
TERMGRAPH 2006 Preliminary Version

Implementing Nominal Unification

Christophe Calvès and Maribel Fernández 1

King’s College London, Department of Computer Science
Strand, London WC2R 2LS, UK

Abstract

Nominal matching and unification underly the dynamics of nominal rewriting.
Urban, Pitts and Gabbay gave a nominal unification algorithm which finds the
most general solution to a nominal matching or unification problem, if one exists.
Later the algorithm was extended by Fernández and Gabbay to deal with name
generation and locality.

In this paper we describe first a direct implementation of the nominal unifica-
tion algorithm, including the extensions, in Maude. This implementation is not
efficient (it is exponential in time), but we will show that we can obtain a feasible
implementation by using termgraphs.

Key words: Unification, Nominal Syntax, Termgraphs

1 Introduction

Nominal terms [10] are first-order terms, i.e. trees with internal nodes labelled
by term-constructors (also called function symbols), and leaves labelled by
variables or constants, where:

• The set of variables is partitioned into a set of atoms a, b, c, . . .; and a set
of unknowns (or just variables) X, Y, Z, . . . which can be annotated with
swappings (a b) of atoms.

• There is a special term-constructor called abstraction and written [a]t where
a is an atom.

On nominal terms, we can define by induction a freshness relation a#t
(read “the atom a is fresh for the term t”) which roughly corresponds to
the notion of a not occurring free in t. Using freshness and swappings we
can inductively define a notion of α-equality of terms. Since t may contain
variables, in order to deduce a#t we might need to use assumptions a#X.

1 Email: calves,maribel@dcs.kcl.ac.uk
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Calvès, Fernández

For instance, we will see that it is possible to deduce

a#X, a#Y ` a#f(X,Y, [a]Z)

a#X, b#X ` [a]X ≈α [b]X

Nominal unification is the problem of deciding whether two nominal terms
can be made α-equal by instantiating their variables. Urban, Gabbay and
Pitts showed that this problem is decidable, and gave an algorithm which finds
the most general unifier of two terms, when one exists [10]. The unification
algorithm is specified in [10] as a set of transformation rules (or rewrite rules)
on unification problems. Later, this algorithm was extended to deal with
terms containing an additional operator for name generation (written Na.t,
and meaning that the name a is local to t), and with locality constraints a@t
(read “a is local in t”) [5]. The extended nominal unification algorithm is also
defined as a set of rewrite rules on problems.

It was conjectured in [10] that, although a direct implementation of the
nominal unification algorithm is exponential, it would be possible to obtain a
polynomial algorithm using directed acyclic graphs. In this paper we describe
two implementations of nominal unification (we have actually implemented
the extended nominal unification algorithm of [5]). The first one is a direct
implementation of the rewrite rules in Maude [7]. Maude is a rewriting-logic
based language, and since the nominal unification algorithm is specified as a
set of rewrite rules, it is a natural choice for a first implementation. Also, since
Maude is a high-level declarative language, programs are easy to understand
and easy to extend (we first implemented the standard nominal unification
algorithm, then extended it to deal with name generation).

This direct implementation is not an efficient one (as expected). It is
well-known that first-order unification (which is a particular case of nominal
unification) is exponential if one does not share subterms, but it is linear if
terms are represented as graphs with maximal sharing. Our second implemen-
tation of the nominal unification algorithm, written in OCAML, is based on
the use of termgraphs instead of terms. There is an additional complication
with respect to first-order unification, in that to obtain a polynomial algo-
rithm we also have to share subterms up to permutations of atoms. Because
of the additional operations on permutations, our second implementation is
not linear, but we can show that these additional computations are polynomial
so the algorithm is polynomial.

To summarise, the contributions of this paper are:

• Two implementations of (extended) nominal unification: the first one is
simple but inefficient, the second is still high-level and polynomial. We
remark that the actual complexity of nominal unification is not known; it
could be linear, since higher-order pattern unification, which is a closely
related problem [1], is linear [9].

