
Time and Location Based Services
with Access Control∗

Clara Bertolissi1
Laboratoire d’Informatique fondamentale (LIF)

and Université de Provence
Marseille, France

Email: Clara.Bertolissi@kcl.ac.uk

Maribel Fernández
King’s College London

Dept. of Computer Science
London WC2R 2LS, U.K.

Email: Maribel.Fernandez@kcl.ac.uk

Abstract—We propose an access control model that extends
RBAC (Role-Based Access Control) to take time and location into
account, and use term rewriting systems to specify access control
policies in this model. We discuss implementation techniques for
rewrite-based policy specifications, and the integration of these
policies in web applications. The declarative nature of the model
facilitates the analysis of policies and the evaluation of access
requests: we present two case-studies.

I. INTRODUCTION

The recent growth of digital communication has increased
the demand of security for protecting resources and preserving
the integrity and confidentiality of data. Thus, considerable
interest has been centred on the area of access control models
in recent years. Access control is concerned with deciding
which actions a subject can execute on the objects of a
given system. One of the most popular choices, for use with
centralised systems, is the Role-Based Access Control (RBAC)
model [19]. In RBAC, users are assigned to roles by a security
administrator; roles usually map to job titles in an organisation,
and as such, this model is well-suited for relatively static
environments.

High mobility of users and services in the emerging mobile
applications entails the need for access control models that
take the location of the user and the time of the request into
account in order to decide whether to grant or deny an access
request. Several extensions to RBAC have been proposed to
incorporate spatio-temporal information in the model. One
of the first time-based RBAC models was proposed in [5],
and later generalised in the GTRBAC model [17]. In these
systems, the roles are enabled by time constraints. An example
of location-based model is GEO-RBAC, introduced in [13].
The GEO-RBAC model allows a user to activate a role from
a particular location, and the role and its permissions are
predefined for that location. Other models considering both
location and time constraints have been proposed, see for
example [12], [11], [22], [9].

In this paper we describe a location- and time-based RBAC
model, TLRBAC, that we specify using term rewriting. Term

* Research partially funded by the EU project Implementing access control
mechanisms using rewriting techniques, Marie Curie Intra European Fellow-
ships Programme.

1 Research visiting fellow at the Department of Computer Science, King’s
College London.

rewriting systems are usually defined by specifying a set
of terms, and a set of rewrite rules that are used to “re-
duce” terms. Term rewriting techniques have been successfully
applied to many domains, and have had deep influence in
the development of computation models, programming and
specification languages, theorem provers and proof assistants.
Recently, rewriting techniques have been fruitfully exploited in
the context of security [3], [15], [20], [2], [7], in particular, to
ensure that access control policies satisfy essential properties
(such as consistency and totality, see for instance [2], [20],
[6], [14]). Another important reason to specify access con-
trol policies using rewrite-based frameworks is that rewriting
tools and languages (such as MAUDE [10], TOM [23], and
ML [18]), can be used to test, compare and experiment with
evaluation strategies, to automate equational reasoning, and
for the rapid prototyping of access control policies. However,
none of the previously mentioned rewrite-based access control
models deals with time and location constraints.

After defining the TLRBAC model as a rewrite system, we
discuss implementation techniques, and apply them to two
case studies. The first one describes a time and location-
based access control policy for a hospital, which has been
implemented using the programming language Maude. The
second case study is a museum, where RBAC is used to control
the access to the expositions, and a location-based RBAC
model is used to specify the access policy for virtual visitors.
This example has been implemented using the functional
programming language CAML [8].

The rest of this paper is organised as follows. In Section II,
we give some details on term rewriting and access control
models, to help to make the paper self-contained. In Section III
we specify the TLRBAC model as a term rewriting system.
Section IV discusses implementation techniques; we describe
two case studies in Section V and conclude the paper in
Section VI.

II. PRELIMINARIES

We recall the main notions of rewriting as well as the RBAC
model and its extensions. We refer the reader to [1], [2], [13]
for additional information.



