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Abstract. Despite the widespread adoption of Role-based Access Con-
trol (RBAC) models, new access control models are required for new
applications for which RBAC may not be especially well suited and for
which implementations of RBAC do not enable properties of access con-
trol policies to be adequately defined and proven. To address these issues,
we propose a form of access control model that is based upon the key no-
tion of an event. The access control model that we propose is intended to
permit the representation of access control requirements in a distributed
and changing computing environment, the proving of properties of access
control policies defined in terms of our model, and direct implementa-
tions for access control checking.

1 Introduction

Included amongst the most important problems in access control are the prob-
lems of formally defining richly expressive access control models that enable
security administrators to specify a wide range of policies, using declarative lan-
guages, to prove properties of access control policies (for assurance purposes),
and to evaluate access requests efficiently with respect to a representation of an
access control policy. The increased use of access control policies in distributed
computing environments has increased the need to have formal access control
policies that are declarative (to handle the complexities of policy specification),
to prove properties of policies (for verifiability purposes), and for efficient evalu-
ation (given the computational overheads of potentially accessing large volumes
of data from multiple locations). Moreover, given the complexities and scope in-
volved, distributed applications have increased the requirements for autonomous
changing of access control policies.

In recent years, work on RBAC [28, 8] has emerged as the principal type of
access control model in theory and in practice. RBAC is well suited for use with
relatively static, closed, centralized systems where the assignment of a known,
identifiable user to a role is specified by (typically) a centrally organized team of
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human security administrators that has complete information about user qual-
ifications and responsibilities, and hence user assignments to well-defined job
functions and thus roles. Administrators are also (typically) assumed to have
complete information about the permissions to be assigned to roles. The admin-
istrators of an RBAC policy for a centralized system will revise a policy formu-
lation to take into account any changes to role and permission assignments (as
required to meet organizational demands). These changes do not usually need
to be performed in real-time; in general, RBAC policy specifications for central-
ized systems are relatively static (i.e., user-role, permission-role, and role-role
relationships often persist for long periods of time). The features of RBAC have
been selected to map onto organizational structures, and RBAC policies, in the
centralized case, are mandatory in the sense that a user’s access privileges on
information sources is determined by the job function the user performs within
the organization.

The features of RBAC that make it suitable for use in the centralized case
are not necessarily so relevant in certain distributed computing contexts. In cer-
tain distributed environments, entities that request access to resources may not
be known to enterprises with resources to protect (i.e., users may be stranger
agents), open access policies are natural to adopt [8], as well as closed policies,
decisions on access are more likely to need to be delegated to third-parties (e.g.,
in the case where the information about the identity or attributes of requesters
may be required), the qualifications and responsibilities of requesters do not nec-
essarily have any significance, in terms of access control, and the notion of a job
function may not apply (as requesters for access to an enterprise’s resources may
have no connection with the enterprise). Although the features of RBAC nat-
urally map to organizational structures, for many distributed applications the
concept of an organizational structure may be irrelevant. The size, complexity
and dynamic nature of some distributed systems present particular challenges
that demand that changes to access policies be made frequently (e.g., in response
to sales patterns and volumes) and by autonomous means (rather than by human
security administrators manually modifying policy specifications). In the decen-
tralized case, modifications to access policies for protecting an organization’s
assets may need to be made in response to events in external environments over
which a policy administrator has no control, and about which administrators
may not have complete information. Moreover, the high complexity of access
control policies in the decentralized case demands not only that rich forms of
language be used to represent these requirements but also that effective proof
methods be employed to guarantee satisfaction of properties of policies.