2

Calvès, Fernández

• The definition of a notion of nominal termgraph, which we use as our data
structure for representation of nominal terms and rules in the second imple-
mentation of nominal unification. The theory of nominal termgraphs and
nominal termgraph rewriting has not been developed yet, and will be the
subject of future research.

Related Work

The nominal unification algorithm (or more precisely, nominal matching)
was used by Fernández, Gabbay and Mackie to define a notion of rewriting
on nominal terms in [6]. The implementation of unification and matching dis-
cussed in this paper is a first step towards obtaining an evaluator for nominal
rewriting systems.

Nominal unification has practical applications in typing algorithms (for
instance [4]) and it is at the heart of α-Prolog [3], an extension of Prolog
with binders using the nominal approach. α-Prolog has been implemented
in Ocaml, including an implementation of the nominal unification algorithm.
This implementation uses trees to represent terms, and is exponential in time
and quadratic in space [2]. Pottier has developed another implementation of
the nominal unification algorithm without name generation and locality con-
straints (private communication), which appears to be polynomial. A formal
comparison with our implementation is currently under way.

2 Background

We recall the syntax of nominal terms, define nominal unification problems
and give the rewriting rules described in [10,5] to solve them.

Let Σ be a denumerable set of function symbols f , g, . . . , X be a denu-
merable set of term variables X, Y, . . . (representing meta-level unknowns)
and A be a denumerable set of atoms a, b, c, n (representing object-level vari-
able symbols). We assume that Σ, X and A are pairwise disjoint. A swap-
ping is a pair of atoms, which we write (a b). Permutations π are lists of
swappings, generated by the grammar

π ::= Id | (a b)·π.

We call Id the identity permutation. We call a pair of a permutation π and
a variable X a moderated variable or a suspension and write it π·X. We
say that π is suspended on X. We write π−1 for the permutation obtained
by reversing the list of swappings in π. We denote by π ◦ π′ the permutation
containing all the swappings in π followed by those in π′.

Nominal terms, or just terms for short, are generated by the grammar:

s, t ::= a | π·X | (s1, . . . , sn) | [a]s | (f t)

3

Calvès, Fernández

and are called respectively atoms, moderated variables (or just variables
for short), tuples, abstractions and function applications. We refer the
reader to [10,5] for more details and examples of nominal signatures and terms.

We can apply permutations and substitutions on terms, denoted π·t and
t[X 7→s] respectively. The action of a permutation on a term is defined as
follows (where a, b, c are pairwise distinct):

(a b)·a = b (a b)·b = a (a b)·c = c

(a b)·(π·X) = (a b) ◦ π·X (a b)·(f t) = f(a b)·t (a b)·[n]t = [(a b)·n](a b)·t

(a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn)

A substitution is generated by the grammar

σ ::= Id | [X 7→s]σ.

We write substitutions postfix and write ◦ for composition of substitutions:
t(σ ◦ σ′) = (tσ)σ′.

a[X 7→s] = a (ft)[X 7→s] = f(t[X 7→s]) ([a]t)[X 7→s] = [a](t[X 7→s])

(t1, . . . , tn)[X 7→s] = (t1[X 7→s], . . . , tn[X 7→s])

(π·X)[X 7→s] = π·s (π·Y)[X 7→s] = π·Y

σ acts on terms elementwise in the natural way:

tId = t t[X 7→s]σ = (t[X 7→s])σ.

Note that permutations act top-down and accumulate on moderated variables
whereas substitutions act on the variable symbols in the moderated variables.

The predicate # specifies a freshness relation between atoms and terms,
and ≈α denotes alpha-equality.

Constraints have the form: a#t or s ≈α t. A set Pr of constraints will
be called a problem.