A. Rewriting

A signature F is a finite set of function symbols together
with their (fixed) arity. X denotes a denumerable set of
variables X1, X2, . . ., and T (F ,X ) denotes the set of terms
built up from F and X . Terms are identified with finite labeled
trees. Positions are strings of positive integers. The subterm
of t at position p is denoted by t|p and the result of replacing
t|p with u at position p in t is denoted by t[u]p.
V(t) denotes the set of variables occurring in t. Substitutions

are written {X1/t1, . . . , Xn/tn} where ti is assumed to be
different from the variable Xi. We use Greek letters for
substitutions and postfix notation for their application.

Definition 1: Given a signature F , a term rewriting system
on F is a set of rewrite rules R = {li → ri}i∈I , where li, ri ∈
T (F ,X ), li 6∈ X , and V(ri) ⊆ V(li). A term t rewrites to a
term u at position p with the rule l → r and the substitution
σ, written t →l→r

p u, or simply t →R u, if t|p = lσ and
u = t[rσ]p. Such a term t is called reducible. Irreducible
terms are said to be in normal form.

We denote by →+
R (resp. →∗

R) the transitive (resp. transitive
and reflexive) closure of the rewrite relation →R. The subindex
R will be omitted when it is clear from the context.

Example 1: Consider a signature for lists of natural num-
bers, with function symbols z (with arity 0) and s (with arity
1, denoting the successor function) to build numbers;

Nil (with arity 0, to denote an empty list), Cons (with arity
2, to construct non-empty lists), and Length (with arity 1, to
compute the length of a list). The list containing the numbers
0 and 1 is written: Cons(z,Cons(s(z),Nil)), or simply [z, s(z)]
for short. We can specify the function Length by the recursive
rewrite rules:

Length(Nil) → z
Length(Cons(X, L)) → s(Length(L))

Then we have a reduction sequence:

Length(Cons(z,Cons(s(z),Nil))) →∗ s(s(z))

B. RBAC and extensions

RBAC policies are specified with respect to a domain of
discourse that includes the sets U of users, O of objects (or
resources), and A of access privileges, together with a (finite)
set R of roles. A user u may exercise an access privilege a on
a resource o if and only if u is assigned to a role r to which
the access privilege a on o is also assigned.

The capability of assigning users to roles, and permissions
(i.e., access privilege assignments on objects) to roles, are the
basic requirements of all RBAC models. We have two types
of relations involving roles:
• user-role assignments: we write ura(u, r) if and only if

user u ∈ U is assigned to role r ∈ R;
• permission-role assignments: we write pra(a, o, r) if and

only if the access privilege a ∈ A on object o ∈ O is
assigned to the role r ∈ R.

The model can be extended to include the notion of a role
hierarchy, defined as a (partially) ordered (and finite) set of

roles. The ordering relation is denoted senior to(ri, rj), and
means that the role ri ∈ R is a senior role (or more powerful
role) than role rj ∈ R. Role hierarchies are important for
specifying implicitly the inheritance of access privileges on
resources.

Example 2: Suppose that the users u1 and u2 are assigned
to the roles r2 and r1 respectively, and that write (w) permis-
sion on object o1 is assigned to r1 and read (r) permission
on o1 is assigned to r2. Moreover, suppose that r1 is directly
senior to r2 in an role hierarchy. Then, using the notation
introduced above, this policy is represented by the relations:

ura(u1, r2), ura(u2, r1), pra(w, o1, r1), pra(r, o1, r2),
senior to(r1, r2).
User-role and permission-role assignments are related via

the notion of an authorisation. An authorisation is a triple
(u, a, o) that expresses that the user u has the a access
privilege on the object o.

For example, consider a user u that may exercise the a
access privilege on object o if u is assigned to the role r1,
r1 is senior to a role r2 in a role hierarchy, and r2 has been
assigned the a access privilege on o. The corresponding set of
authorisations AUT H may be expressed thus:

(u, a, o) ∈ AUT H ⇔
∃r1, r2.ura(u, r1) ∧ senior to(r1, r2) ∧ pra(a, o, r2)

Example 3: By inspection of the user-role assignments,
permission-role assignments, and the role seniority relation-
ships that are specified in Example 2, it follows that the set
of authorisations that are included in AUT H is:

{(u2, w, o1), (u2, r, o1), (u1, r, o1)}.
The RBAC model presented so far can be extended to take

the location of the user, and the time of the request, into
account for access request evaluation. The extension of the
RBAC model with time and location constraints will be called
TLRBAC. In the TLRBAC model:
• A physical location l ∈ L is a collection of points in

a three dimensional geometric space. A logical location
is an abstract notion that characterises possibly many
physical locations, like patient’s home or city.