To address the requirements for formal access policy representation for dy-
namic, distributed information systems, we propose an event-based distributed
access control model, we demonstrate how and why access control policies, de-
fined in terms of our model, should be considered as term rewrite systems [16, 23,
4], and we introduce distributed term rewriting systems. The model that we pro-
pose, and its representation using term rewriting, contributes to the literature on
formal access control models by demonstrating how access control models may be



defined that enable the autonomous changing of access control policies, the prov-
ing of properties of policies, and the efficient evaluation of access requests when
the sources of access control and user requested information may be widely dis-
persed. We call the access control model that we introduce the Dynamic Event-
Based Access Control (DEBAC) model. The DEBAC model addresses a number
of limitations of RBAC when the latter is applied in distributed computational
contexts: that in certain distributed environments, entities that request access to
resources may not be known (so it is not possible to authorize access on the basis
of a job function/role); that user authorizations may change dynamically on the
basis of the occurrence of a wider range of events than the role and permission
assignments used in RBAC; and that the information that is used to decide on
granting/denying a user’s request may be distributed across several sites (rather
than being centrally located). We also demonstrate that the expressiveness of
the DEBAC model and the representation of DEBAC policies, as term rewrite
systems, permit a range of properties to be proven of DEBAC policies; these
proofs guarantee that security goals are satisfied by a policy specification and by
the operational methods used to evaluate access requests. Approaches that pro-
vide for provably correct security have always been and remain of high interest
in the security community.

Represented as term rewrite systems, DEBAC policies are specified as a set
of rules and access requests are specified as terms. Access request evaluation
is effected by “reducing” terms to a normal form (see below). Term rewriting
techniques have been successfully applied, and have had deep influence, in the de-
velopment of computational models, programming and specification languages,
theorem provers, and proof assistants. More recently, rewriting techniques have
also been fruitfully exploited in the context of security protocols (see, for in-
stance, [9]), and security policies for controlling information leakage (see, for
example, [18]). As we will see, representing DEBAC policies as term rewrit-
ing systems enables complex and changing access control requirements to be
succinctly specified in a declarative language that is formally well defined. The
formal foundations on which our approach is based make it possible to apply the
extensive theory of rewriting to access control; in particular, standard rewrit-
ing techniques can be used to show that access control policies satisfy essential
properties (such as consistency and completeness) and can be used to study com-
binations of policy specifications. Another important reason to use rewrite-based
languages to specify access control policies is that tools, such as ELAN [14, 22]
and MAUDE [15], can be used to test, compare and experiment with access re-
quest evaluation strategies, to automate equational reasoning, and for the rapid
prototyping of access control policies.

The rest of this paper is organized as follows. In Section 2, we give some
details on term rewriting to help to make the paper self-contained. In Section 3,
we describe the DEBAC model and we introduce distributed rewrite systems as
a tool to define DEBAC policies. In Section 4 we show how DEBAC policies can
be specified via rewrite rules and we use this specification for proving essential
properties of these policies. Some extensions of DEBAC policies are investigated



in Section 5. We discuss related work in Section 6. Finally, we draw conclusions
and make suggestions for further work in Section 7.

2 Preliminaries

In this section we recall some basic notions and notations for term rewriting. We
refer the reader to [4] for additional information.

Term rewriting systems can be seen as programming or specification lan-
guages, or as formulae manipulating systems. They have been used in various
applications (e.g., operational semantics, program optimization, automated the-
orem proving, and recently, computer security). We recall briefly the definition
of first-order terms and term rewriting systems.

A signature F is a finite set of function symbols together with their (fixed)
arity. X denotes a denumerable set of variables X1, X2, . . ., and T (F ,X ) denotes
the set of terms built up from F and X .

Terms are identified with finite labeled trees. The symbol at the root of t is
denoted by root(t). Positions are strings of positive integers. The subterm of t
at position p is denoted by t|p and the result of replacing t|p with u at position
p in t is denoted by t[u]p.

V(t) denotes the set of variables occurring in t. A term is linear if variables
in V(t) occur at most once in t. A term is ground if V(t) = ∅. Substitutions
are written as in {X1 7→ t1, . . . , Xn 7→ tn} where ti is assumed to be different
from the variable Xi. We use Greek letters for substitutions and postfix notation
for their application. We say that two terms unify if there is some substitution
that makes them equal. Such a substitution is called a unifier. The most general
unifier (mgu) is the unifier that will yield instances in the most general form.

