Unification Algorithms

Maribel Fernández
King's College London

December 2007

Unification algorithms have become popular in recent years, due to their key role in the fields of logic programming and theorem proving.

Logic Programming Languages

- Use logic to express knowledge, describe a problem.
- Use inference to compute a solution to a problem.

Prolog is one of the most popular logic programming languages. Prolog $=$ Clausal Logic + Resolution + Control Strategy

- Knowledge-based programming: the program just describes the problem.
- Declarative programming: the program says what should be computed, rather than how it is computed (although this is not true for impure languages).
- Precise and simple semantics.
- The same program can be used in many different ways, thanks to the use of UNIFICATION.

Example:
SWI Prolog (Free Software Prolog compiler) developed at the University of Amsterdam, http://www.swi-prolog.org/

Unification Algorithms in Prolog

Domain of computation:

Herbrand Universe: set of terms over a universal alphabet of

- variables: X, Y, \ldots
- and function symbols (f, g, h, \ldots) with fixed arities (the arity of a symbol is the number of arguments associated with it).
A term is either a variable, or has the form $f\left(t_{1}, \ldots, t_{n}\right)$ where f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms.

Example: $f(f(X, g(a)), Y)$ where a is a constant, f a binary function, and g a unary function.

In Prolog no specific alphabet is asssumed, the programmer can freely choose the names of functions (but there are some built-in functions with specific meanings, e.g. arithmetic operations).

Prolog Programs

Prolog programs are sets of definite clauses (or Horn clauses). A definite clause is a disjunction of literals with at most one positive literal.
A literal is an atomic formula or a negated atomic formula. To build atomic formulas we use terms and predicate symbols (with fixed arities):
If p is a predicate of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula, or simply an atom.
Example:
value(number (1), 1), \neg raining
are literals, where we use the binary predicate value and 0-ary predicate raining; number is a unary function.

A definite clause $P_{1} \vee \neg P_{2} \vee \ldots \vee \neg P_{n}$ (where P_{1} is the only positive literal) will be written:

$$
P_{1}:-P_{2}, \ldots, P_{n} .
$$

and we read it as: " P_{1} if P_{2} and \ldots and P_{n} "
If the clause contains just P_{1} and no negative atoms, then we write

$$
P_{1}
$$

Both kinds of clauses are called Program Clauses, and the second kind is called a Fact.
If the clause contains only negative literals, we call it a Goal or Query and write

$$
:-P_{2}, \ldots, P_{n}
$$

based(prolog,logic).
based(haskell,functions).
likes(claire,functions).
likes(max,logic).
likes(X,P) :- based(P,Y), likes(X,Y).
The first four clauses are facts, the last clause is a rule. The following is a goal:
:- likes(Z,prolog).

A list of program clauses in Prolog can be seen as the definition of a series of predicates. For instance, in the program
based(prolog,logic).
based(haskell, maths).
likes (max,logic).
likes(claire,maths).
likes(X,P) :- based(P,Y), likes(X,Y).
we are defining the predicates likes and based.

In the program
append([],L,L).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
the atomic formula append ($\mathrm{S}, \mathrm{T}, \mathrm{U}$) expresses that the result of appending the list T onto the end of list S is the list U.
Any term of the form [X|T] denotes a list where the first element is X (the head of the list) and T is the rest of the list (also called the tail of the list). The constant [] denotes the empty list. We abbreviate [X|[Y|[]]] as [X,Y].
Goals such as:
:- append([0],[1,2],U)
:- append(X,[1,2],U)
:- append([1,2],X,[0])
are questions to be solved using the program.

Values are also terms, that are associated to variables by means of automatically generated substitutions, called most general unifiers.

Definition: A substitution is a partial mapping from variables to terms, with a finite domain. We denote a substitution σ by: $\left\{X_{1} \mapsto t_{1}, \ldots, X_{n} \mapsto t_{n}\right\} . \quad \operatorname{dom}(\sigma)=\left\{X_{1}, \ldots, X_{n}\right\}$.

A substitution σ is applied to a term t or a literal / by simultaneously replacing each variable occurring in $\operatorname{dom}(\sigma)$ by the corresponding term. The resulting term is denoted $t \sigma$.

Example:

Let $\sigma=\{X \mapsto g(Y), Y \mapsto a\}$ and $t=f(f(X, g(a)), Y)$.
Then

$$
t \sigma=f(f(g(Y), g(a)), a)
$$

Solving Queries in Prolog - Example

To solve the query :- append ([0], [1, 2], U) we use the clause append([X|L],Y,[X|Z]) :- append(L, Y,Z).