• Time is seen as a sequence of discrete time points t on
the time line. An interval int is a set of time instances,
for example from 9am to 5pm.

• Locations are assigned to users at any time point.
• Permissions are assigned to roles during a time interval

and according to the user location.
• A user u may exercise an access privilege a on a resource

o if and only if u can activate a role r to which the access
privilege a on o is also assigned. To activate a role r, the
user must be in a location and during a time interval
where the activation can take place (as specified below).

We have now the following relations involving roles.
• user-role assignments: we write uralt(u, r) if and only

if user u ∈ U is assigned to role r ∈ R.
• permission-role assignments: we write pralt(p, r, l, t) if

and only if the access privilege p ∈ P is assigned to the
role r ∈ R at location l and time t.



• role enabling: we write renab(r, l, t) if the role r is
enabled at time t and location l.

Location and time information can be used to define where a
role is enabled. The set of authorisations AUT H is composed
by tuples (u, a, o, l, t) that express the fact that the user u has
the a access privilege on the object o at time t and location l.

Example 4: Suppose that the users u1 and u2 are at location
l at time t, and that at that time and location they are assigned
to the roles r2 and r1 respectively, with write (w) permission
on object o1 assigned to r1 and read (r) permission on o1

assigned to r2. Suppose that role r1 is enabled at that location
and time, but role r2 is not enabled at time t in location l.
Then, using the notation introduced above, this information is
represented by the relations:

uralt(u1, r2), uralt(u2, r1),
pralt(w, o1, r1, l, t), pralt(r, o1, r2, l, t),
renab(r1, l, t).

Then it follows that (u2, w, o1, l, t) is included in AUT H.

III. THE TLRBAC MODEL AS A REWRITE SYSTEM

In this section we define the TLRBAC model as a term
rewriting system.

We begin by defining the sets of constants in the signature
that are used in the formulation of TLRBAC policies.
• A countable set O of objects, written o1, o2, . . .
• A countable set A of access privileges a1, a2, . . .
• A countable set U of user identifiers, written u1, u2, . . .
• A countable set L of locations l1, l2, . . .
• A countable set T of time points t1, t2, . . ..
In our TLRBAC model access to resources is defined in the

following way:
A user u ∈ U is permitted to perform an action
a ∈ A on an object o ∈ O if and only if u at time
t ∈ T , being in location l ∈ L, can activate a role
r ∈ R to which a access on o has been assigned at
time t and location l.

We will use the function roles : U → List(R) to represent
the assignment of roles to users (note that a user may be
assigned to several roles). For example, the function roles can
be specified for any user u by the rewrite rules:

roles(u) → [r1, . . . , ri]

To represent the assignment of privileges to roles we use a
function Priv from roles to lists of tuples Priv : R→ List(A×
O × L× T ). For example, the function Priv for a role r can
be specified by the following rewrite rule:

Priv(r) → [(a1, o1, l1, t1), . . . , (ai, oi, li, ti)]

Finally we use a function enable : R→ List(L×T ) to define
the times and locations at which the roles can be possibly
activated.

enable(r) → [(l1, t1), . . . , (li, ti)]

The definition of the funtion enable can be easily modified
to consider intervals of time instead of simple time instants
(see for example the hospital case study below).

Example 5: The user-role and permission-role assignments
described in Example 4 may be specified by the rules:

roles(u1) → [r2] roles(u2) → [r1]
Priv(r1) → [(w, o1, l, t)] Priv(r2) → [(r, o1, l, t)]
enable(r1) → [(l, t)]

The main functions used for evaluating access requests from
users are defined by the rewrite rules we present next. The idea
is similar to the standard RBAC model presented in [2], but
we have extra conditions about location and time. Intuitively,
given a user u asking for an access privilege a on an object o
at time t and location l, we check which roles are active for
u at that particular moment and position and also whether the
requested action is permitted on object o at time t and location
l according to the user’s role privileges.

