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Abstract. We define nominal equational problems of the form ∃W∀Y : P ,
where P consists of conjunctions and disjunctions of equations s ≈α t,
freshness constraints a#t and their negations: s 6≈α t and a #t, where a is
an atom and s, t nominal terms. We give a general definition of solution
and a set of simplification rules to compute solutions in the nominal
ground term algebra. For the latter, we define notions of solved form from
which solutions can be easily extracted and show that the simplification
rules are sound, preserving, and complete. With a particular strategy for
rule application, the simplification process terminates and thus specifies an
algorithm to solve nominal equational problems. These results generalise
previous results obtained by Comon and Lescanne for first-order languages
to languages with binding operators. In particular, we show that the
problem of deciding the validity of a first-order equational formula in
a language with binding operators (i.e., validity modulo α-equality) is
decidable.

Keywords: Nominal syntax · Unification · Disunification.

1 Introduction

Nominal unification [23] is the problem of solving equations modulo α-equivalence.
A solution consists of a substitution and a freshness context ∇, i.e., a set of
primitive constraints of the form a#X (read: “a is fresh for X”), which intuitively
means that a cannot occur free in the instances of X. Nominal unification is
decidable and unitary [23], and efficient algorithms exist [5,17], which can be
used to solve problems of the form ∃X (

∧
∆i ` si ≈α ti), where si, ti are nominal

terms with variables X and ∆i is a freshness context.
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Similarly, nominal disunification is the problem of solving disequations i.e.,
negated equations of the form s 6≈α t. An algorithm to solve nominal constraint
problems of the form

P := ∃X
((∧

∆i ` si ≈α ti
)
∧
(∧
∇j ` pj 6≈α qj

))
is available [1], which finds solutions in the nominal term algebra T (Σ,A,X) by
constructing suitable representation of the witnesses for the variables in P.

Comon and Lescanne [10] investigated a more general version of this problem,
called equational problem, in their words: “an equational problem is any first-
order formula whose only predicate symbol is =”, that is, it has the form
∃w1, . . . , wn∀y1, . . . , ym : P where P is a system, i.e., an equation s = t, or a
disequation s 6= t, or a disjunction of systems

∨
Pi, or a conjunction of systems∧

Pi, or a failure ⊥, or success >. The study of such problems was motivated by
applications in pattern-matching for functional languages, sufficient completeness
for term rewriting systems, negation in logic programming languages, etc.

In order to extend these applications to languages that offer support for
binders and α-equivalence following the nominal approach, such as αProlog [6],
αKanren [4], αLeanTAP [20], to nominal rewriting [14] and nominal (universal)
algebra [15], in this paper we consider nominal equational problems.

Based on Comon and Lescanne’s work, the nominal extension of a first-order
equational problem is a formula P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P where P is a
nominal system, i.e., a formula consisting of conjunctions and disjunctions of
freshness, equality constraints, and their negations.

Contributions. This paper introduces nominal equational problems (NEPs) and
presents simplification rules to find solutions in the ground nominal algebra. The
simplification rules are shown to be terminating (by using a measure that strictly
decreases with each rule application), and also sound and solution-preserving.
The simplification process for NEPs is more challenging than in the syntactic
case because it deals with two predicates (≈α and #) and needs to consider
the interaction between freshness and α-equality constraints, and quantifiers.
The elimination of universal quantifiers requires careful analysis since universal
variables may occur in freshness constraints and in their negations. To make the
process more manageable, we define a set of rules together with a strategy of
application (specified by rule conditions) that simplifies the termination proof.

Finally, we show that the irreducible forms are either ⊥ or problems from
which a solution can be easily extracted. In particular, if the NEP consists only of
existentially quantified conjunctions of freshness and α-equality constraints, we
obtain solved forms consisting of a substitution and a freshness context, as in
the standard nominal unification algorithm [23].

Related Work. Comon and Lescanne [10] introduced first-order equational prob-
lems and studied their solutions in the algebra of rational trees, the initial term
algebra, and the ground term algebra. A restricted version of equational prob-
lems, called disunification problems, which do not contain quantified variables,
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has been extensively studied in the first-order framework [8,3,11,2,22]. More
recently, a nominal approach to disunification problems was proposed by Ayala
et.al [1], including only conjunctions of equations and disequations and freshness
constraints, without quantified variables. Here we generalise this previous work
to deal with general formulas including disjunction, conjunction and negation of
equations and freshness constraints, as well as existential and universal quantifica-
tion over variables. To deal with negation of freshness, disjunctive formulas, and
quantification we extend the semantic interpretation and design a different set of
simplification rules as well as a more elaborated strategy for rule application.

Extensions of first-order equational problems modulo equational theories have
also been considered. Although the problem of solving disequations modulo an
equational theory is not even semi-decidable in general (as shown by Comon [7]),
there are useful decidable and semi-decidable cases. For example, solvability of
complement problems (a sub-class of equational problems) is decidable modulo
theories with permutative operators (which include commutative theories) [9,13],
and for linear complement problems solvability modulo associativity and commu-
tativity is also decidable [16,19,12]. Buntine and Bürckert [3] solve systems of
equations and disequations in equational theories with a finitary unification type.
Fernández [11] shows that E-disunification is semi-decidable when the theory
E is presented by a ground convergent rewrite system, and gives a sound and
complete E-disunification procedure based on narrowing. Baader and Schulz [2]
show that solvability of disunification problems in the free algebra of the combined
theory E1 ∪ . . . ∪ En is decidable if solvability of disunification problems with
linear constant restrictions in the free algebras of the theories Ei(1 ≤ i ≤ n)
is decidable. Lugiez [18] introduces higher-order disunification problems and
gives some decidable cases for which equational problems can be extended to
higher-order systems.

Organisation. Section 2 recalls the main concepts of nominal syntax and semantics.
Section 3 introduces nominal equational problems and a notion of solution for
such problems. Section 4 presents a rule-based procedure for solving NEPs, as
well as soundness, preservation of solutions, and termination results. Section 5
shows that the simplification rules reach solved forms from which solutions can
be easily extracted. Section 6 concludes and discusses future work.

2 Background

We assume the reader is familiar with nominal techniques and recall some concepts
and notations that shall be used in the paper; for more details, see [14,21,23].