Definition 1. Given a signature F , a term rewriting system on F is a set of
rewrite rules R = {li → ri}i∈I , where li, ri ∈ T (F ,X ), li 6∈ X , and V(ri) ⊆ V(li).
A term t rewrites to a term u at position p with the rule l → r and the substitution
σ, written t →l→r

p u, or simply t →R u, if t|p = lσ and u = t[rσ]p. Such a term
t is called reducible. Irreducible terms are said to be in normal form.

We denote by →+
R (resp. →∗

R) the transitive (resp. transitive and reflexive)
closure of the rewrite relation →R. The subindex R will be omitted when it is
clear from the context.

Example 1. Consider a signature for lists of natural numbers, with function sym-
bols:

– z (with arity 0) and s (with arity 1, denoting the successor function) to build
numbers;

– nil (with arity 0, to denote an empty list), cons (with arity 2, to construct
non-empty lists), head and tl (with arity 1, to obtain the head and tail of a
list, resp.), and length (also with arity 1, to compute the length of a list).



The list containing the numbers 0 and 1 is written: cons(z, cons(s(z), nil)), or
simply [z, s(z)] for short. We can specify the functions head, tl and length with
rewrite rules as follows:

head(cons(X, L)) → X
tl(cons(X, L)) → L

length(nil) → z
length(cons(X, L)) → s(length(L))

Then we have a reduction sequence:

length(cons(z, cons(s(z), nil))) → s(length(cons(s(z), nil)) →
s(s(length(nil))) → s(s(z))

Let l → r and s → t be two rewrite rules (we assume that the variables of
s → t were renamed so that there is no common variable with l → r), p the
position of a non-variable subterm of s, and µ a most general unifier of s|p and
l. Then (tµ, sµ[rµ]p) is a critical pair formed from those rules. Note that s → t
may be a renamed version of l → r. In this case a superposition at the root
position is not considered a critical pair.

A term rewriting system R is:

– confluent if for all terms t, u, v: t →∗ u and t →∗ v implies u →∗ s and
v →∗ s, for some s;

– terminating (or strongly normalizing) if all reduction sequences are finite;
– left-linear if all left-hand sides of rules in R are linear;
– non-overlapping if there are no critical pairs;
– orthogonal if R is left-linear and non-overlapping;
– non-duplicating if for all l → r ∈ R and X ∈ V(l), the number of occurrences

of X in r is less than or equal to the number of occurrences of X in l.

For example, the rewrite system in Example 1 is confluent, terminating, left-
linear and non-overlapping (therefore orthogonal), and non-duplicating.

A hierarchical union of rewrite systems consists of a set of rules defining
some basic functions (this is called the basis of the hierarchy) and a series of
enrichments. Each enrichment defines a new function or functions, using the
ones previously defined. Constructors may be shared between the basis and the
enrichments.

We recall a modularity result for termination of hierarchical unions from [19]
(Theorem 14), which will be useful later:

If in a hierarchical union the basis is non-duplicating and terminating,
and each enrichment satisfies a general scheme of recursion, where each
recursive call in the right-hand side of a rule uses subterms of the left-
hand side, then the hierarchical union is terminating.

3 The DEBAC model

In this section, we describe the principal components of the DEBAC model and
introduce distributed term rewriting systems.



3.1 Features of DEBAC models

We begin by defining some of the key sets of constants in the signature that we
use in the formulation of the DEBAC model and DEBAC policies. Specifically,
we require:

– A countable set R of resources, written r1, r2, . . ..
– A countable set A of named actions a1, a2, . . ..
– A countable set U of user identifiers, written u1, u2, . . ..
– A countable set C of categories c0, c1, . . ..
– A countable set E of event identifiers e1, e2, . . ..
– A countable set S of site identifiers, we use Greek letters µ, ν, . . . as site

identifiers.
– A countable set T of time points.

