R+ [0,∞)
N(0, s2) normal distribution with expectation 0 and variance s2

E[X] expectation of the random variable X (with respect to the standard measure P )
Var[X] variance of the random variable X (with respect to the standard measure P )
Cov(X,Y ) covariance of two random variables X and Y
N(a, V ) normal distribution with expectation a ∈ Rn and covariance matrix V ∈ Rn×n
a ∧ b min{a, b}
a ∨ b max{a, b}
∂
∂xi

differential operator with respect to the i-th argument

(a)+ max{a, 0}
aT transpose of a vector a ∈ Rn
(cij)

n
i,j=1 a matrix in Rn×n with entries cij (i-th row, j-th column)

P(Ω) {A ⊆ Ω} = Powerset

B(Rd) Borel σ-algebra in Rd

Idd identity matrix in Rd×d

Notations

something P -a.s. P (something) = 1 (here P is a probability measure)
X random variable (r.v.) X : Ω→ R is A -measurable
f : [0, T ]→ R a deterministic function f(t) is a fixed number in R for each t ∈ [0, T ]
(Y (t) : t ∈ [0, T ]) a stochastic process Y (t) : Ω→ R is a random variable for each t ∈ [0, T ]
A:=B A is defined by B
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X
D
= Y random variables X and Y have the same distribution

Conventions

X,Y,S,Υ, Φ random variables or stochastic processes (usually capital letters)
g,f,h deterministic functions (usually small letters)
α, β, µ,σ sometimes constants, sometimes deterministic functions
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barrier option, 79
Brownian motion

definition, 21

complete model, 91
contingent claim

attainable, 91

Doob’s maximal inequality, 13

equal in distribution, 24
Euler-Maruyama method, 70

filtration
augmented, 5
definition, 3
generated, 4
usual conditions, 5

fundamental theorem
first, 83
second, 92

geometric Brownian motion, 64
Girsanov’s Theorem, 77

Hölder continuity, 26

importance sampling, 79
increments

independent, 21
stationary, 22

Itô process, 47
Itô’s formula, 45, 49, 52
Itô’s isometry, 40
Itô’s representation theorem, 90

Kolmogorov’s continuity theorem, 26

martingale, 11
exponential, 50
local, 15
sub, super, 11

martingale measure, 83
martingale representation theorem, 91
mean rate of return, 66

normally distributed, 120
Novikov’s condition, 80

optional sampling theorem, 14
Ornstein-Uhlenbeck process, 63

product formula, 53
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Radon-Nikodym derivative, 77
Riemann integral, 33
Riemann-Stieltjes integral, 34

share prices
discounted, 83

stochastic differential equation, 60
stochastic process

adapted, 4
definition, 1
indistinguishable, 3
measurable, 6
modification, 3
simple, 35

stopping time, 6
localising, 43
prior σ-algebra, 14

trading strategy
definition, 67
replicating, 91
self-financing, 67
value process of, 67

uniformly integrable, 13

variation
total, 27

volatility process, 66
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