Nominal Terms. We fix countable infinite pairwise disjoint sets of atoms A =
{a, b, c, . . .} and variables X = {X,Y, Z, . . .}. Atoms follow the permutative con-
vention: names a, b range permutatively over A. Therefore, they represent different
objects. Let Σ be a finite set of term-formers disjoint from A and X such that
for each f ∈ Σ, a unique non-negative integer n (the arity of f , written as f : n)
is assigned. We assume there is at least one f : n such that n > 0.
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A permutation π is a bijection A → A with finite domain, i.e., the set
dom(π) := {a ∈ A | π(a) 6= a} is finite. We shall represent permutations as
lists of swappings π = (a1 b1)(a2 b2) . . . (an bn). The identity permutation is
denoted by id and π ◦ π′ the composition of π and π′. The set P of all such
permutations together with the composition operation form a group (P, ◦) and
it will be denoted simply by P. The difference set of π and γ is defined by
ds(π, γ) = {a ∈ A | π(a) 6= γ(a)}.

Definition 1 (Nominal Terms). The set T (Σ,A,X) of Nominal Terms, or
just terms for short, is inductively defined by the following grammar:

s, t, u ::= a | π ·X | [a]t | f(t1, . . . , tn),

where a is an atom, π ·X is a moderated variable, [a]t is the abstraction of a in
the term t, and f(t1, . . . , tn) is a function application with f ∈ Σ and f : n. A
term is ground if it does not contain variables.

In an abstraction [a]t, t is the scope of the binder [·] and it binds all free
occurrences of a in t. An occurrence of an atom in a term is free if it is not
under the scope of a binder. Notice that syntactical equality is not modulo
α-equivalence; for example, [a]a 6≡ [b]b. We may denote s ≡ t by s = t with the
same intended meaning and t̃ abbreviates an ordered sequence t1, . . . , tn of terms.

Example 1. Let Σλ := {lam : 1, app : 2} be a signature for the λ-calculus. Using
atoms to represent variables, λ-expressions are generated by the grammar:

e ::= a | lam([a]e) | app(e, e)

As usual, we sugar app(s, t) to s t and lam([a]s) to λ[a]s. The following are
examples of nominal terms: (λ[a]a)X and (λ[a](λ[b]b a) c) d.

We inductively extend the action of a permutation π to a term t, denoted as
π · t, by setting: π · a = π(a), π · (π′ ·X) = (π ◦ π′) ·X,π · ([a]t) = [π(a)](π · t),
and π · f(t̃) = f(π · t̃).

Substitutions, ranging over σ, γ, τ . . ., are maps (with finite domain) from
variables to terms. The action of a substitution σ on a term t, denoted tσ,
is inductively defined by: aσ = a, (π · X)σ = π · (Xσ), ([a]t)σ = [a](tσ) and
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Notice that t(σγ) = (tσ)γ.

Definition 2 (Positions and subterms). Let s be a nominal term. The set
Pos(s) of positions in s is a set of strings over positive integers defined inductively
below. Additionally, s|p denotes the subterm of s at position p and s(p) denotes
the symbol at position p.

– If s = a or s = π ·X, then Pos(s) = {ε} and s|ε = s;
– if s = [a]t then Pos(s) = {ε} ∪ {1 · p | p ∈ Pos(t)}, s|ε = s and s|1·p = t|p;
– if s = f(s1, . . . , sn) then Pos(s) = {ε}∪

⋃n
i=1{i · p | p ∈ Pos(si)}, s|ε = s and

s|i·p = si|p.
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Freshness and α-equality. A nominal equation is the symbol > or an expression
s ≈α t where s and t are nominal terms. A trivial equation is either s ≈α s or
>. Freshness constraints have the form a#t where a is an atom and t a term.
A freshness context is a finite set of primitive freshness constraints of the form
a#X, we use ∆,∇, and Γ to denote them. We extend the notation to sets of
atoms: A#X denotes that a#X for every a ∈ A.

α-derivability is given by the deduction rules in Figure 1, which define an
equational theory called CORE.

(#-ax)
∇ ` a#b

π−1(a)#X ∈ ∇
(#-var)

∇ ` a#π ·X
(#-abs-a)

∇ ` a#[a]t

∇ ` a#t (#-abs-b)
∇ ` a#[b]t

∇ ` a#t1 · · · ∇ ` a#tn (#-f)
∇ ` a#f(t1, . . . tn)

(ax)
∇ ` a ≈α a

ds(π, π′)#X ∈ ∇
(var)

∇ ` π ·X ≈α π′ ·X
∇ ` t ≈α t′ (abs-a)

∇ ` [a]t ≈α [a]t′

∇ ` t ≈α (a a′) · t′ ∇ ` a#t′
(abs-b)

∇ ` [a]t ≈α [a′]t′
∇ ` t1 ≈α t′1 · · · ∇ ` tn ≈α t′n (f)
∇ ` f(t1, . . . tn) ≈α f(t′1, . . . , t′n)

Fig. 1. CORE freshness and α-equality rules.

– Write ∇ ` a#t when there exists a derivation of ∇ ` a#t.
The judgement∇ ` a#t intuitively means that using freshness constraints
from ∇ as assumptions a does not occur free in t.

– Write ∇ ` s ≈α t when there exists a derivation of ∇ ` s ≈α t.
The judgement ∇ ` s ≈α t intuitively means that using freshness con-
straints from ∇ as assumptions s is α-equivalent to t.

Semantic Notions. Nominal equational theory has a natural semantic denotation
in nominal sets since we can easily interpret freshness and abstraction.

A P-set X is an ordinary set equipped with an action in P×X → X (written
as π · x) such that id · x = x and π · (π′ · x) = (π ◦ π′) · x. A set of atoms A ⊂ A
supports x ∈ X iff for all permutations π ∈ P fixing every element of A · acts
trivially on x via π, i.e., if π(a) = a for all a ∈ A then π · x = x. Semantic
freshness is defined in terms of support as follows: an atom a is fresh for x ∈ X
iff a /∈ supp(x). We denote this by writing a#semx. A nominal set is a P-set such
that every element is finitely supported.