The fundamental notion on which our DEBAC model is based is that of an
event. In the DEBAC model, events are happenings at an instance of time that
involve users performing actions. We view events as structured and described
via a sequence l of ground terms of the form event(ei, u, a, t) where event is a
data constructor of arity four, ei (i ∈ N) are constants in E (denoting unique
event identifiers), u ∈ U identifies a user, a is an action associated to the event,
and t is the time when the event happened. In the discussion that follows, we
represent times as natural numbers in Y Y Y Y MMDD format, and we assume
that time is bidirectional so that proactive and postactive changes may be made
to represent access policy requirements, and past, present and future times can
be used in our model to make access control decisions.

In the DEBAC model, users may request to perform actions on resources
that are potentially accessible from any site in a distributed system. A user is
assigned to a particular category (e.g., normal users, preferred users, etc) on the
basis of the history of events that relate to the user. Access to resources is then
defined in the following way:

A user u ∈ U is permitted to perform an action a ∈ A on a resource
r ∈ R that is located at site s ∈ S if and only if u is assigned to a
category c ∈ C to which a access on r has been assigned.

In the DEBAC model, assignments of a user u to a category c are based on
the occurrence of events that are recorded in the history of events relating to
u. As we will see later, hierarchies of categories of users may also be naturally
accommodated in the DEBAC model.

We formally specify the notion of permitted access in term rewriting form
below. In a DEBAC specification, there are two kinds of functions, which we call
generic and specific, respectively. Generic functions are common to all DEBAC
specifications, whereas specific functions, as their name suggests, depend on the
specific scenario that we are modeling.

Given an event ei, we will use standard generic functions to extract the
component information from an event description. For instance, we may define



a function user that returns the user involved in a given event, as follows:

user(event(E,U,A, T )) → U

We assume that events are atomic, however, our model could be generalized
to permit the representation of events that take place over a period of time and
events that are composed of atomic parts (sub-events).

Also, we have chosen to include the time as an explicit component of an
event. In certain contexts, it is sufficient to know the order of events. In such
cases, the position of the event in a list of events provides enough information
and the time parameter may be omitted.

3.2 Distributed term rewriting systems

An important aspect of the DEBAC model is the capability of representing
systems where resources may be distributed across different sites, and the infor-
mation needed to decide whether a user request is granted or denied may also be
distributed. To address this issue, we will define access control policies as mod-
ular term rewriting systems, where modules may be independently maintained
at different sites, and information sources may be explicitly specified. In other
words, policy designers may directly define the sites (locations) to be used in
access request evaluation.

For the approach to distributed access control that we propose, we introduce
distributed term rewriting systems (DTRSs); DTRSs are term rewriting systems
where rules are partitioned into modules, each associated with a site, and func-
tion symbols are annotated with site identifiers. We assume that each site has a
unique identifier (we use Greek letters µ, ν, . . . to denote site identifiers).

We say that a rule f(t1, . . . , tn) → r defines f . There may be several rules
defining f ; we will assume that they are all at the same site ν. We write fν to
indicate that the definition of the function symbol f is stored in the site ν. If
a symbol is used in a rule without a site annotation, we assume the function is
defined locally.

For example, in a DTRS used in a bank scenario, we may have a local func-
tion account such that account(u) returns u’s bank account number, and rules
computing the average balance of a user’s account, stored in a site ν. Then we
could define the security category of a user u using a rule

category(U) → if averagebalanceν(account(U)) ≥ 10000
then VIP CLIENT
else NORMAL CLIENT

The example above describes one instance of rule specification to illustrate the
use of annotations on function symbols (we redefine categories for users in a more
general context in the next section). Here, to calculate u’s security category as
a client, the average balance of u’s account has to be computed at site ν, but



u’s account number is available locally. We use the notation if b then s else t
as syntactic sugar for the term if-then-else(b, s, t), with the rewrite rules:

if-then-else(true, X, Y ) → X
if-then-else(false, X, Y ) → Y

The syntax used in this paper to associate sites to function definitions is
just one of many alternative notations (another alternative is to use an object-
oriented inspired syntax, writing ν.averagebalance(u)).