The substitution
$\{\mathrm{X} \mapsto 0, \mathrm{~L} \mapsto[], \mathrm{Y} \mapsto[1,2], \mathrm{U} \mapsto[0 \mid \mathrm{Z}]\}$ unifies append ([X|L], $\mathrm{Y},[\mathrm{X} \mid \mathrm{Z}]$) with the query append ([0], $[1,2], \mathrm{U}$), and then we have to prove that append([]$,[1,2], Z)$ holds.
Since we have a fact append ([],L,L) in the program, it is sufficient to take $\{\mathrm{Z} \mapsto[1,2]\}$.
Thus, $\{\mathrm{U} \mapsto[0,1,2]\}$ is an answer substitution.
This method is based on the Principle of Resolution.

Operational Semantics of Prolog

Unification is a key step in the Principle of Resolution.

History:

The unification algorithm was first sketched by Jacques Herbrand in his thesis (in 1930).

In 1965 Alan Robinson introduced the Principle of Resolution and gave a unification algorithm.

Around 1974 Robert Kowalski, Alain Colmerauer and Philippe Roussel defined and implemented a logic programming language based on these ideas (Prolog).

The version of the unification algorithm that we present is based on work by Martelli and Montanari (1982).

Unification

A unification problem \mathcal{U} is a set of equations between terms containing variables.

$$
\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}
$$

A solution to \mathcal{U}, also called a unifier, is a substitution σ such that when we apply σ to all the terms in the equations in \mathcal{U} we obtain syntactical identities: for each equation $s_{i}=t_{i}$, the terms $s_{i} \sigma$ and $t_{i} \sigma$ coincide.
The most general unifier of \mathcal{U} is a unifier σ such that any other unifier ρ is an instance of σ.

Unification Algorithm

Martelli and Montanari's algorithm finds the most general unifier for a unification problem if a solution exists, otherwise it fails, indicating that there are no solutions.

To find the most general unifier for a unification problem, the algorithm simplifies the set of equations until a substitution is generated.

The way equations are simplified is specified by a set of transformation rules, which apply to sets of equations and produce new sets of equations or a failure.

Unification Algorithm

Input: A finite set of equations: $\left\{s_{1}=t_{1}, \ldots, s_{n}=t_{n}\right\}$
Output: A substitution (mgu for these terms), or failure.

Transformation Rules:

Rules are applied non-deterministically, until no rule can be applied or a failure arises.
(1) $f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right), E \quad \rightarrow \quad s_{1}=t_{1}, \ldots, s_{n}=t_{n}, E$
(2) $f\left(s_{1}, \ldots, s_{n}\right)=g\left(t_{1}, \ldots, t_{m}\right), E \rightarrow$ failure
$X=X, E \rightarrow E$
(4)
$t=X, E \quad \rightarrow \quad X=t, E \quad$ if t is not a variable
(5)
(6)

$$
X=t, E \quad \rightarrow \quad X=t, E\{X \mapsto t\} \quad \text { if }
$$

$$
\begin{equation*}
X \text { not in } t \text { and } X \text { in } E \tag{6}
\end{equation*}
$$

$X=t, E \rightarrow$ failure if X in t and $X \neq t$

- We are working with sets of equations, therefore their order in the unification problem is not important.
- The test in case (6) is called occur-check, e.g. $X=f(X)$ fails. This test is time consuming, and for this reason in some systems it is not implemented.
- In case of success, by changing in the final set of equations the " $=$ " by \mapsto we obtain a substitution, which is the most general unifier (mgu) of the initial set of terms.
- Cases (1) and (2) apply also to constants: in the first case the equation is deleted and in the second there is a failure.

Examples:

We start with $\{f(a, a)=f(X, a)\}$:

- using rule (1) it rewrites to $\{a=X, a=a\}$,
- using rule (4) we get $\{X=a, a=a\}$,
- using rule (1) again we get $\{X=a\}$.