To build an algebraic ground term-model of CORE, we fix the set G consisting
of equivalence classes of provable α-equivalent ground terms. More precisely, given
a ground term g, the class g is the set of ground terms g′ for which there exist a
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derivation ` g ≈α g′. Note that G is a nominal set by defining the natural action:
π ·g = π · g. Each function symbol f ∈ Σ is interpreted by an equivariant function
fI mapping (t1, . . . , tn) 7→ f(t1, . . . , tn) and abstractions [a]t are interpreted by
an equivariant function [ ] in A×G→ G such that a#sem[a]g always.

Signature interpretation is homomorphically extended to the set of terms
as follows: Fix a valuation function ς that assigns to every variable X ∈ X an
element of G. The interpretation of a term t under ς, JtKς , is defined as:

JaKς = a Jπ ·XKς =π · ς(X) J[a]tKς = [a]JtKς
Jf(t1, . . . , tn)Kς =fI(Jt1Kς , . . . , JtnKς)

Definition 3 (Validity under ς). Let A be any infinite subalgebra of CORE
with domain A and ς a valuation function assigning for every variable X ∈ X an
element of A. We say that:

1. Ja#tKς (resp. Jt ≈α uKς) is valid if a#sem JtKς (resp. JtKς = JuKς).
2. J∇Kς is valid when a#semς(X) for each a#X ∈ ∇.
3. J∇ ` a#tKς is valid when the validity of J∇Kς implies a#sem JtKς , and
4. J∇ ` t ≈α uKς is valid when the validity of J∇Kς implies JtKς = JuKς .

Write ∇ |= s ≈α t (resp. ∇ |= a#t) when J∇ ` s ≈α tKς (resp. J∇ ` a#tKς) is
valid for any valuation ς.

A model of a nominal theory is an interpretation that validates all of its
axiomatic judgements ∇ ` s ≈α t. It is easy to see that the interpretation we
define above is a model of CORE. For the rest of the paper, we slightly abuse
notation by calling CORE both the theory and its model making distinctions
when necessary.

Remark 1. It is worth noticing the syntactic character of CORE: by interpreting
atoms as themselves and since there are no equational axioms, we easily connect
∇ |= a#t and ∇ ` a#t. This behaviour is not the rule if equational axioms are
considered. For instance, consider the theory LAM that axiomatises β-equality in
the λ-calculus. It is a fact that a#sem(λ[a]b)a in LAM but there is no syntactic
derivation for a#(λ[a]b)a. Furthermore, by completeness for equality derivation,
we establish a connection between ∇ |= s ≈α t and ∇ ` s ≈α t.

There are alternative definitions of nominal terms where the syntax is many-
sorted. We chose to work with an unsorted syntax for simplicity; all the results
below can be extended to the many-sorted case, indeed they are proved for any
infinite subalgebra of the ground nominal algebra.

3 Nominal Equational Problems

In this section, we introduce nominal equational problems (NEPs) as our main
object of study. A NEP is a fist-order formula built only with the predicates ≈α
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and #. Their negations, denoted 6≈α and #, are used to build disequations and
non-freshness constraints. A trivial disequation is either s 6≈α s or ⊥.

Intuitively, a non-freshness constraint a #t — read a is not fresh for t — states
that there exists at least one instance of t where a occurs free. Similarly, for
disequations: s 6≈α t states that s and t are not α-equivalent.

Definition 4. A nominal system is a formula defined by the following grammar:

P, P ′ ::= > | ⊥ | s ≈α t | s 6≈α t | a#t | a #t | P ∧ P ′ | P ∨ P ′

In the next definition, we make a distinction between the set of variables
occurring in a NEP: the mutually disjoint sets W = {W1, . . . ,Wn} and Y =
{Y1, . . . , Ym} denote existentially and universally quantified variables, respectively.
The former we call auxiliary variables and the latter parameters.

Definition 5 (NEP). A NEP is a formula of the form below, where P is a nominal
system.

P ::= ∃W1 . . .Wn∀Y1 . . . Ym : P

The set Fv(P) contains the free variables occurring in P. For the rest of the
paper, we use the following implicit naming scheme for variables: W denotes an
auxiliary variable, Y a parameter, X a free variable, and Z an arbitrary variable.

Example 2. Nominal disunification constraints [1] are pairs of the form P :=
∃W 〈E || D〉, where E is a finite set of nominal equations-in-context, i.e., E =
n⋃
i=0
{∆i ` si ≈α ti} and D is a finite set of nominal disequations-in-context,

D =
m⋃
j=0
{∇j ` uj 6≈α vj}. This problem is a particular NEP: taking the judgement

∆ ` s ≈α t as ∆⇒ s ≈α t, or yet as ¬∆ ∨ s ≈α t4, we obtain the formula:

P := (
n∧
i=0

(¬[∆i] ∨ si ≈α ti)) ∧ (
m∧
j=0

(¬[∇j ] ∨ uj 6≈α vj)),

where [∆i], [∇j ] are conjunctions of freshness constraints in ∆i, ∇j , respectively.

Sufficient completeness, that is, deciding whether a set of pattern (rules)
covers all possible cases, is a well-known problem in functional programming. In
the next example, we show how to naturally represent such problems as NEPs.

Example 3. Consider the function map which applies a function [a]F to every
element of any list L. It may be defined by the rules below:

Rmap =
{
` map([a]F, nil)→ nil
` map([a]F, cons(X,L))→ cons(F{a 7→ X},map([a]F,L)),

4 Similarly, for disequations.
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where {a 7→ } is a binary term-former representing (explicit) substitutions;
see [14, Example 43] for more details. Since we are not imposing a type disci-
pline on nominal terms it is possible to construct ill-typed terms, for instance
map(a, [a]t). In what follows we ignore those expressions by noticing that a type
discipline will not allow such constructions. Then sufficient completeness can be
checked using the following NEP:

∀Y1Y2Y3L
′ : map([a]F,L) 6≈α map([b]Y1, nil)∧

map([a]F,L) 6≈α map([b]Y2, cons(Y3, L
′)),

If the problem has a solution then Rmap is not complete, and the solution
indicates the missing pattern cases in the definition.

Solutions of Nominal Equational Problems. We are interested in solutions for NEPs
in the ground nominal algebra. From now on, A denotes an infinite subalgebra of
CORE with domain A. Below we define solutions using idempotent substitutions,
which can be seen as a representation for valuations that map variables to
elements of the ground term algebra.