In this paper, we assume that the site where each function is defined is known
and therefore the annotations used in function symbols are just constants. An
interesting generalization consists of allowing the use of variables as annotations
when the site is not known in advance, and considering the dynamic computation
of site identifiers (for instance, a ’linker’ program could dynamically generate the
address of the site where averagebalance is defined).

4 DEBAC policy specifications via rewrite rules

In this section, we use an example to illustrate the use of distributed rewriting
systems for specifying DEBAC policies. We do not claim that this is the only
way to formalize a DEBAC policy as a rewrite system. Instead, our goal is to give
an executable1 specification of a DEBAC policy, to show some basic properties,
and to address, using rewriting techniques, the problem of checking that the
specification is consistent, correct, and complete (that is, no access can be both
granted and denied, no unauthorized access is granted and no authorized access
is denied).

4.1 Defining DEBAC policies

We assume that events are represented as ground terms of the form event(ei, u, a, t),
as discussed above. We specify a DEBAC policy by giving its generic and specific
functions.

The generic functions are category and status, together with auxiliary func-
tions such as user (see Section 3). We define these functions by the rules:

category(U,L) → F (status(U,L))
status(U, nil) → cons(c0, nil)

status(U, cons(E,L)) → if U = user(E)
then cons(Estatus(E)), status(U,L))
else status(U,L)

where c0 is a default category (we could return the empty list instead), status
looks for events involving a user U in the list L, and uses a specific function
Estatus that associates a category ci to a user according to the particular event
1 For instance, the language MAUDE [15] can be used to execute rewrite-based spec-

ifications.



ei in which the user was involved (this, of course, is specific to the application
that we are modeling). The auxiliary function user extracts the user involved in
a given event, as explained above. The function F , which is used in the definition
of category, takes as argument a list of categories associated to a user, according
to the history of events, and returns one specific category. Again, the particular
definition of F depends on the application. For example, we can take F to be
the function head that returns the head of the list, or the functions max or min
returning the highest or lowest category in the list, respectively; more elaborate
functions are also possible.

Although we are focusing on first-order rewriting in this paper, the discus-
sion above highlights an advantage of a higher-order rewriting formalism (such
as, e.g., Combinatory Reduction Systems [24]). Indeed, in a higher-order rewrit-
ing system, category and status would be parameterized by F and Estatus, re-
spectively (i.e., they would be variables that can be instantiated with different
functions).

Specific functions, as their name suggests, depend on the specific application
that we are modeling. For example, in a bank scenario, we may define:

Estatus(event(E,U, depositing, T ))
→ if averagebalanceν(account(U)) > 10000 and NotBlacklistedµ(U)
then GOLD-CLIENT else NORMAL-CLIENT

whereas in a university, students may acquire rights (change category) as they
pass their exams:

Estatus(event(E,U, enroll, T )) → REGISTERED-STUDENT

Estatus(event(E,U, pay, T )) → REGULAR

Estatus(event(E,U, exams1styear, T )) → if passν(U, 1styear)
and paidµ(U, fees)
then 2ND-YEAR STUDENT
else IRREGULAR

where passν and paidµ are auxiliary functions returning boolean values.
Consider now the (chronologically ordered) list of events

l = [ event(e2, u, exams1styear, 20060130), event(e1, u, pay, 20060115),
event(e0, u, enroll, 20050901)]

and assume that the function F , that is used in the definition of category, is the
function head returning the head of a list. Then we have

category(u, l) → head(status(u, l)) →∗

head([2ND-YEAR STUDENT, REGULAR, REGISTERED-STUDENT])

which finally leads to category(u, l) →∗ 2ND-YEAR STUDENT.