Access(u, a, o, l, t) → Check(Occurs((a, o, l, t),
Privl(ActiveRoles(roles(u), l, t))))

Check(True) → Grant
Check(False) → Deny

Occurs checks whether the first parameter (i.e., the tuple
(a, o, l, t)) is present in the list given as second parameter, that
is, the list of privileges associated to the active roles of the user.
The set of active roles is computed by the function ActiveRoles
(defined below), which goes through the list of roles assigned
to the user and discards those that are not enabled at time
t and location l. The list of privileges of the active roles is
computed by the function Privl, recursively, using the function
Priv, as follows:

Privl(Nil) → Nil
Privl(Cons(r, lst)) → Priv(r) ∪ Privl(lst)

ActiveRoles(Nil, l, t) → Nil
ActiveRoles(Cons(r, lst), l, t) →

if Occurs((l, t), enable(r))
then
Cons(r, ActiveRoles(lst, l, t))
else
ActiveRoles(lst, l, t)

Example 6: Consider the access control policy charac-
terised by the user-role and permission-role assignments spec-
ified by the rewrite system in Example 5. The following access
requests are evaluated using the rewrite rules defining Access,
and return answers Grant and Deny respectively. Note that,
according to the function enable defined in Example 5, only
the role r1 is active at that time and location:

Access(u2, w, o1, l, t) →∗ Grant
Access(u1, r, o1, l, t) →∗ Deny

IV. IMPLEMENTATION TECHNIQUES

In order to increase the flexibility of the software appli-
cation, it is convenient to separate the security data from
the raw data, by designing a layer-structured system. Such
a division allows us to handle each layer separately, assuming
of course that common formats, structures and interfaces are
agreed beforehand.



In a real case design, several issues need to be taken into
account:
• Reliability: the rewrite-based core of our framework

makes it easier to ensure the consistency and correctness
of the security policy (see [2], [6], [20] for a description
of the use of rewriting techniques to check consistency,
totality, and correctness of access control policies).

• Flexibility: this can be achieved through modular struc-
ture and taking advantage of the powerful type systems
available in rewrite-based programming languages or in
functional languages.

• User-friendliness is a requirement as an argument for
future users to adopt the system.

• Interface: in the context of a highly mobile and distributed
environment, a software application should be accessible
from several locations, and should be able to deal with
access requests that are issued concurrently. Nowadays,
Java is one of the most popular languages in industry for
the development of web applications.

Term rewriting is a simple, declarative framework well
suited to the specification of access control policies, and
rewrite based or functional programming languages are par-
ticularly fit for the implementation of rewrite-based policies.
Once the policy has been defined as a term rewriting system,
it can be executed directly in a rewrite-based programming
language such as Maude [10], or it can be easily translated to
a functional language such as CAML [8]. However, in the con-
text of a highly mobile and distributed system, a programming
language with a rich collection of libraries to facilitate the
development of web applications is also needed. For Maude
and OCAML, interfaces with Java are available, and it is
therefore possible to develop the security layer in Maude
or CAML and to integrate this layer in a Java application.
Another alternative is to use the TOM language [23], which
is an extension of Java with rewriting features (in particular,
pattern-matching is fully supported).

In the next section we describe two case studies, which have
been implemented using Maude and OCAML respectively.

V. DESIGN OF WEB APPLICATIONS WITH ACCESS CONTROL

A. Case Study: Hospital

Consider a hospital environment and its medical information
system. The basic elements composing the system are: a set
of users (Renaud, Liva,. . . ), a set of electronic patient records
(EPRs) which are the objects a user can access, a set of actions
composed by the read and the write actions. We consider a set
of roles as follows: Doctor, Patient, OrganisationalStaff (OS),
VoluntaryCaringAgency (VCA), EnvironmentalHealthOfficer
(EHO). Moreover, each EPR is composed of several sub-
records, such as ID, Name, Age, Sex, ClinicalData and differ-
ent permissions on these records are assigned to each role. For
example, a doctor can read and write on all EPRs belonging
to patients he is responsible for, a patient can read all records
of his own EPR, a member of OS can can read Name and ID
of all EPRs, etc.

Each user can be assigned to more than one role. For
example:

roles(Renaud) → [Doctor]
roles(Clara) → [Doctor, Patient]
roles(Liva) → [V CA,OS]

The policy is implemented using the programming language
Maude. Given an access request of the form
Maude>frew in POLICY :

access(Liva,Read,EPR1,Name) .
the system returns a grant or deny answer according to

the user-role assignments and permission-role assignments
specified by the administrator.