We first extend the interpretation function under a valuation ς J·Kς (see
Section 2) to the negated form of freshness and α-equality constraints.

Definition 6. Let ς be a (fixed but arbitrarily given) valuation. A negative
constraint a #t (resp. s 6≈α t) is valid under ς when:

– it is not the case that a#sem JtKς , this is written Ja #tKς ; and, respectively,
– it is not the case that JsKς = JtKς , this is written Js 6≈α tKς .

In standard unification algorithms, idempotent substitutions are used as a
compact representation of a set of valuations in the ground term algebra. Similarly,
given a valuation in the ground term algebra, one can build a ground substitution
representing it. In the case of the ground nominal algebra, where elements are
α-equivalence classes of terms, the representative is generally not unique, but
any representative can be used.

Definition 7. Given a substitution σ = [X1/t1, . . . , Xn/tn], for any valuation
ς, we denote by ςσ the valuation such that ςσ(X) = ς(X) if X 6∈ dom(σ), and
ςσ(X) = JXσKς otherwise.

Given a valuation ς = [Xi 7→ gi | Xi ∈ X, gi ∈ A], and a finite set X of
variables, we denote by σςX any ground substitution such that for each Xi ∈ X ,
σ(Xi) = ti, if gi = JtiKς . We say that σςX is a grounding substitution for X .

The next lemma states that under mild conditions we can extend substitutions
to valuations preserving semantic equality.

Lemma 1. Given an idempotent substitution σ = [X1/t1, . . . , Xn/tn] and a
valuation ς we have: JsσKς = JsKςσ .

The next definition allows us to use idempotent substitutions to represent
solutions of constraints.
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Definition 8 (Constraint A-validation). Let σ be an idempotent substitution
whose domain includes all the variables occurring in a constraint C. Then σ
A-validates C iff JCKςσ is valid in A for any valuation ς.

We now extend semantic validity to the syntax of systems. The interpretation
for the logical connectives is defined as expected.

Definition 9 (A-validation). For an idempotent substitution σ whose domain
includes all variables occurring in a system P , we say that σ A-validates P iff

1. P = >; or
2. P = C and σ A-validates C; or
3. P = P1 ∧ . . . ∧ Pn and σ A-validates each Pi, 1 ≤ i ≤ n; or
4. P = P1 ∨ . . . ∨ Pm and σ A-validates at least one Pi, 1 ≤ i ≤ m.

Solutions of equational problems instantiate free variables and satisfy existen-
tial and universal requirements for auxiliary variables and parameters, respectively.
To define this notion, we extend the domain of the substitution to include also
existential and universally quantified variables as follows.

Definition 10 (A-Solution). Let P = ∃W∀Y : P be a NEP. Let σ be an
idempotent substitution such that dom(σ) = Fv(P). Then σ is an A-solution of P
iff there is a ground substitution δ, where dom(δ) = W , such that for all ground
substitution λ, where dom(λ) = Y , σδλ A-validates P . The set of A-solutions of
P is denoted SA(P), or simply S(P) if A is clear from the context.

Example 4. Consider the signature Σnat := {zero : 0, suc : 1} for natural numbers,
and the nominal initial algebra Anat with zero and suc interpreted as expected.
The problem P := ∃W∀Y : W 6≈α suc(Y ) has id as solution. Indeed, taking for
example δ = [W/zero] or δ = [W/a] and any choice of λ (dom(λ) = {Y }), the
composition idδλ A-validates W 6≈α suc(Y ).

In Definition 10, δ is the substitution that instantiates auxiliary variables, so
there can be many (possibly infinite) number of such δ’s.

Lemma 2 (Equivariance of Solutions). If σ is an A-solution of the NEP
P then for any permutation π, π · σ (defined by [Xi/π · ti], as expected) is an
A-solution of π ·P. In particular, if an A-solution contains an atom not occurring
in P, that atom can be swapped for any other atom not occurring in P.

Lemma 2 is a direct consequence of the fact that interpretations are equiv-
ariant, and shows that solutions are closed by permutation. It allows us to use
permutations to represent infinite choices for atoms in solutions.

Example 5. Consider the problem ∀Y : X 6≈α λ[a]Y , built over the signature of
Example 1. The set of solutions contains σ = [X/a] as well as (a b) · [X/a] = [X/b];
for any other atom b.
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Lemma 3 (Closure by Instantiation). If σ is an A-solution of the NEP
P = ∃W∀Y : P then any idempotent substitution σ′ obtained as an instance of
σ such that dom(σ′) = dom(σ) is also an A-solution of P. In particular, for any
such ground instance σ′ of σ there is a ground substitution δ, where dom(δ) = W ,
such that for all ground substitution λ, where dom(λ) = Y , σ′δλ A-validates P .
Proof. By definition of A-solution, to show that σ′ is an A-solution of P we need
to consider all the valuations of the form ςσ

′δλ as indicated in Definitions 8, 9,
10. The result follows from the fact that for any valuation ςσ

′δλ there exists an
equivalent valuation ς ′

σδλ by Lemma 1.

4 A rule-based procedure
In this section we present a set of simplification rules to solve NEPs. A simplification
step, denoted P =⇒ P ′, transforms P into an equivalent problem P ′ from which
solutions are easier to extract.

4.1 Simplification Rules
Rules may have application conditions (rule controls) that define a strategy of
simplification. Our strategy gives priority to rules according to their role. We
split the rules into groups Ri as shown in Figures 2, 3 and 4: R1 eliminates
trivial constraints, R2 deals with clash and occurs check, R3 eliminates unneeded
quantifiers, R4 and R5 decompose positive and negative constraints, respectively,
R6 eliminates parameters and R7 instantiates variables. The Explosion and
Elimination of Disjunction rules in R8 search for solutions as explained below.
Finally, R9 eliminates the remaining universal quantifiers. A rule R ∈ Ri can
only be applied if no rules from Rj , where j < i, can be applied.

Since we are dealing with formulas that contain disjunction and conjunction
connectives, we need to take into account the standard Boolean axioms. To
simplify, instead of working modulo the Boolean axioms we apply a Boolean
normalisation step before a rule is applied. Following Comon and Lescanne [10],
we choose to take conjunctive normal form: Before the application of each rule
P is reduced to a conjunction of disjunctions.