Now no rule can be applied, the algorithm terminates with the most general unifier $\{X \mapsto a\}$

In the example with append, we solved the unification problem:
$\{[X \mid L]=[0], Y=[1,2],[X \mid Z]=U\}$
Recall that the notation [|] represents a binary list constructor (the arguments are the head and the tail of the list).
[0] is a shorthand for [0|[]], and [] is a constant.
We now apply the unification algorithm to this set of the equations:
using rule (1) in the first equation, we get:
$\{\mathrm{X}=0, \mathrm{~L}=[], \mathrm{Y}=[1,2],[\mathrm{X} \mid \mathrm{Z}]=\mathrm{U}\}$
using rule (5) and the first equation we get:
$\{\mathrm{X}=0, \mathrm{~L}=[], \mathrm{Y}=[1,2],[0 \mid \mathrm{Z}]=\mathrm{U}\}$
using rule (4) and the last equation we get:
$\{\mathrm{X}=0, \mathrm{~L}=[], \mathrm{Y}=[1,2], \mathrm{U}=[0 \mid \mathrm{Z}]\}$
and the algorithm stops.
Therefore the most general unifier is:
$\{\mathrm{X} \mapsto 0, \mathrm{~L} \mapsto[], \mathrm{Y} \mapsto[1,2], \mathrm{U} \mapsto[0 \mid \mathrm{Z}]\}$

The Principle of Resolution

In order to solve a query
:- A_{1}, \ldots, A_{n}
with respect to a set P of program clauses, resolution seeks to show that $P, \neg A_{1}, \ldots, \neg A_{n}$ leads to a contradiction. It is based on refutation.

A contradiction is obtained when a literal and its negation are stated at the same time: $A, \neg A$.

If a contradiction does not arise directly, new literals are derived by resolution using the clauses, until a contradiction arises (or the search continues forever). The derived literals are called resolvents.

Computing Resolvents with SLD-Resolution:

If we have a query
and a program clause

$$
\begin{aligned}
:- & \mathrm{a}\left(u_{1}, \ldots, u_{n}\right) \\
& \mathrm{a}\left(t_{1}, \ldots, t_{n}\right):-S_{1}, \ldots, S_{m}
\end{aligned}
$$

such that $\mathrm{a}\left(t_{1}, \ldots, t_{n}\right)$ and $\mathrm{a}\left(u_{1}, \ldots, u_{n}\right)$ are unifiable with mgu σ, then we obtain a resolvent: $:-S_{1} \sigma, \ldots, S_{m} \sigma$.

In general, if the query has several atoms
:- A_{1}, \ldots, A_{k}
the resolvent is computed between the first atom in the goal $\left(A_{1}\right)$ and a program clause, and we obtain
$:-S_{1} \sigma, \ldots, S_{m} \sigma, A_{2} \sigma, \ldots, A_{k} \sigma$
Note that when we compute a resolvent using a fact ($m=0$), the atom disappears from the query.
An empty resolvent indicates a contradiction, denoted by \diamond. The substitution that has been computed is the answer to the original goal. The idea is to continue generating resolvents until we obtain an empty one.

Each resolution step computes a resolvent between the last resolvent obtained and a clause in the program. Prolog uses the clauses in the program in the order they are written.
When an empty resolvent is generated, the composition of all the substitutions (mgu) applied at each resolution step, restricted to the variables of the query, is the answer to the query.
We represent each resolution step graphically as follows:
Query
\mid mgu
Resolvent

Since there might be several clauses in the program that can be used to generate a resolvent, we obtain an SLD-resolution tree.

Example

Program:
based(prolog,logic).
based (haskell, maths).
likes(max,logic).
likes(claire,maths).
likes(X,P) :- based(P,Y), likes(X,Y).
Query:
:- likes(Z,prolog).
Using the last clause, and the mgu $\{X \mapsto Z, P \mapsto p r o l o g\}$ we obtain the resolvent
:- based(prolog,Y), likes(Z,Y).
Now using the first clause and the $\mathrm{mgu}\{Y \mapsto$ logic $\}$ we obtain the new resolvent
:- likes(Z,logic).
We can now unify with likes (max,logic) using $\{Z \mapsto \max \}$, and we obtain an empty resolvent (success). Answer to the initial query: $\{Z \mapsto \max \}$

Example

Graphically, the SLD-resolution tree for this query contains:

$$
\begin{aligned}
& \text { likes(Z,prolog) } \\
& \qquad \mid\{X \mapsto Z, P \mapsto \text { prolog }\}
\end{aligned}
$$

based(prolog,Y), likes(Z,Y)

$$
\mid\{Y \mapsto \operatorname{logic}\}
$$

likes(Z,logic).

$$
\{Z \mapsto \max \} / \quad \backslash\left\{X^{\prime} \mapsto Z, P^{\prime} \mapsto \operatorname{logic}\right\}
$$

\diamond based(logic, Y^{\prime}), likes(Z, $\left.\mathrm{Y}^{\prime}\right)$ Failure

SLD-resolution using unification is complete (if there is an answer, it will eventually be generated), although Prolog's implementation is not complete (due to the use of a depth first search strategy, for efficiency reasons).