4.2 Evaluating access requests

Access requests from users can be evaluated by using a rewrite system to grant
or deny the request according to the history of events and the user’s category
assignments that are specified in the DEBAC policy. For that, we may use
the following rules, where a user u asks for an action a to be performed on a
resource r accessible from a site µ. The symbols U,A, R, S, L are variables and
the operator member is the standard membership test operator.

access(A,U, R, S, L) → check(member((A, category(U,L)), privileges(R,S)))
check(true) → grant
check(false) → deny

Here we assume that the function privileges returns a list of pairs (action, category
allowed to perform that action) for a given resource in a given site. For example,
privileges may be defined by rules such as:

privileges(r, s) → [(a11, c11), . . . , (a1n, c1n)]

In the discussion that follows, we will use RDEBAC to refer to the rewrite
system that contains the set of rules that we have defined so far.

4.3 Properties of the DEBAC policy

In order for a DEBAC policy to be “acceptable”, it is necessary that the policy
satisfies certain acceptability criteria. As an informal example, it may be neces-
sary to ensure that an access policy formulation does not specify that any user
is granted and denied the same access privilege on the same data item (i.e., that
the policy is consistent).

The following properties of RDEBAC are easy to check and will be used to
show that the specification is consistent, correct and complete:

Property 1. The rewrite system RDEBAC is terminating and confluent.

Proof. i) To prove termination, we use a modularity result for hierarchical
unions (see Section 2 and [19]). First, observe that the system RDEBAC is
hierarchical: The auxiliary functions such as user, account, averagebalance,
pass, paid, etc., form the basis of the hierarchy; they are terminating and non-
duplicating. The specific rules defining Estatus, privileges and check form the
first enrichment, and they are clearly terminating (they are not recursive).
The second enrichment consists of the rules defining status and auxiliary
functions, such as member. These are recursive functions, but the recursive
calls are made on strict subterms of the arguments in the left-hand side of the
rule. Finally, the non-recursive rules, defining category and access, complete
the system.
We can therefore conclude that the system is terminating [19].



ii) To prove confluence, first note that there are no critical pairs, therefore the
system is locally confluent. Termination and local confluence imply conflu-
ence, by Newman’s Lemma [27].

Corollary 1. Every term has a unique normal form in RDEBAC.

As a consequence of the unicity of normal forms, our specification of the
DEBAC policy RDEBAC is consistent.

Property 2 (Consistency). For any list of events l, u ∈ U , a ∈ A, r ∈ R, s ∈ S:
it is not possible to derive, from RDEBAC, both grant and deny for a request
access(a, u, r, s, l).

We can give a characterization of the normal forms:

Property 3. The normal form of a ground term of the form access(a, u, r, s, l)
where u ∈ U , a ∈ A, r ∈ R, s ∈ S and l is a list of events, is either grant or deny.

As a consequence, our specification of the access control policy is total.

Property 4 (Totality). Each access request access(a, u, r, s, l) from a pre-authenticated
user u to perform an action a on the resource r in a site s is either granted or
denied.

Correctness and Completeness are also easy to check:

Property 5 (Correctness and Completeness). For any u ∈ U , a ∈ A, r ∈ R, s ∈ S
and list of events l:

– access(a, u, r, s, l) →∗ grant if and only if u has the access privilege a on r in
s.

– access(a, u, r, s, l) →∗ deny if and only if u does not have the access privilege
a on r in s.

Proof. Since the specification is consistent and total, it is sufficient to show that
access(a, u, r, s, l) →∗ grant if and only if u belongs to a category of users that
is assigned the access privilege a on the resource r in s. This is easy to check in
the examples above, by inspection of the rewrite rules.

It is important to note that the proofs above do not have to be generated by
a security administrator; rather, the proofs demonstrate that a DEBAC policy
RDEBAC satisfies the properties described above. A security administrator can
simply base a DEBAC policy on the term rewrite system that we have defined
and can be sure that the properties of RDEBAC hold.