The explosion rule creates new branches by instantiating variables considering
all possible ways of constructing terms (i.e., each f ∈ Σ, abstractions and atoms).
Note that Σ ∪ Atoms(P ) ∪ {a′} is a finite set (we can represent all possible
constructions with a finite number of cases), so the rule is finitely branching.

The rule Elimination of Disjunctions also builds a finite number of branches.
Therefore, our procedure builds a finitely branching tree of problems to be solved.

Rules R1-R8 are not sufficient to eliminate all parameters from a NEP (see
Example 6) in contrast with the syntactic case [7], where similar rules produce
parameterless normal forms. This is because we are dealing with both freshness
and α-equality. Indeed, normal forms for rules R1-R8 may contain parameters,
but only in disjunctions involving both freshness and equality constraints for the
same parameter as the following lemma states. The rules in R9 (Figure 4) are
introduced to deal with this problem.
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R1 : Trivial Rules
(T1) t ≈α t =⇒ > (T2) t 6≈α t =⇒ ⊥ (T3) a ≈α b =⇒ ⊥
(T4) a#b =⇒ > (T5) a#a =⇒ ⊥ (T6) a #a =⇒ >
(T7) a #b =⇒ ⊥ (T8) a#t ∧ a #t =⇒ ⊥ (T9) a#t ∨ a #t =⇒ >

R2: Clash and Occurrence Check Rules
(CL1) s 6≈α t =⇒ > (CL2) s ≈α t =⇒ ⊥
Conditions for (CL1) and (CL2): s(ε) 6= t(ε) and neither is a moderated variable.
(O1) π · Z ≈α t =⇒ ⊥ (O2)π · Z 6≈α t =⇒ >
Conditions for (O1) and (O2): Z ∈ vars(t) and t 6≡ π′ · Z

R3: Elimination of parameters and auxiliary unknowns.

(C1) ∀Y , Y : P =⇒ ∀Y : P, Y /∈ vars(P )
(C2) ∃W,W : P =⇒ ∃W : P, W /∈ vars(P )
(C3) ∃W,W : π ·W ≈α t ∧ P =⇒ ∃W : P, W /∈ vars(P, t)

R4: Equality and freshness simplification

(E1) π ·X ≈α γ ·X =⇒ ∧ ds(π, γ)#X
(E2) [a]t ≈α [a]u =⇒ t ≈α u
(E3) [a]t ≈α [b]u =⇒ (b a) · t ≈α u ∧ b#t
(E4) f(t̃) ≈α f(ũ) =⇒ ∧i ti ≈α ui

(F1) a#π ·X =⇒ π−1(a)#X,π 6= id
(F2) a#[a]t =⇒ >
(F3) a#[b]t =⇒ a#t
(F4) a#f(t1, . . . , tn) =⇒ ∧ia#ti

R5: Disunification
(DC) f(t̃) 6≈α f(ũ) =⇒ ∨i ti 6≈α ui
(D1) π ·X 6≈α γ ·X =⇒ ∨i ds(π, γ) #X
(D2) [a]t 6≈α [a]u =⇒ t 6≈α u
(D3) [a]t 6≈α [b]u =⇒ (b a) · t 6≈α u ∨ b #t

(NF1) a #π ·X =⇒ π−1(a) #X,π 6= id
(NF2) a #[a]t =⇒ ⊥
(NF3) a #[b]t =⇒ a #t
(NF4) a #f(t̃) =⇒ ∨ia #ti

R6: Simplification of Parameters

(U1) ∀Y , Y : P ∧ π · Y 6≈α t =⇒ ⊥ if Y 6∈ vars(t)
(U2) ∀Y : P ∧ (π · Y 6≈α t ∨Q) =⇒ ∀Y : P ∧Q[Y/π−1 · t], if Y /∈ vars(t), Y ∈ Y
(U3) ∀Y , Y : P ∧ π · Y ≈α t =⇒ ⊥, if π · Y 6≡ t
(U4) ∀Y : P ∧ (π1 · Z1 ≈α t1 ∨ · · · ∨ πn · Zn ≈α tn ∨Q) =⇒ ∀Y : P ∧Q
(U5) ∀Y , Y : P ∧ a#Y =⇒ ⊥
(U6) ∀Y , Y : P ∧ a #Y =⇒ ⊥
Conditions for (U4):

– Each equation in the disjunction contains at least one occurrence of a parameter
and πi · Zi 6≡ ti for each i = 1, . . . , n.

– Q does not contain any parameter.

R7: Instantiation Rules
(I1) π · Z ≈α t ∧ P =⇒ Z ≈α π−1 · t ∧ P [Z/π−1 · t]

– If π = id then Z is not a parameter and Z occurs in P and if t is a variable then
t occurs in P .

– If π 6= id, then t is not of the form id · Z′.

(I2) π · Z 6≈α t ∨ P =⇒ Z 6≈α π−1 · t ∨ P [Z/π−1 · t]

– If π = id then Z occurs in P and if t is a variable then t occurs in P .
– If π 6= id then t is not of the form id · Z′.

Fig. 2. Preserving Rules
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R8: Explosion and Elimination of Disjunction

(ED1)∀Y : P ∧ (P1 ∨ P2) =⇒ ∀Y : P ∧ P1, if vars(P1) ∩ Y = ∅ or vars(P2) ∩ Y = ∅.

(ED2) ∀Y1, Y2 : P ∧ (P1 ∨ P2) =⇒ ∀Y1, Y2 : P ∧ P1, if vars(P1) ∩ Y2 = ∅ and
vars(P2) ∩ Y1 = ∅

(Exp) ∃W∀Y : P =⇒ ∃W ′∃W∀Y : P ∧X ≈α t, for t = f(W ′) or t = [a]W ′ or t = a

Conditions for (Exp):

1. X is a free or existential variable occurring in P , W ′ are newly chosen auxiliary
variables not occurring anywhere in the problem;

2. f ∈ Σ and a ∈ Atoms(P ) ∪ {a′}, where a′ is a new atom;
3. there exists an equation X ≈α u (or disequation X 6≈α u) in P such that u is not a

variable and contains at least one parameter; and
4. no other rule can be applied.