Horn clauses use first-order terms - simple but not very expressive. Extensions of the language involve extending the unification algorihtm.

More expressive languages

How do we represent binding operations? Informally:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

Renaming of bound variables (α-equality) is implicit.

More expressive languages

How do we represent binding operations? Informally:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}
$$

Renaming of bound variables (α-equality) is implicit.

More expressive languages

How do we represent binding operations? Informally:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)), ~ l
$$

- π-calculus: $P \mid \nu$ a. $Q \rightarrow \nu$ a. $(P \mid Q) \quad(a \notin \mathrm{fv}(P))$

Renaming of bound variables (α-equality) is implicit.

More expressive languages

How do we represent binding operations? Informally:

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a \rightarrow M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}
$$

- π-calculus: $P \mid \nu$ a. $Q \rightarrow \nu$ a. $(P \mid Q) \quad(a \notin \mathrm{fv}(P))$
- Logic equivalences:

$$
P \text { and }(\forall x \cdot Q) \Leftrightarrow \forall x(P \text { and } Q) \quad(x \notin \mathrm{fv}(P))
$$

Renaming of bound variables (α-equality) is implicit.

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
\Rightarrow No binders. (-)

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
\Rightarrow First-order matching: we need to 'specify' α-conversion. (-)

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
\Rightarrow Simple notion of substitution. (+)

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
- Simple notion of substitution. (+)
- Algebraic λ-calculi: First-order rewriting $+\lambda$-calculus

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
- Simple notion of substitution. (+)
- Algebraic λ-calculi: First-order rewriting $+\lambda$-calculus $\Rightarrow \lambda$ is a binder. (+)

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
- Simple notion of substitution. (+)
- Algebraic λ-calculi: First-order rewriting $+\lambda$-calculus
- λ is a binder. (+)
\Rightarrow First-order matching: we need to 'specify' α-conversion. (-)

Formally: Rewrite Systems

There are several alternatives.

- Use a first-order system and encode α-equality.
- No binders. (-)
- First-order matching: we need to 'specify' α-conversion. (-)
- Simple notion of substitution. (+)
- Algebraic λ-calculi: First-order rewriting $+\lambda$-calculus
- λ is a binder. (+)
- First-order matching: we need to 'specify' α-conversion. (-)
\Rightarrow Simple notion of substitution. (+)
- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\begin{aligned}
& \quad \text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N \\
& \Rightarrow \text { Terms with binders. }(+)
\end{aligned}
$$

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
\Rightarrow Implicit α-equivalence. (+)

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-equivalence. (+)
\Rightarrow We targeted α but now we have to deal with β too. (-)

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-equivalence. (+)
- We targeted α but now we have to deal with β too. (-)
\Rightarrow Substitution is a meta-operation using β. (-)

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-equivalence. (+)
- We targeted α but now we have to deal with β too. (-)
- Substitution is a meta-operation using β. (-)
\Rightarrow Unification is undecidable in general. (-)

Higher-order frameworks

- Higher-order rewrite systems (CRS, HRS, etc.) include a general binding construct.
Example: β-rule

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

Then $\operatorname{app}(\operatorname{lam}([a] f(a, g(a)), b) \rightarrow f(b, g(b))$ using higher-order matching.

- Higher-Order Abstract Syntax:

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- Terms with binders. (+)
- Implicit α-equivalence. (+)
- We targeted α but now we have to deal with β too. (-)
- Substitution is a meta-operation using β. (-)
- Unification is undecidable in general. (-)
\Rightarrow Leaving name dependencies implicit is convenient (e.g. $\forall x . P$).

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) $\cdot t$. Example: β and η rules as NRS:

$$
a \# M \vdash \begin{array}{lll}
\operatorname{app}\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

\Rightarrow Terms with binders.

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) $\cdot t$.
Example: β and η rules as NRS:

$$
\begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
a \# M \vdash(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
\Rightarrow Built-in α-equivalence.

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions $a \# t$, name swapping ($a b) \cdot t$.
Example: β and η rules as NRS:

$$
\begin{array}{lll}
a p p\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
a \# M \vdash(\lambda([a] \operatorname{app}(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
- Built-in α-equivalence.
\Rightarrow Simple notion of substitution (first order).