The rewrite rules provide an executable specification of the policy (the rewrite
rules are both a specification and an implementation of the access control func-
tion). The rules given above can be transformed into a MAUDE program by
adding type declarations for the function symbols and variables used and by
making minor syntactical changes.



5 Extensions of the DEBAC model

5.1 DEBAC with ordered categories

In RBAC models, it is usual to include role hierarchies to allow for the implicit
specification of authorizations. This idea can be incorporated into the DEBAC
model: we can accommodate a notion of a hierarchy of categories for users, where
a user in category ci will inherit, via a category hierarchy, the privileges of users
in any category cj such that cj < ci with respect to a given partial ordering.

To represent a partial ordering on categories, we can add rules of the form

dpred(ci) → [c1, . . . , cj ]

to specify a function dpred : C → List(C), where dpred(ci) = [c1, . . . , cj ] means
that c1, . . . , cj are direct predecessors of ci in the ordering. Then we redefine
the member function used in the definition of access (see Section 4.2), so that it
takes into account the ordering (i.e., a category will have its privileges plus the
privileges of all the categories that precede it in the ordering).

We use the following definition of member (where we omit the definition of
the standard operations on sets and booleans):

member((A,C), nil) → false
member((A,C), cons((A′, C ′), L)) → if A = A′ and (C = C ′ or C ′ ∈ pred(C))

then true
else member((A,C), L)

pred(C) → dpred(C) ∪ preds(dpred(C))
preds(nil) → nil

preds(cons(C,L)) → pred(C) ∪ preds(L)

Note that we do not need to change the definition of access to accommodate
hierarchies of categories, and we do not need to impose conditions on the form
that a hierarchy takes (apart from an acyclicity condition, which is a natural
requirement for hierarchies).

5.2 DEBAC with constraints

A number of RBAC models with constraints, such as separation of duties, have
been proposed. Constraints that are similar to separation of duties constraints
can also be specified in a DEBAC model using rewrite rules, as an administrative
check on a DEBAC policy.

Separation of duties is the property that specifies that categories assigned to
a user cannot be mutually exclusive. To ensure that a specification of a DEBAC
policy satisfies the separation of duties property, we will erase conflicting cate-
gories assigned to a user (producing a list of non-mutual-exclusive categories).



This is obtained by evaluation of clean(status(u)) in a rewrite system containing
the rules:

clean(nil) → nil
clean(cons(C,L)) → cons(C, clean(eraseclash(C,L)))
eraseclash(C, nil) → nil

eraseclash(C, cons(C ′, L)) → cons(C ′, eraseclash(C,L)) (C,C ′ do not clash)
eraseclash(C, cons(C ′, L)) → eraseclash(L) (C,C ′ clash)

6 Related work

In this section, we discuss our approach in relation to existing related litera-
ture. We note first that reduction systems have been used to model a variety of
problems in security. For example, the SPI-calculus [1] was developed as an ex-
tension of the π-calculus for proving the correctness of authentication protocols.
The π-calculus itself has been used to reason about a number of basic access
control policies and access mechanisms (see, for example, [3]). Term rewriting
has also been used in the analysis of security protocols [9], for defining policies
for controlling information leakage [18], and for intrusion detection [2].

On the use of rewriting for access control specifications, the work by Koch
et al [25] is related to our proposal. In [25], Koch et al describe a formaliza-
tion of RBAC using a graph-based approach, with graph transformation rules
used for describing the effects of actions as they relate to RBAC notions. More
recently, [7, 29] use term rewrite rules to model access control policies. The for-
malization used by Koch et al provides a basis for proving properties of RBAC
specifications, based on the categorical semantics of the graph transformations.
The approach used in [7, 29] is operational: access control policies are specified
as sets of rewrite rules and access requests are specified as terms which are eval-
uated using the rewrite rules. Our work addresses similar issues to [7, 25, 29] but
provides a different formulation of access policies that is suitable for distributed
environments. We also define a new type of access control model, DEBAC, that
we argue generalizes RBAC. On the latter point, RBAC may be viewed as a
special case of DEBAC in which the only necessary events are those involv-
ing security administrators performing the actions of user role assignment and
user role deassignment, and the actions of permission assignment (to a role) and
permission deassignment (from a role). The events of consequence that involve
users are events of activating a role and deactivating a role. These events can
be naturally accommodated in the DEBAC model; however, the DEBAC model
additionally permits any number of other events to be represented.