Fig. 3. Globally Preserving Rules

Example 6. Both P = a#Y1 ∨ Y ≈α f(Y1) and P = a#Y1 ∨ a #Y ∨ Y1 ≈α f(Y )
are irreducible: neither (U4) nor (ED1) apply since all the disjuncts contain
parameters; (ED2) does not apply since each constraint has a parameter that
occurs in another constraint; (Exp) does not apply because there is no equation
or disequation with a free or existentially quantified variable in one side.

The following lemma characterises the irreducible disjunctions with respect
to rules R1-R8 where parameters may remain.

Lemma 4. Let P be a disjunction of constraints irreducible w.r.t. R1-R8. For
each parameter Y such that P = a#Y ∨Q (resp. P = a #Y ∨Q), for some atom
a, the following holds:

1. a #Y (resp. a#Y ) cannot occur in Q;
2. Y has to occur in Q;
3. if Q contains an equational constraint then it has the form Y ≈α t, where

Y /∈ vars(t), or Y ′ ≈α t, with Y ∈ vars(t);
4. Q does not contain disequations or primitive freshness constraints for free or

existentially quantified variables.

Proof. In an irreducible disjunction of constraints at least one of the sides
of equations (or disequations) is a variable, otherwise we could simplify the
equation/disequation.

Condition 1. It holds, otherwise we could apply (T9). Condition 2. It holds,
otherwise we could apply (ED2).

Condition 3. If Q had an equation of the form X ≈α t, for some free or
existentially quantified variable, then t could not contain a parameter, otherwise
we could apply rule (Exp). Therefore, t = t[Z1, . . . , Zn], for n ≥ 0 where each Zi



Nominal Equational Problems 13

R9: Simplification of parameters in freshness constraints

(U7) ∀Y , Y : P ∧ (a#Y ∨Q) =⇒ ⊥
if R1-R8 do not apply (so Q does not contain a #Y ) and Y ∈ vars(Q).

(U8) ∀Y , Y : P ∧ (a #Y ∨Q) =⇒ ⊥
if R1-R8 do not apply (so Q does not contain a#Y ) and Y ∈ vars(Q).

Fig. 4. Preserving Rules for (non)freshness constraints with parameters.

is either a free or existentially quantified variable, and one could apply rule ED1.
Thus, if an equation exists, one of the sides has to be a parameter, say Y ≈α t,
and Y cannot occur in t otherwise rule O2 applies.

Condition 4. If Q were to contain a disequation, say X 6≈α t then t could
not contain a parameter, otherwise we could apply (Exp) as above, but then we
could apply rule (ED1). Therefore, if Q were to contain a disequation, it would
be of the form Y 6≈α t, then it would either reduce with (O2) or with (U2). Thus,
Q does not contain disequations. Similary, if Q contained a primitive freshness
constraint for a free or existentially quantified variable then (ED1) would apply.

The remaining disjunctions with parameters can be simplified using the rules
in R9, since they will not produce solutions (as shown in Theorem 1).

We end this section with an example of application of the simplification rules.

Example 7. Let P be a NEP, using the signature from Example 1, as follows:

P = ∀Y : λ[a]X 6≈α λ[a]λ[a]Y DC=⇒ ∀Y : [a]X 6≈α [a]λ[a]Y D2=⇒ ∀Y : X 6≈α λ[a]Y

Rules in R1-R7 cannot be applied and the explosion rule produces six problems:
P1 = ∃W1∀Y : X 6≈α λ[a]Y ∧X ≈α λW1
P2 = ∃W1,W2∀Y : X 6≈α [a]Y ∧X = W1W2
P3 = ∃W∀Y : X 6≈α [a]Y ∧X = [a]W

P4 = ∃W∀Y : X 6≈α [a]Y ∧X = [b]W
P5 = ∃W∀Y : X 6≈α [a]Y ∧X = a
P6 = ∀Y : X 6≈α [a]Y ∧X = b

Reducing the first problem we get:

P1
I1=⇒ ∃W1∀Y : λW1 6≈α λ[a]Y ∧X ≈α λW1

DC=⇒ ∃W1∀Y : W1 6≈α [a]Y ∧X ≈α λW1

Exp=⇒ ∃W1W2∀Y : W1 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2

I1=⇒ ∃W1W2∀Y : λW2 6≈α [a]Y ∧X ≈α λW1 ∧W1 ≈α λW2

CL1=⇒ ∃W1W2∀Y : X ≈α λW1 ∧W1 ≈α λW2

I1=⇒ ∃W1W2 : X ≈α λλW2 ∧W1 ≈α λW2.

At this point P1 has reached a normal form without any parameter. Solutions of P1 can
be easily obtained by taking any instance of X of the form λλt. It is easy to check that
this choice indeed generates solutions of P. Similar reductions apply to Pi, 2 ≤ i ≤ 6.

As we will see in the next section, application of such simplification rules is
well-behaved in the sense that we do not loose any solution along the way.
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4.2 Soundness and Preservation of Solutions

The next step is to ensure that the application of rules does not change the set
of solutions of an equational problem.

Definition 11 (Soundness and preservation of solution). Let A be any
infinite subalgebra of CORE.

1. A rule R is A-sound if, P =⇒R P ′ implies S(P ′) ⊆ S(P).
2. A rule R is A-preserving if, P =⇒R P ′ implies S(P) ⊆ S(P ′).
3. A rule R is A-globally preserving if given any problem P,

S(P) ⊆
⋃

P →R π · Pi
supp(π) ∩ Atoms(P) = ∅

S(Pi).

All our rules, except those in R8, are sound and preserving (Theorem 1).
The rules in R8 create branches in the derivation tree; they are sound and only
globally preserving (Theorem 2).

Theorem 1. The rules in R1 to R7 and the rules in R9 are A-sound and
A-preserving for any infinite subalgebra A of CORE.

Proof. Rules in R1, R2, and R3 : soundness and preservation of solutions are
easy to deduce. For instance, for clash rules, (CL1) and (CL2), it follows by
inspection of deduction rules that the judgement ` sγ ≈α tγ is not derivable
for any valuation ς and corresponding grounding substitution γ = σςvars(s,t) (see
Definition 7) if the root constructors of s and t are different (hence every γ is
a solution for the disequation). For (C3) observe that we can take [W/t] as a
witness for W on a validation for ∃W : P , if W /∈ vars(P, t).
Rules in R4 and R5. It follows from soundness and preservation of simplification
rules in [14]. We use the fact that nominal equality and freshness rules from Fig.
1 are reversible; for instance, let γ be a grounding substitution, a judgement
` f(s̃)γ ≈α f(ũ)γ fails, which makes f(s̃)γ 6≈α f(ũ)γ valid, iff one of the premises
` siγ ≈α uiγ does not hold.
Rules in R6: The result is straightforward for rules U1 and U3.