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as NRS:

$$
a \# M \vdash \begin{array}{ll}
\operatorname{app}\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow \\
(\lambda([a] a p p(M, a)) & \rightarrow M
\end{array}
$$

- Terms with binders.
- Built-in α-equivalence.
- Simple notion of substitution (first order).
\Rightarrow Dependencies of terms on names are implicit.

Inspired by the work on Nominal Logic (Pitts et al.)
Key ideas: Freshness conditions $a \# t$, name swapping ($a b$) t.
Example: β and η rules as NRS:

$$
a \# M \vdash \begin{array}{lll}
\operatorname{app}\left(\operatorname{lam}([a] Z), Z^{\prime}\right) & \rightarrow & \operatorname{subst}\left([a] Z, Z^{\prime}\right) \\
(\lambda([a] a p p(M, a)) & \rightarrow & M
\end{array}
$$

- Terms with binders.
- Built-in α-equivalence.
- Simple notion of substitution (first order).
- Dependencies of terms on names are implicit.
\Rightarrow Easy to express conditions such as a $\notin \mathrm{fv}(M)$

Nominal Syntax

- Function symbols: $f, g \ldots$

Variables: M, N, X, Y, \ldots
Atoms: a, b, \ldots
Swappings: $(a b)$

$$
\text { Def. }(a b) a=b,(a b) b=a,(a b) c=c
$$

Permutations: lists of swappings, denoted π (Id empty).

- Function symbols: $f, g \ldots$

Variables: M, N, X, Y, \ldots
Atoms: a, b, \ldots
Swappings: $(a b)$

$$
\text { Def. }(a b) a=b,(a b) b=a,(a b) c=c
$$

Permutations: lists of swappings, denoted π (ld empty).

- Nominal Terms:

$$
s, t::=a|\pi \cdot X|[a] t|f t|\left(t_{1}, \ldots, t_{n}\right)
$$

ld . X written as X.

- Function symbols: $f, g \ldots$

Variables: M, N, X, Y, \ldots
Atoms: a, b, \ldots
Swappings: $(a b)$

$$
\text { Def. }(a b) a=b,(a b) b=a,(a b) c=c
$$

Permutations: lists of swappings, denoted π (ld empty).

- Nominal Terms:

$$
s, t::=a|\pi \cdot X|[a] t|f t|\left(t_{1}, \ldots, t_{n}\right)
$$

Id $\cdot X$ written as X.

- Example (ML): var(a), app $\left(t, t^{\prime}\right), \operatorname{lam}([a] t), \operatorname{le}\left(t,[a] t^{\prime}\right)$, letrec $[f]\left([a] t, t^{\prime}\right)$, subst $\left([a] t, t^{\prime}\right)$
Syntactic sugar:
$a,\left(t t^{\prime}\right)$, λ a.t, let $a=t$ in t^{\prime}, letrec $f a=t$ in $t^{\prime}, t\left[a \mapsto t^{\prime}\right]$

We use freshness to avoid name capture.
$a \# X$ means a $\notin \mathrm{fv}(X)$ when X is instantiated.

$$
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X}
$$

$\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}}$| $\left(t_{1}, \ldots, t_{n}\right)$ |
| :--- |$\frac{s \approx_{\alpha} t}{f s \approx_{\alpha} f t}$

$\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}$
where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$

We use freshness to avoid name capture.
$a \# X$ means a $\notin \mathrm{fv}(X)$ when X is instantiated.

$$
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X}
$$

$\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}}$| $\left(t_{1}, \ldots, t_{n}\right)$ |
| :--- |$\frac{s \approx_{\alpha} t}{f s \approx_{\alpha} f t}$

$\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}$
where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$
- $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a b) \cdot X$

Freshness

Also defined by induction:

$$
\begin{gathered}
\overline{a \# b} \\
\frac{a \#[a] s}{} \\
\frac{a \# s_{1} \cdots a \# s_{n}}{a \#\left(s_{1}, \ldots, s_{n}\right)} \\
\frac{a \# s}{a \# f s} \frac{a \# s}{a \#[b] s}
\end{gathered}
$$