This basic RBAC model has been extended with a hierarchy
of roles. Thus, authorisation is granted if the user’s role or one
of its subordinate roles permits the access. For instance, OS is
subordinate to Patient which is in turn subordinate to Doctor.

A time parameter has also been included, in order to eval-
uate requests according to the instant of time they are made.
New roles such as NightDoctor and DayDoctor are introduced
together with an associated time interval during which they can
be activated; e.g. 9pm to 9am for the NightDoctor and 9am
to 9pm for the DayDoctor. In this application, time points are
represented in the format Day-HH.MM, for instance a request
made on Monday at 11.30pm will have a time stamp Monday-
23.30. Assuming Renaud is a NightDoctor, a request
access(Renaud,Write,EPR1,Monday-11.30)
will be evaluated to a denial, since the role NightDoctor

cannot be activated at 11:30am. On the other hand
access(Renaud,Write,EPR1,Monday-23.30)
will be evaluated to grant, supposing Renaud is in charge

of the patient related to EPR1.
Similarly, an additional parameter concerning location can

be introduced in the model. For example, a doctor can be
associated to different privileges depending on its location
(hospital, or in an emergency situation in the ambulance).
For example, we can assign to a doctor in an ambulance the
privilege to write on all EPRs, even if the person being treated
is not his patient. In this case
access(Renaud,Write,EPR2,ambulance)
will evaluate to Grant, while
access(Renaud,Write,EPR2,hospital)
evaluates to Deny if Renaud is not the doctor responsible

for EPR2.
The time and location components can be easily combined

in the same model simply by adding the corresponding pa-
rameters in the access request and updating the assignments
defining the policy.
access(Renaud,Write,EPR1,Monday-11.30,

ambulance)
evaluates to Deny if Renaud has the NightDoctor role.
The complete description of the system, and its specification

in Maude, are available at www.dcs.kcl.ac.uk/staff/clara/.

B. Case Study: Museum

We describe below a simple model of a museum, its visitors,
its staff, its administrators and their rights of access to the



museum rooms. Rooms are the resources in this system; each
room has its own storage space, called the back room. Each
type of user (staff members, visitors, etc) has different rights
over rooms and back rooms.

The following data structures are used in the implementation
of the access control system:
• Rooms are specified by a number, status (open or close),

back room status (open or close), and a room list, which
represents the rooms that have to be traversed in order to
reach this room.

• Users are represented by their identification fields and
assigned roles (as a list of roles); a login field and
password are added in the extension of the basic model
to include virtual visits.

• Actions: these are associated to rooms. To simplify the
description, we assume they are the same for all rooms.

• Roles are actually associated with types of tickets (not
with visitors, who are considered anonymous in the basic
model), in addition to: Room manager, Security staff,
Technical staff, Curator.

The system has been implemented in CAML, and is avail-
able from www.dcs.kcl.ac.uk/staff/clara/. Below we give an
extract of the code defining the types of users and roles and
the access function (following the rewrite-based specification
given above).

type role = { rname: string ;
authorizations: (room * privilege) list };;
type rbacuser = { user: user ;

roles: role list } ;;
(*Access Function*)
let access_check rbacuser privilege room=

let rec searchroles l=
match l with
| [] -> Deny
| t::q -> if

(member (room,privilege) t.authorizations)
then Grant
else searchroles q;

in searchroles rbacuser.roles ;; }

An extension of the system has been proposed to deal with
virtual visits. In this extension, users can use the museum’s
website to request viewing virtual rooms from the outside,
and in addition potential visitors can use screens available in
the entrance hall of the museum to browse rooms. The access
control policy takes into account the location of the user in
order to grant or deny access to the virtual expositions.

VI. CONCLUSIONS

We have described a generalisation of the RBAC model that
addresses certain shortcomings of these models when used
in a mobile computing context. TLRBAC takes into account
the time and location of an access request in order to decide
whether the access is permitted or denied. We have specified
the model using a term rewriting framework, and discussed
implementation techniques, which have been put into practice
in two case studies.

The development of a framework for the smooth integration
of rewrite-based access control policies in web applications is

a promising research area. One of the first attempts to do this
is reported in [21], using TOM. In this paper we have explored
another direction, integrating rewrite-based or functional lan-
guages with Java. Further work is needed to develop tools
that can aid in the specification and implementation of such
systems, and for the formal verification of policy properties in
the context of web applications.