We give below an algorithm to check constraints, which is specified by
a set of simplification rules acting on problems where a, b denote any pair of
distinct atoms, π·X denotes a moderated variable, f a function symbol and ds
denotes the difference set of two permutations (i.e. the set of atoms in which

4

Calvès, Fernández

they differ).

a#b, Pr =⇒ Pr

a#fs, Pr =⇒ a#s, Pr

a#(s1, . . . , sn), P r =⇒ a#s1, . . . , a#sn, P r

a#[b]s, Pr =⇒ a#s, Pr

a#[a]s, Pr =⇒ Pr

a#π·X, Pr =⇒ π-1·a#X, Pr π 6= Id

a ≈α a, Pr =⇒ Pr

(l1, . . . , ln) ≈α (s1, . . . , sn), P r =⇒ l1 ≈α s1, . . . , ln ≈α sn, P r

fl ≈α fs, Pr =⇒ l ≈α s, Pr

[a]l ≈α [a]s, Pr =⇒ l ≈α s, Pr

[b]l ≈α [a]s, Pr =⇒ (a b)·l ≈α s, a#l, P r

π·X ≈α π′·X,Pr =⇒ ds(π, π′)#X,Pr

Given a problem Pr, we apply the rules until we get an irreducible problem.
If only a set ∆ of constraints of the form a#X are left, then the original
problem is valid in the context ∆ (i.e., ∆ ` Pr). Note that a problem such as
X ≈α a is therefore not valid since it is irreducible. However, X can be made
equal to a by instantiation.

A most general solution to a problem Pr is a pair (Γ, σ) obtained us-
ing an algorithm derived from the simplification rules above, enriched with
instantiating rules, labelled with substitutions:

π·X ≈α u, Pr
X 7→π-1·u

=⇒ Pr[X 7→π-1·u] (X 6∈ V (u))

u ≈α π·X, Pr
X 7→π-1u
=⇒ Pr[X 7→π-1·u] (X 6∈ V (u))

The conditions in the instantiating rules are usually called occurs check.

We obtain in this way a correct and complete nominal unification algo-
rithm. We refer to [10] for more details and examples.

The syntax of nominal terms was extended in [5] with an operator Nto
model name generation, and with a new kind of constraint to express locality
(written a@t). Extended terms have the form NA.t where A is a set of local
names in t, and t is a nominal term which may contain Nbut not at the top
level. We omit the unification rules dealing with Nand locality constraints
here, although we have implemented them. We refer the reader to [5] for the
extension of the unification algorithm to terms with N.

5

Calvès, Fernández

3 Direct Implementation in Maude

Maude is a rewriting-logic programming language which supports both equa-
tional and rewriting specification and programming. As such, it is well-
adapted to implementing algorithms specified as rewriting systems. A Maude
program consists of a signature description (which specifies the syntax of terms
and their sorts), and a set of equational and rewriting rules on terms. We refer
the reader to [7] for more details on Maude.

Nominal terms can be easily encoded in Maude using the nominal signature
plus some book-keeping equational rules to simulate their behaviour. We will
show that a matching or unification problem is coded as easily. Below we
describe our implementation of nominal unification in Maude.

Nominal Terms in Maude.

Nominal terms are defined in a functional module called TERME, which
defines the sorts VarSusp, TermeStruct, TermeRed and Terme:

sorts VarSusp TermeStruct TermeRed Terme .

subsorts Var < VarSusp .

subsorts Atm VarSusp < TermeStruct < TermeRed < Terme .

Terme is the sort of nominal terms in general and TermRed is the sort of
terms simplified by some of the rules, which are also defined in TERME. The
sorts of atoms (Atm) and suspensions (VarSusp)(i.e. variables with permuta-
tions) are defined in other modules, above we indicate that they are subsorts
of TermeStruct which is a subsort of TermeRed which in turn is a subsort of
Terme. The sort of variables (Var) is a subsort of suspensions (VarSusp). We
omit the declaration of other sorts, such as Ens(AtmV) which is the sort of
sets of atoms (used to build terms with N).