Checking α-equivalence of terms

The syntax-directed derivation rules above suggest an algorithm to check α-equivalence, using transformation rules:

$$
\begin{aligned}
a \# b, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
a \# f s, \operatorname{Pr} & \Longrightarrow a \# s, \operatorname{Pr} \\
a \#\left(s_{1}, \ldots, s_{n}\right), \operatorname{Pr} & \Longrightarrow a \# s_{1}, \ldots, a \# s_{n}, \operatorname{Pr} \\
a \#[b] s, \operatorname{Pr} & \Longrightarrow a \# s, \operatorname{Pr} \\
a \#[a] s, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
a \# \pi \cdot X, \operatorname{Pr} & \Longrightarrow \pi^{-1} \cdot a \# X, \operatorname{Pr} \quad \pi \neq I d \\
a \approx_{\alpha} a, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
\left(I_{1}, \ldots, I_{n}\right) \approx_{\alpha}\left(s_{1}, \ldots, s_{n}\right), \operatorname{Pr} & \Longrightarrow I_{1} \approx_{\alpha} s_{1}, \ldots, I_{n} \approx_{\alpha} s_{n}, \operatorname{Pr} \\
f l \approx_{\alpha} f s, \operatorname{Pr} & \Longrightarrow I \approx_{\alpha} s, \operatorname{Pr} \\
{[a] / \approx_{\alpha}[a] s, \operatorname{Pr} } & \Longrightarrow I \approx_{\alpha} s, \operatorname{Pr} \\
{[b] / \approx_{\alpha}[a] s, \operatorname{Pr} } & \Longrightarrow(a b) \cdot I \approx_{\alpha} s, a \# I, \operatorname{Pr} \\
\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X, \operatorname{Pr} & \Longrightarrow d s\left(\pi, \pi^{\prime}\right) \# X, \operatorname{Pr}
\end{aligned}
$$

Checking α-equivalence of terms

The relation \Longrightarrow is confluent and strongly normalising; i.e. the simplification process terminates and the result is unique: $\langle\operatorname{Pr}\rangle_{n f}$. If $\langle\operatorname{Pr}\rangle_{n f}$ is a consistent freshness context, Pr is valid.

To solve equations we need to add instantiation rules: $\operatorname{Pr}, \pi \cdot X \approx_{\alpha} t \Longrightarrow \operatorname{Pr}\left\{X \mapsto \pi^{-1} \cdot t\right\}$ if X in Pr and X not in t.

Solving Equations [Urban, Pitts, Gabbay 2003]

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

Solving Equations [Urban, Pitts, Gabbay 2003]

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

- Nominal Matching: $s=t$ has solution (Δ, θ) if

$$
\Delta \vdash s \theta \approx_{\alpha} t
$$

Solving Equations [Urban, Pitts, Gabbay 2003]

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

- Nominal Matching: $s=t$ has solution (Δ, θ) if

$$
\Delta \vdash s \theta \approx_{\alpha} t
$$

- Examples:

$$
\begin{aligned}
& \lambda([a] X)=\lambda([b] b) ? ? \\
& \lambda([a] X)=\lambda([b] X) ? ?
\end{aligned}
$$

Solving Equations [Urban, Pitts, Gabbay 2003]

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

- Nominal Matching: $s=t$ has solution (Δ, θ) if

$$
\Delta \vdash s \theta \approx_{\alpha} t
$$

- Examples:

$$
\begin{aligned}
& \lambda([a] X)=\lambda([b] b) ? ? \\
& \lambda([a] X)=\lambda([b] X) ? ?
\end{aligned}
$$

- Solutions: $(\emptyset,[X \mapsto a])$ and ($\{a \# X, b \# X\}, I d)$ resp.
- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

- Nominal Matching: $s=t$ has solution (Δ, θ) if

$$
\Delta \vdash s \theta \approx_{\alpha} t
$$

- Examples:

$$
\lambda([a] X)=\lambda([b] b) ? ?
$$

$$
\lambda([a] X)=\lambda([b] X) ? ?
$$

- Solutions: $(\emptyset,[X \mapsto a])$ and ($\{a \# X, b \# X\}$, Id) resp.
- Nominal matching is decidable, and linear in time [Calves, Fernandez 07].
- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

- Nominal Matching: $s=t$ has solution (Δ, θ) if

$$
\Delta \vdash s \theta \approx_{\alpha} t
$$

- Examples:

$$
\lambda([a] X)=\lambda([b] b) ? ?
$$

$$
\lambda([a] X)=\lambda([b] X) ? ?
$$

- Solutions: $(\emptyset,[X \mapsto a])$ and $(\{a \# X, b \# X\}$, $I d)$ resp.
- Nominal matching is decidable, and linear in time [Calves, Fernandez 07].
- Nominal unification is decidable and polynomial. A solvable unification problem has a unique most general solution [Urban, Pitts, Gabbay 04].