REFERENCES

[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
University Press, Great Britain, 1998.

[2] S. Barker and M. Fernández. Term rewriting for access control. In Proc.
of DBSec’06, volume 4127 of LNCS, pages 179–193. Springer, 2006.

[3] G. Barthe, G. Dufay, M. Huisman, and S. Melo de Sousa. Jakarta: a
toolset to reason about the JavaCard platform. In Proc. of e-SMART’01,
volume 2140 of LNCS. Springer-Verlag, 2002.

[4] M. Y. Becker C. Fournet and A. D. Gordon. Design and semantics of a
decentralized authorization language. In Proc. of CSF’07, pages 3–15,
IEEE Comp. Society, 2007.

[5] E Bertino, P A Bonatti, and E Ferrari. Trbac: a temporal role-based
access control model. In Proceedings of RBAC’00, pages 21–30, New
York, NY, USA, 2000. ACM.

[6] C. Bertolissi and M. Fernández. A Rewriting Framework for the
Composition of Access Control Policies. In Proc. of PPDP 2008, ACM
Press.

[7] C. Bertolissi, M. Fernández, and S. Barker. Dynamic event-based access
control as term rewriting. In Proc. of DBSEC’07), volume 4602 of LNCS.
Springer-Verlag, 2007.

[8] CAML. A functional programming language. http://caml.inria.fr/
[9] S. M. Chandran and J. B. D. Joshi. Lot-rbac: A location and time-

based rbac model. In A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold,
J.-Y. Chung, and Q. Z. Sheng, editors, :Proceedings of WISE’05, volume
3806 of LNCS, pages 361–375. Springer, 2005.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott. The Maude 2.0 system. In Proc. of RTA’03, number
2706 in LNCS, pages 76–87. Springer-Verlag, 2003.

[11] A Corradi, R Montanari, and D Tibaldi. Context-based access control
for ubiquitous service provisioning. In Proceedings of COMPSAC’04,
pages 444–451, Washington, DC, USA, 2004. IEEE Computer Society.

[12] M J. Covington, W Long, S Srinivasan, A K. Dev, M Ahamad, and
G D. Abowd. Securing context-aware applications using environment
roles. In Proceedings of SACMAT’01, pages 10–20, New York, NY,
USA, 2001. ACM.

[13] M L Damiani, E Bertino, B Catania, and P Perlasca. Geo-rbac: A
spatially aware rbac. ACM Trans. Inf. Syst. Secur., 10(1), 2007.

[14] D. J. Dougherty, C. Kirchner, H. Kirchner, and A. Santana de Oliveira.
Modular Access Control via Strategic Rewriting. In Proc. of ES-
ORICS’07, LNCS, pages 578–593, 2007.

[15] R. Echahed and F. Prost. Security policy in a declarative style. In Proc.
of PPDP’05. ACM Press, 2005.

[16] S. Jajodia, P. Samarati, M. Sapino, and V.S. Subrahmaninan. Flexible
support for multiple access control policies. ACM TODS, 26(2):214–260,
2001.

[17] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized
temporal role-based access control model. Knowledge and Data Engi-
neering, IEEE Transactions on, 17(1):4–23, 2005.

[18] D. Sannella S. Kahrs and A. Tarlecki. The definition of Extended ML:
A gentle introduction. TCS, 173(2):445–484, 1997.

[19] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access
control models. IEEE Computer Society, 29(2):38–47, 1996.

[20] A. Santana de Oliveira. Rewriting and modularity of security policies.
PhD Thesis, University Henri Poincaré, Nancy, 2008.

[21] A. Santana de Oliveira, E. Ke Wang, C. Kirchner, and H. Kirch-
ner. Weaving Rewrite-Based Access Control Policies. Proceedings of
FMSE’07, ACM Press, 2007.

[22] Song Fu and Cheng-Zhong Xu. Coordinated access control with tempo-
ral and spatial constraints on mobile execution in coalition environments.
Future Generation Comp. Syst., 23(6):804–815, 2007.

[23] TOM. A software environment for defining transformations in Java.
http://tom.loria.fr/soft/release-2.6/manual-2.6