To mimic the syntax of nominal terms we declare the following operators,
where unit is the empty product, () is the function operator, ˆ is the
permutation application operator, abs is the abstraction operator, N the N,
, and tpl are for tuples:

op unit : -> Terme [ctor] .

op _‘,_ : [Terme] [Terme] -> [Terme] [ctor assoc id: unit] .

op tpl : Terme -> Terme [ctor] .

op _‘(_‘) : Fct Terme -> TermeStruct [ctor] .

op _^_ : Perm Terme -> Terme [ctor] .

op abs : Atm Terme -> TermeStruct [ctor] .

op N : Ens(AtmV) Terme -> Terme [ctor] .

For example, if a, b are Maude terms of sort Atm (atoms); f, g are
Maude terms of sort Fct (function name); X, Y, Z are variable names; p, q

are Maude terms of sort Perm (permutations) and A,B are Maude terms of
sort Ens(AtmV) (set of atoms) then:

6

Calvès, Fernández

N(A , abs(a , f(a,X)))

N(a , g(abs(b,Y) , Z))

p ^ f(N(B,g(a)), q ^ Z)

are Maude terms of sort Terme.

Simulating the behaviour of nominal terms.

Terms of sort Terme do not correspond exactly to nominal terms. For
example, NA. NB.t is not a nominal term (only one Ncan occur at the root
of an extended nominal term) and neither is π·(f t) (the permutation must
be pushed to the variables in t), but in Maude such terms will be considered
terms of sort Terme. To obtain a direct correspondence between Maude terms
and nominal terms, we have included in TERME rules that define equivalence
classes of terms (Maude terms will be simplified by these rules). We give some
examples below:

eq tpl(unit) = unit .

eq N(empty , t) = t .

eq N(A, (N(B , t))) = N((A B) , t) .

eq N(A, unit) = unit .

eq id ^ t = t .

eq p ^ unit = unit .

Unification Rules in Maude.

Freshness, locality and α-equivalence predicates are defined as operators
with the following syntax:

sorts Frais Local Alpha Contr .

subsorts Frais Local Alpha < Contr .

op _#_ : Ens(AtmV) Terme -> Frais [ctor] .

op _@_ : Ens(AtmV) Terme -> Local [ctor] .

op _~_ : Terme Terme -> Alpha [ctor] .

where Frais, Local and Alpha are the sorts of freshness, locality and α-
equivalence constraints respectively. Contr is the union of these sorts.

A unification problem is a set of terms of sort Contr. We give below some
of the rewrite rules defined on those sets:

*** Some Freshness and Locality Rules

eq A # (t ‘, u) = (A # t) (A # u) .

eq A @ (t ‘, u) = (A @ t) (A @ u) .

eq A # tpl(t) = A # t .

7

Calvès, Fernández

eq A @ tpl(t) = A @ t .

eq A # (f ‘(t ‘)) = A # t .

eq A @ (f ‘(t ‘)) = A @ t .

eq A # abs(a , t) = (A \ a) # t .

eq A @ abs(a , t) = (A \ a) @ t .

eq A # N(B,t) = A # t .

eq A @ N(B,t) = (A \ B) @ t .

eq A # (p ^ t) = (perm-inv(p) ^ A) # t .

eq A @ (p ^ v) = (perm-inv(p) ^ A) @ v .

*** Some Alpha-Equality rules

eq t ~ t = empty .

eq (p ^ t) ~ u = t ~ (perm-inv(p) ^ u) .

eq N(A,(p ^ t)) ~ u = N((perm-inv(p) ^ A) , t) ~ (perm-inv(p)^u) .

eq tpl(t) ~ tpl(u) = t ~ u .

eq (t ‘, u) ~ (tp ‘, up) = (t ~ tp) (u ~ up) .

eq (f ‘(t ‘)) ~ (f ‘(u ‘)) = t ~ u .

eq abs(a,t) ~ abs(b,u) = (a # abs(b , u))(((a - b) ^ t) ~ u) .

eq v ~ (p ^ v) = perm-supp(p) # v .