Implementing Nominal Unification — First Approach: MAUDE

MAUDE is based on rewriting. Example program:
fmod LAMBDA is
sorts Var Term .
subsorts Var $<$ Term .
op var: String $->$ Var .
op lam: Var Term $->$ Term .
op app: Term Term $->$ Term.
var x: Var.
var t1 t2: Term.
rl [beta]: app(lam(x,t1),t2) $=>\mathrm{t} 1[\mathrm{t} 2 / \mathrm{x}]$
endfm

Implementing nominal unification in Maude

sorts Var Atom Perm Term .
subsorts Atom Var $<$ Term .
op _^ : Perm Var - > Term .
op []]- : Atom Term $->$ Term .
eq perm1 ^ (perm2 ^ var) $=($ perm1 ○ perm2) ^ var .
eq $a \# f(t)=a \# t$.

Maude implementation

- natural choice of language since the algorithm is specified as a set of rewrite rules

Maude implementation

- natural choice of language since the algorithm is specified as a set of rewrite rules
- very easy to code (direct translation)

Maude implementation

- natural choice of language since the algorithm is specified as a set of rewrite rules
- very easy to code (direct translation)
- easy to maintain

Maude implementation

- natural choice of language since the algorithm is specified as a set of rewrite rules
- very easy to code (direct translation)
- easy to maintain
- but it is inefficient
- natural choice of language since the algorithm is specified as a set of rewrite rules
- very easy to code (direct translation)
- easy to maintain
- but it is inefficient
- even standard (first-order) unification is exponential on trees, due to copying: $f(X, X) ? \approx ? t, \quad X$? $\approx u$
- natural choice of language since the algorithm is specified as a set of rewrite rules
- very easy to code (direct translation)
- easy to maintain
- but it is inefficient
- even standard (first-order) unification is exponential on trees, due to copying: $f(X, X)$? $\approx t, \quad X$? $\approx u$
- we need sharing

Implementing nominal unification on DAGs

\Rightarrow atoms, variables and 1 are represented as leaves

Implementing nominal unification on DAGs

- atoms, variables and 1 are represented as leaves
\Rightarrow a tuple $\left(t_{1}, \ldots, t_{n}\right)$ is represented as a node () with n children

Implementing nominal unification on DAGs

- atoms, variables and 1 are represented as leaves
- a tuple $\left(t_{1}, \ldots, t_{n}\right)$ is represented as a node () with n children $\Rightarrow f(t)$ is represented as a node f with one child.

Implementing nominal unification on DAGs

- atoms, variables and 1 are represented as leaves
- a tuple $\left(t_{1}, \ldots, t_{n}\right)$ is represented as a node () with n children
- $f(t)$ is represented as a node f with one child.
$\Rightarrow[a] t$ is represented as a node [] with two children (a and t)

Equivalence and Freshness in DAGs

\Rightarrow Equivalence and Freshness constraints are also represented with DAGs

Equivalence and Freshness in DAGs

- Equivalence and Freshness constraints are also represented with DAGs
$\Rightarrow t ? \approx$? u is represented as a node ? \approx ? with two children

Equivalence and Freshness in DAGs

- Equivalence and Freshness constraints are also represented with DAGs
- t ? \approx ? u is represented as a node ? \approx ? with two children
$\Rightarrow a \#$? t is represented as a node \#? with two children

Equivalence and Freshness in DAGs

- Equivalence and Freshness constraints are also represented with DAGs
- $t ? \approx$? u is represented as a node ? \approx ? with two children
- a ? t is represented as a node \#? with two children
\Rightarrow a whole unification problem is represented as a DAG

Optimisation techniques for equivalence

\Rightarrow the nodes $t ? \approx$? t are erased

Optimisation techniques for equivalence

- the nodes $t ? \approx$? t are erased
$\Rightarrow \pi \circ t$? $\approx \pi^{\prime} \circ t$ is replaced by $d s\left(\pi, \pi^{\prime}\right) \#$? t

Optimisation techniques for equivalence

- the nodes $t ? \approx$? t are erased
- $\pi \circ t$? \approx ? $\pi^{\prime} \circ t$ is replaced by $d s\left(\pi, \pi^{\prime}\right) \#$? t
$\Rightarrow t$? \approx ? X or X ? \approx ? t, if $X \notin \operatorname{Var}(t)$, each pointer to X is replaced by a pointer to t

Optimisation techniques for equivalence

- the nodes $t ? \approx$? t are erased
- $\pi \circ t$? $\approx \pi^{\prime} \circ t$ is replaced by $d s\left(\pi, \pi^{\prime}\right) \#$? t
- t ? $\approx ? X$ or X ? \approx ? t, if $X \notin \operatorname{Var}(t)$, each pointer to X is replaced by a pointer to t
$\Rightarrow t ? \approx$? u not of the previous forms, unification rules are applied and each pointer to u is replaced by a pointer to t.