U2. To prove soundness for U2 notice that the solution set of a conjunction
is the intersection of the solution set of each of its members. We have to show
that every solution of Q[Y/π−1 · t] is a solution of (π · Y 6≈α t ∨Q). Let γ be a
solution of Q[Y/π−1 · t] and take any substitution λ satisfying the conditions of
Definition 10. So (Q[Y/π−1 · t])γλ is valid and we need to show the validity of

(π · Y 6≈α t)γλ ∨Qγλ. (1)

For each such λ there are two possible cases: First, ` π · Y λ ≈α tγλ (note
that λ is a ground substitution so both sides of this equation are ground); then
we have that γλ = γλ′[Y/π−1 · tγλ]. By hypothesis, γλ validates Q[Y/π−1 · t]
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so γλ′[Y/π−1 · tγλ] validates Q. Second; 6` π · Y λ ≈α tγλ, then γλ validates
π · Y 6≈α t. Hence γ a solution of (1).

To prove preservation for U2, take γ a solution of ∀Y , Y : π · Y 6≈α t ∨Q, we
need to show that γ is also a solution of ∀Y , Y : Q[Y/π−1 · t]. Notice that γ is a
solution of ∀Y , Y : π · Y 6≈α t or ∀Y , Y : Q but it clearly cannot solve the first
problem. Hence, γ solves ∀Y , Y : Q. By Definition 10, for all substitutions λ with
domain Y ∪ {Y } we have that λγ validates Q. In particular, the substitution
[Y/π−1 · tγ]λγ which is equivalent to [Y/π−1 · t]λγ (since γ is away from λ) must
also validate Q. Consequently, λγ validates (Q[Y/π−1 · t]).

U4. Soundness for this rule follows trivially. For preservation of solutions, we
show that any solution of ∀Y :

∨
i Zi ≈α ti∨Q is a solution of ∀Y : Q. The shape

of the first problem induces a requirement that the disjunction
∨
i Zi ≈α ti does

not have a solution. To show this we prove that the negated form
∧
i Zi 6≈α ti

has at least one solution. Notice that such a solution is a witness for the failure
of
∨
i Zi ≈α ti, since all of those equations have at least one parameter. Lemma 5

shows that this is true.
U5 and U6. We need to show that every solution of ∀Y , Y : P ∧ a#Y is also

a solution of ⊥, i.e., no such solution exists for the lhs of the rule. In fact, the
existence of such γ would imply that (taking λ = [Y/a]) a#a which is impossible.
For U6 we do the same reasoning with λ = [Y/[a]a].
Rules in R7. Soundness and preservation of (I1) has been proved in previous
works, since rule (I1) is used in standard nominal unification algorithms [23]. Rule
(I2) is a direct adaptation of the rule used in the standard (syntactic) case, proved
sound and preserving in [10]. Indeed, γ ∈ S(π · Z 6≈α t ∨ P ) if, and only if, for
any grounding instance γ′ of γ, γ′ ∈ S(Z 6≈α π−1 · t) or γ′ ∈ S(P ) (by Lemma 3).
Finally, notice that γ ∈ S(P ) \ S(Z 6≈α π−1 · t) if and only if γ ∈ S(P [Z/π−1 · t]).
Rules in R9. Soundness follows trivially, since ⊥ has no solution. We show
below that U7 is A-preserving; the proof is analogous for rule (U8).

Let P = ∃W∀Y , Y : P ∧ (a#Y ∨ Q) where Q is fully reduced by R1-R8,
Y ∈ vars(Q) and Q does not contain a #Y . We prove that P does not have
solutions by induction on the number of freshness constraints in a#Y ∨Q.

Base case:Q contains just equational constraints, each containing at least one
occurrence of the parameter Y , as specified in Lemma 4. Suppose by contradiction
that there exists an A-solution γ. Thus, γ is away from Y ∪ {Y }, dom(γ) = X =
Fv(P), there is a ground substitution δ with dom(δ) = W and for all λ away
from X,W , with dom(λ) = Y ∪ {Y }, γδλ A-validates P ∧ (a#Y ∨Q). Then, it
A-validates both P and (a#Y ∨Q). The latter implies that γδλ A-validates Q
for every λ (but then Q has a solution, which is impossible due to the form of
the equational constraints) or Q implies a #Y (since there is at least one f ∈ Σ
such that f : n and n > 0, and therefore a#Y is false for an infinite number of
ground terms Y λ). The latter is impossible since a#Y is defined as a 6∈ supp(Y ),
which is defined as (a a′) · Y = Y for a new a′, and reduced problems cannot
contain fixed point equations or their negations (these are simplified using rules
(E1) and (D1), respectively).
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The inductive step is proved similarly, using Lemma 4 as in the base case to
deduce that the constraints in Q cannot entail a #Y .

Theorem 2. Let A be any infinite subalgebra of CORE.

1. Rule (Exp) is A-sound and A-globally preserving.
2. Rules (ED1) and (ED2) are A-sound and A-globally preserving.

Lemma 5 guarantees the existence of a solution for a conjunction of non-trivial
disequations as long as the algebra considered has sufficient ground terms.

Lemma 5. Let P be a conjunction of non-trivial disequations. Let A be any
infinite subalgebra of CORE. Then P has at least one solution in A.

Proof. The proof proceeds by induction on the number of distinct variables
occurring in P. For the base case P has no variables. Then every substitution
solves P, since by hypothesis P does not contain any trivial disequation t 6≈α t.

Assume the result holds for problems with m − 1 variables. Let P be a
conjunction of non-trivial disequations such that |vars(P )| = m and X ∈
vars(P ). For each disequation s 6≈α t ∈ P, the equation s ≈α t has at most one
solution (modulo α-renaming) when the variables distinct from X are considered
as constants. Let S the set of such solutions for all these equations. Since A (the
domain of A) is infinite, there exists a ∈ A such that [X/a] /∈ S. Therefore, [X/a]
is a solution for P. Now, consider the problem P ′ = P[X/a] which has m − 1
variables. The result follows by induction hypothesis.