Each of these Maude rules corresponds to a rule in the unification algorithm
(see Section 2), therefore the correctness of the implementation is easy to
prove. Note that we use sets of atoms in constraints for efficiency.

Finally, we have defined in Maude the functions matching and unifying

which take a term representing a matching (resp. unification) problem and
reduce it with the rules above. Therefore to solve a nominal matching or
a nominal unification problem we simply call matching or unifying in the
Maude environment, as in the following examples (note that atoms, function
symbols and variables are coded a(s), f(s), v(s) respectively, where s is
the name of the atom, function or variable, i.e. a string):

(red matching(N(a("a") , abs(a("b") ,

f("f")(a("b"),v("X")))) ~ abs(a("c") ,

f("f")(a("c"),a("a")))) .)

produces the following result:

result Matching :

matching(a("a")@ a("a"),v("X")-> a("a"))

8

Calvès, Fernández

meaning that the result is a@a with the substitution of X by a. Since a@a is
false, this means that there is no solution for this problem.

To unify use:

(red unifying(N(a("a") , abs(a("b") ,

f("f")(a("b"),v("X")))) ~

abs(a("c") , f("f")(a("c"),a("a")))) .)

This implementation is simple, easy to understand and maintain, but is
exponential in time (even for pure first-order unification problems). In the
following section we discuss an alternative implementation, using graphs to
represent terms.

4 Using Directed Acyclic Graphs

The naive implementation described above is simple but inefficient. To im-
prove it, we have changed the data structure used to represent terms and uni-
fication problems: a whole nominal unification problem will be represented
as a single directed acyclic graph. In this way we obtain a polynomial al-
gorithm. The implementation of this algorithm is still under development,
using OCAML (a strongly typed, strict, functional programming language,
with support for imperative features and object-oriented design; see [8] for
more details). In the rest of the section we highlight the main difficulties
encountered and the techniques used.

From Terms to Graphs

Nominal terms, and constraints, are inductively transformed into graphs

as follows, where
t

represents the translation of the term t (inductive defi-
nition).

f(t) :

f

t
(t1, . . . , tn) :

()

t1 tn. . .
[a].t

[]

a t

NA.t :

N

A t
π ˆ t :

ˆ

π t

A # t :

#

A t
A @ t :

@

A t
t ≈α u :

≈α

A t

During the unification process, these graphs will be simplified and kept in
normal form with respect to a correct, terminating and confluent set of rules

9

Calvès, Fernández

(for which there is a strategy which computes normal forms in polynomial
time). For example, two of these normalisation rules are:

N

A N

B t

⇒

N

A ∪B
N

B t

ˆ

π ˆ

π′ t

⇒

ˆ

π ◦ π′ ˆ

π′ t

Rewriting rules on terms can be automaticaly transformed into graph
rewriting rules. For example the unification rule

f(t) ≈α f(u) → t ≈α u

is transformed into the graph rewriting rule:

≈α

f f

t u

⇒

≈α

t u

Alpha-equivalence and Re-positioning of Permutations.

The advantage of the graph representation is enabling term sharing but
managing permutations naively breaks term sharing by duplicating subgraphs.
The problem is that we may need to apply permutations to be able to apply
α-equivalence rules, but the term may be shared as in the following example:

≈α

u ˆ

π t

f

M

Applying π on t gives :

≈α

u

π ˆ t

f

M

and f(t) becomes f(π ˆ t) which is incorrect.

To solve this problem without duplicating t (which is crucial to avoid the
exponential explosion) we use a technique based on the re-positioning of

10

Calvès, Fernández

ˆ

π n

n1 nn

M

N

. . .

⇒

ˆ

π−1 n

ˆ ˆ

π n1 nn

M

N

. . .

Fig. 1. Repositioning Permutations

permutations on terms, keeping maximal term sharing. The operation of re-
positioning of permutations is described in Figure 1.