Optimisation techniques for equivalence

- the nodes $t ? \approx$? t are erased
- $\pi \circ t$? $\approx \pi^{\prime} \circ t$ is replaced by $d s\left(\pi, \pi^{\prime}\right) \#$? t
- t ? $\approx ? X$ or X ? $\approx ?$, , if $X \notin \operatorname{Var}(t)$, each pointer to X is replaced by a pointer to t
- t ? \approx ? u not of the previous forms, unification rules are applied and each pointer to u is replaced by a pointer to t.
\Rightarrow permutations on terms are evaluated 'by need': push one level down, only when needed to be able to apply a transformation rule (use a 'neutralising' permutation if necessary)

Optimisation techniques for equivalence

- the nodes $t ? \approx$? t are erased
- $\pi \circ t$? $\approx \pi^{\prime} \circ t$ is replaced by $d s\left(\pi, \pi^{\prime}\right) \#$? t
- t ? \approx ? X or X ? \approx ? t, if $X \notin \operatorname{Var}(t)$, each pointer to X is replaced by a pointer to t
- t ? $\approx ? u$ not of the previous forms, unification rules are applied and each pointer to u is replaced by a pointer to t.
- permutations on terms are evaluated 'by need': push one level down, only when needed to be able to apply a transformation rule (use a 'neutralising' permutation if necessary)
\Rightarrow the graph is kept in canonical form: after each application of a unification rule, we compress consecutive permutation nodes, etc.

Complexity

\Rightarrow The size of the problem (without counting freshness constraints) does not grow.

Complexity

- The size of the problem (without counting freshness constraints) does not grow.
\Rightarrow The number of constraints generated is linear in the size of the problem.

Complexity

- The size of the problem (without counting freshness constraints) does not grow.
- The number of constraints generated is linear in the size of the problem.
\Rightarrow The number of transformation steps for each unification constraint is polynomial

Freshness

\Rightarrow An efficient implementation should avoid computing freshness of an atom on a node several times.
Example:
a \#? $f(X, X) \quad X$? \approx ? t

- An efficient implementation should avoid computing freshness of an atom on a node several times.
Example:
a \#? $f(X, X) \quad X$? \approx ? t
\Rightarrow Need to remember which atoms have been already tested for freshness on a term, so each node t is tagged by a set A of atoms
- An efficient implementation should avoid computing freshness of an atom on a node several times.
Example:
a \#? $f(X, X) \quad X$? \approx ? t
- Need to remember which atoms have been already tested for freshness on a term, so each node t is tagged by a set A of atoms
\Rightarrow On a \#? t, if a is not in A, the transformation rule (depending on the form of t) is applied and a is added to A
- An efficient implementation should avoid computing freshness of an atom on a node several times.
Example:
a \#? $f(X, X) \quad X$? \approx ? t
- Need to remember which atoms have been already tested for freshness on a term, so each node t is tagged by a set A of atoms
- On $a \#$? t, if a is not in A, the transformation rule (depending on the form of t) is applied and a is added to A
$\Rightarrow a \#$? $\pi \circ t$ is replaced by $\pi^{-1}(a) \# ? t$

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.
- Nominal matching is decidable and linear in time.

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.
- Nominal matching is decidable and linear in time.
- Nominal rewriting has the expressive power of higher-order rewriting.

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.
- Nominal matching is decidable and linear in time.
- Nominal rewriting has the expressive power of higher-order rewriting.
- Nominal unification is polynomial (unknown lower bound).

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.
- Nominal matching is decidable and linear in time.
- Nominal rewriting has the expressive power of higher-order rewriting.
- Nominal unification is polynomial (unknown lower bound).
- Nominal unificaiton is used in the language α-Prolog [Cheney and Urban]

Conclusion

- Nominal Terms: first-order syntax, with a notion of matching modulo α.
- Higher-order substitutions are easy to define using freshness.
- Nominal matching is decidable and linear in time.
- Nominal rewriting has the expressive power of higher-order rewriting.
- Nominal unification is polynomial (unknown lower bound).
- Nominal unificaiton is used in the language α-Prolog [Cheney and Urban]
- Type systems for nominal terms are available.

That's all!

Questions?