The work on access control by Jajodia et al [20] and Barker and Stuckey [8]
is also related to ours. In [20] and [8], access control requirements are repre-
sented in (constraint) logic programming languages. In these approaches, the
requirements that must be satisfied in order for requesters to access resources
are specified by using rules expressed in (C)LP languages and access request
evaluation may be viewed as being performed by reducing an access request
to a non-reducible clause (using, for example, SLG-resolution [31] or constraint



solvers [26]). The term rewriting approach is similarly based on the idea of com-
putation by reduction, and has similar attractions to the (C)LP approaches of
Jajodia et al and Barker and Stuckey. However, in contrast to these approaches,
our proposal does not require that the syntactic restriction to access policies
that are locally stratified [6] be adopted (to ensure the existence of a categorical
semantics and thus unambiguous access control policies). Moreover, we describe
a form of access control model, the DEBAC model, that is applicable in the
context of distributed access whereas [20] and [8] formally define access control
models for centralized systems. The DEBAC model that we have described is
also more expressive than any of the Datalog-based languages that have been
proposed for distributed access control (see [5, 21, 17, 10]); these languages, being
based on a monotonic semantics, are not especially well suited for representing
dynamically changing distributed access request policies of the form that we
have considered in this paper.

Work on temporal RBAC [8, 11], is related to our work on DEBAC in the
sense that TRBAC models are concerned with the important notion of change
and events. However, in [8] and [11], the events of interest are restricted to simple
time/clock events. In the DEBAC model, any number of application-specific
events (e.g., enrolling, passing exams, etc.) may be represented, in addition to
clock events. In [12], event expressions are used to trigger the enabling and
disabling of roles. However, the proposal in [12] is based on an RBAC model that
is quite different to the DEBAC model. Moreover, to ensure that a categorical
semantics exists, syntactic restrictions are imposed on the language described
in [12], to treat conflicting (prioritized) event expressions; such restrictions do
not need to be imposed in our approach.

We also note that although our approach is based on rules and events the
framework that we describe has a well defined declarative semantics that is
quite different to the ad hoc operational semantics that are used in, for example,
active rule systems [13]. Active rule systems are also based on the notions of rules
and events but, unless some generally quite restrictive syntactic constraints are
imposed, do not provide an adequate semantic basis for proving properties of
access control policies (unlike term rewrite systems).

7 Conclusions and further work

We have described an event-based distributed access control model that we have
developed to address certain shortcomings of RBAC models when the latter are
applied in certain distributed computing contexts. Our DEBAC model takes
the notion of an event as primitive (rather than a role), and has been designed
to include features that specifically facilitate the autonomous changing of access
control policy requirements, the proving of a wide range of properties of DEBAC
policies (which follow directly from the syntax of DEBAC policy specifications),
and the use of correct operational methods for the evaluation of user access
requests with respect to distributed sources of access control and other forms
of information (that do not need to be syntactically restricted in the way that



other access policy specification languages are). For distributed access control,
we introduced distributed term rewriting systems.

We note that the idea of access policy composition [30] is especially important
in distributed environments (where access control information may need to be
shared across multiple sites). Hence, a key matter for future work is to define
appropriate algebras for DEBAC policy composition. A related matter for future
work is to relax our assumption of atomic events and to treat access request
evaluation in terms of sequences, disjunctions and conjunctions of events (for
which an event algebra may be defined). We also intend to investigate the issue
of evaluating access requests when conflicting information is received about the
same user from different sites in a distributed system.
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