Note that this operation has to be carefully controlled: indeed, it is easy
to see that it could be applied again in the right-hand side in Figure 1, leading
to non-termination. We avoid this problem by allowing the application of re-
positioning to a node n only when this enables the application of a unification
rule R involving that node, and R is applied immediately after re-positioning.
This technique may be generalised on bijective functions on terms.

Introducing Additional Rules on Graphs.

In addition to the re-positioning technique mentioned above, we also need
to add specific rules for α-equivalence on pointers to be efficient. For instance,
we have an additional graph rewriting rule corresponding to:

π ˆ t ≈α π′ ˆ t → ds(π, π′) # t

depicted below.

≈α

t

ˆ

vπ

ˆ

vπ′

⇒
#

ds(π, π′) t

Freshness and Locality Rules.

Freshness and locality constraints can be solved in polynomial time by a
set of graph rewriting rules which memorises the set of fresh atoms and the
set of local atoms for each node, to avoid repeating computations.

11

Calvès, Fernández

Complexity of the Algorithm on Graphs.

First we remark that the use of termgraphs with maximal sharing implies
that we never duplicate subgraphs, hence the algorithm is linear in space.

The number of graph rewrites required to solve a unification problem is
polynomial in the size of the graph (i.e. the size of the unification problem).
However, in contrast with first-order unification where the algorithm based on
termgraphs is linear, we could not achieve linear time because before applying
a graph rewriting rule we might need to normalise permutations and Nand
apply re-positioning (but these are all polynomial operations).

5 Conclusions and Future Work

We have implemented in Maude a nominal unification algorithm for extended
nominal terms (the first implementation of extended nominal unification), us-
ing a direct encoding of nominal terms into Maude terms, and unification
rules into Maude rules. We have then discussed a better implementation us-
ing graphs to represent nominal terms and unification problems. This second
implementation is currently under development, and it provides a polynomial
nominal unification algorithm. However, the complexity of nominal unifica-
tion is still an open problem. Unification of higher-order patterns, a closely
related problem (see [1]), is linear [9] and there is therefore hope that nom-
inal unification could also be linear. This is a challenging area for future work.

Acknowledgements: We thank James Cheney, Murdoch J. Gabbay, Ian
Mackie, Andrew Pitts, François Pottier and Christian Urban for interesting
discussions on the topics of this paper, and the anonymous referees for useful
suggestions to improve the paper.

References

[1] J. Cheney. Relating nominal and higher-order pattern unification. Proceedings
of UNIF 2005, p. 104–119.

[2] J. Cheney. Private communication, 2006.

[3] J. Cheney, C. Urban. AlphaProlog: A Logic Programming Language with
Names, Binding and alpha-equivalence. ICLP 2004, p. 269–283.

[4] N. Gauthier, F. Pottier. Numbering matters: first-order canonical forms for
second-order recursive types. Proceedings of the 2004 ACM SIGPLAN Int.
Conf. on Functional Programming (ICFP’04), p. 150–161, 2004.

[5] M. Fernández, M. Gabbay. Nominal rewriting with name generation:
Abstraction vs. locality. Proceedings of the 7th ACM-SIGPLAN Symposium
on Principles and Practice of Declarative Programming (PPDP’05), Lisbon,
Portugal, ACM Press, 2005.

12

Calvès, Fernández

[6] M. Fernández, M. Gabbay, I. Mackie. Nominal rewriting systems. Proceedings of
the 6th ACM-SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’04), Italy, ACM Press, 2004.

[7] Maude, http://maude.cs.uiuc.edu/

[8] OCAML, http://caml.inria.fr/

[9] Z. Qian. Unification of Higher-order Patterns in Linear Time and Space. Journal
of Logic and Computation 6: 315-341, 1996.

[10] C. Urban, A. M. Pitts, M. J. Gabbay, Nominal unification, Theoretical
Computer Science 323, 473 – 497, 2004.

13

	Introduction
	Background
	Direct Implementation in Maude
	Using Directed Acyclic Graphs
	Conclusions and Future Work
	References