4.3 Termination

To prove termination we define a measure function for NEPs that strictly decreases
with each application of a rule. The measure uses the following auxiliary functions:

Definition 12 (Auxiliary Functions). The function sizePar(t) denotes the
sum of the sizes of the parameter positions in t:

sizePar(t) :=
∑

pj∈PosPar(t)

|pj |

where PosPar(t) = {pj | t|pj = Yi for some parameter Yi}.
Given a disjunction of equations, disequations, freshness, and negated freshness

constraints d = C1 ∨ . . . ∨ Cn we define auxiliary functions φ1 and φ2 over d.

1. φ1(d) is the number of distinct parameters in d.
2. φ2(d) is the multiset {MSP(C1), . . . , MSP(Cn)} where MSP(C) is defined by:

(a) MSP(C) = 0 if C is an equation or disequation and a member of C is a
solved parameter (a parameter Y is solved in d if there exists a disequation
Y 6≈α u in d and Y occurs only once in d); or if C is a primitive freshness
or a primitive negated freshness constraint;
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(b) otherwise, MSP(s ≈α t) = MSP(s 6≈α t) = max(sizePar(s), sizePar(t))
and MSP(a#t) = MSP(a #t) = sizePar(t).

Definition 13 (Measure). Let P = ∃W∀Y d1∧. . .∧dn be a nominal equational
problem in conjunctive normal form. P is measured using the tuple:

Φ(P) = (Nu, Nd, ψ1(P),M, ψ2(P)), where

1. Nu is the number of free variables that are unsolved in P. A variable X is
solved if there is an equation X ≈α t and X occurs only once in P.

2. Nd is a multiset that contains for each disjunction di in P the number of
variables that are not d-solved in di.
A variable X is d-solved in di if di = X 6≈α t∨Q and X does not occur in Q.

3. Ψ1(P) is the multiset {(φ1(d1), φ2(d1)), . . . , (φ1(dn), φ2(dn))}
4. M is the multiset {M(d1), . . . ,M(dn)} where M(d) is the multiset of sizes of

the constraints in d. The size of a constraint is the size of its largest member,
or 0 if it has a solved variable or it is a primitive (negated) freshness.

5. Ψ2(P) is the total size of P (that is, the number of function symbols, atoms,
variables, quantifiers, conjunctions, disjunctions, >, ⊥ in P.

Using this measure we can prove the termination of the simplification process.

Theorem 3. The procedure defined in Section 4 for application of rules, ex-
pressed as R := R1R2 . . .R9, terminates.

5 Nominal Equational Solved Forms

We have shown that the simplification process terminates and each application
of the transformation rules preserves solutions. We now characterise the normal
forms, called solved forms. Intuitively, solved forms are simple enough that one
can easily extract solutions from it. A first example of well-known solved form
is that of unification solved form: a conjunction of equations Xi = ti such that
each Xi occurs only once. It directly represents a solution mapping Xi 7→ ti.

We show in Theorem 4 existence of solutions for certain solved forms, and in
Theorem 5 we prove that our procedure is complete with respect to solved forms.

Definition 14 (Solved Forms).

1. A NEP P is in parameterless solved form if it contains no universal quantifiers.
2. A NEP is a definition with constraints if it is >,⊥ or a conjunction of the

form

P = ∃W :

(
n∧
i=1

Zi ≈α ti

)
∧

(
m∧
j=1

Z′j 6≈α vj

)
∧

(
p∧
l=1

Cl

)
,

such that:
– each Zi occurs only once in P;
– each Z ′j is syntactically different from vj; and
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– each Cl is either a positive, a#X, or negative, a #X, freshness constraint
such that each pair a,X occurs at most once in P.

3. A NEP is in unification solved form if it is a definition with constraints which
does not contain negative constraints.
Theorem 4 below shows that a problem reduced to definition with constraints

solved form has at least one solution.

Theorem 4. Let A be any infinite subalgebra of CORE. If P 6≡ ⊥ is in definition
with constraints solved form, then it has at least one solution.

Proof. First assume P is in unification solved form (see Definition 14). Let ∇
be the context containing all constraints Cl occurring in P. Furthermore, define
the substitution σ that assigns to each free variable Xi the term ti, and the
substitution δ mapping each existential variable Wk to tk. Then J∇σδKς , which
is equivalent to J∇Kςσδ by Lemma 1, is valid in A. Consequently,

J∇ ` Xiσ ≈α tiσδKς and J∇ `Wkδ ≈α tkδKς
are valid judgements. So, σ is an A-solution of P with existential witnesses given
by δ. In the general case, when P is in definition with constraints solved form
containing also negative constraints, the construction is similar. We can guarantee
a solution for the disunification part of the problem,

m∧
j=1

Z ′j 6≈α vj , by Lemma 5.

Definition 15. A set R of rules for solving nominal equational problems is
complete w.r.t. a kind of solved forms S if for each P there exists a family of
NEPs Qi in S-solved form such that P ∗=⇒ R Qi and S(P) =

⋃
i S(Qi).

The next result states that a NEP’s normal form with respect to the simpli-
fication rules given in the previous section is a definition with constraints. In
particular, all parameters are removed from the problem. The proof is by case
analysis, considering all possible occurrences of parameters in a problem.

Theorem 5 (Completeness). Let A be any infinite subalgebra of CORE. Then
the rules in Figures 2, 3, and 4 are complete for parameterless solved forms and
definition with constraints solved forms.

6 Conclusion

In this paper, we introduced nominal equational problems (NEPs) as an extension
of standard first-order equational problems to nominal terms which, besides
equations and disequations, includes freshness and non-freshness constraints. We
proposed a sound and preserving rule-based algorithm to solve NEPs in the nominal
ground algebra CORE, and showed that this algorithm is complete for two main
types of solved forms: parameterless and definition with constraints. As future
work, we aim to investigate the purely equational approach to nominal syntax
via the formulation of freshness constraints using fixed-point equations with the

N-quantifier [21], as well as the solvability of nominal equational problems in
more complex algebras.
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