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Abstract. The linear lambda calculus is very weak in terms of expres-
sive power: in particular, all functions terminate in linear time. In this
paper we consider a simple extension with Booleans, natural numbers
and a linear iterator. We show properties of this linear version of Gödel’s
System T and study the class of functions that can be represented. Sur-
prisingly, this linear calculus is extremely expressive: it is as powerful as
System T .

1 Introduction

One of the many strands of work stemming from Girard’s Linear Logic [8] is
the area of linear functional programming (see for instance [1, 19, 14]). These
languages are based on a version of the λ-calculus with a type system corre-
sponding to intuitionistic linear logic. One of the features of the calculus (which
can be seen as a minimal functional programming language) is that it provides
explicit syntactical constructs for copying and erasing terms (corresponding to
the exponentials in linear logic).

A question that arises from this work is what exactly is the computational
power of a linear calculus without the exponentials, i.e., a calculus that is syn-
tactically linear: all variables occur exactly once. This is a severely restricted
form of the (simply typed) λ-calculus, and is summarised by just the following
three rules:

x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A−◦B

Γ ` t : A−◦B ∆ ` u : A

Γ,∆ ` tu : B

Due to the typing constraints—there is no contraction or weakening rule—terms
are linear. Reduction is given by the usual β-reduction rule, but since there is
no duplication or erasing of terms during reduction, this calculus has limited
computational power—all functions terminate in linear time [12].
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Our work builds this language up by introducing: pairs, Booleans with a
conditional, and natural numbers with the corresponding iterator, to obtain
a linear version of Gödel’s System T which we call System L. The study of
System L led us to the discovery of an interesting interplay between linearity
and iteration in Gödel’s original System T . We will show that there is a great
deal of redundancy in Gödel’s System T and the same computational power can
be achieved in a much more restricted system. Gödel’s System T is a formalism
built from the simply typed λ-calculus, adding numbers and Booleans, and a
recursion operator. It is a very simple system, yet has enormous expressive power.
We will show that its power comes essentially from primitive recursion combined
with linear higher-order functions—we can achieve the same power in a calculus
which has these two ingredients: System L.

It is interesting to note that, in contrast with previous linear versions of
System T (e.g., [16, 13]), System L accepts iterators on open linear functions,
since these terms are linear. Reduction is only performed on those terms if the
function becomes closed (i.e., reduction does not create non-linear terms). This
design choice has an enormous impact in the computation power of the calculus:
we show that our calculus is as powerful as System T , whereas previous linear
calculi were strictly weaker (see [16]).

From another perspective there have been a number of calculi, again many
based on linear logic, for capturing specific complexity classes ([2, 7, 11, 3, 15,
24, 4]). One of the main examples is that of bounded linear logic [11], which
has as one of its main aims to find a calculus in-between the linear λ-calculus
and that with the exponentials (specifically the polynomial time computable
functions). There is also previous work that uses linear types to characterise
computations with time bounds [13]. Thus our work can be seen as establishing
another calculus with good computational properties which does not need the
full power of the exponentials, and introduces the non-linear features (copying
and erasing) through alternative means.

Summarising, this paper studies the computational power of a linear System
T , exposing the structure of the components of Gödel’s System T . We show that
System T is intrinsically redundant, in that it has several ways of expressing
duplication and erasure. Can one eliminate this redundancy? The answer is yes;
in this paper we:

– define a linear λ-calculus with natural numbers and an iterator, and intro-
duce iterative types and the closed reduction strategy for this calculus;

– show that we can define the whole class of primitive recursive functions in
this calculus, and more general functions such as Ackermann’s;

– demonstrate that this linear System T has the same computational power
as the full System T .

In the next section we recall the background material. In Section 3 we define
System L and in Section 4 we demonstrate that we can encode the primitive
recursive functions in this calculus, and even go considerably beyond this class
of functions. In Section 5 we show how to encode Gödel’s System T . Finally we
conclude the paper in Section 6.



2 Background

We assume the reader is familiar with the λ-calculus [5], and with the main no-
tions on primitive recursive functions [23]. In this section we recall some notions
on Gödel’s System T , for more details we refer to [10].

System T is the simply typed λ-calculus (with arrow types and products,
and the usual β-reduction and projection rules) where two basic types have
been added: numbers (built from 0 and S; we write n̄ or Sn 0 for S . . . (S︸ ︷︷ ︸

n

0))

and Booleans with a recursor and a conditional defined by the reduction rules:

R 0 u v −→ u
R (St) u v −→ v (R t u v) t

cond true u v −→ u
cond false u v −→ v

System T is confluent, strongly normalising and reduction preserves types (see
[10] for the complete system and results). It is well-known that an iterator has
the same computational power as the recursor. We will replace the recursor by
a simpler iterator:

iter 0 u v −→ u iter (S t) u v −→ v(iter t u v)

with the following typing rule:

Γ `T t : Nat Θ `T u : A ∆ `T v : A → A

Γ,Θ,∆ `T iter t u v : A

In the rest of the paper, when we refer to System T it will be the system with
iterators rather than recursors (it is also confluent, strongly normalising, and
type preserving). We recall the following property, which is used in Section 5:

Lemma 1. – If Γ `T λx.u : T then T = A → B and Γ, x : A `T u : B for
some A, B.

– If Γ `T π1(s) : T then Γ `T s : T ×B for some B.
– If Γ `T π2(s) : T then Γ `T s : A× T for some A.

We now define a call-by-name evaluation strategy for System T : t ⇓ v means
that the closed term t evaluates to the value v.
v is a value

v ⇓ v

t ⇓ λx.t′ t′[u/x] ⇓ v

tu ⇓ v

t ⇓ 〈s, s′〉 s ⇓ v

π1(t) ⇓ v

t ⇓ 〈s, s′〉 s′ ⇓ v

π2(t) ⇓ v

t ⇓ v

S t ⇓ S v

t ⇓ Sn 0 sn(u) ⇓ v

iter t u s ⇓ v

b ⇓ true t ⇓ v

cond b t u ⇓ v

b ⇓ false u ⇓ v

cond b t u ⇓ v

Values are terms of the form: Sn0, true, false, 〈s, s′〉, λx.s.

Lemma 2 (Adequacy of · ⇓ · for System T ). 1. If t ⇓ v then t −→∗ v.
2. If Γ ` t : T , t closed, then:

T = Nat ⇒ t ⇓ S(S . . . (S 0)) T = A×B ⇒ t ⇓ 〈u, s〉
T = Bool ⇒ t ⇓ true or t ⇓ false T = A → B ⇒ t ⇓ λx.s

A program in System T is a closed term at base type (Nat or Bool).



3 Linear λ-calculus with Iterator: System L

In this section we extend the linear λ-calculus [1] with numbers, Booleans, pairs,
and an iterator, and we specify a reduction strategy inspired by closed reduc-
tion [6, 9]. We call this system System L. We begin by defining the set of linear
λ-terms, which are terms from the λ-calculus restricted in the following way
(fv(t) denotes the set of free variables of t).

x
λx.t if x ∈ fv(t)
tu if fv(t) ∩ fv(u) = ∅

Note that x is used at least once in the body of the abstraction, and the condition
on the application ensures that all variables are used at most once. Thus these
conditions ensure syntactic linearity (variables occur exactly once). Next we add
to this linear λ-calculus: pairs, Booleans and numbers. Table 1 summarises the
syntax of System L.
Pairs:

〈t, u〉 if fv(t) ∩ fv(u) = ∅
let 〈x, y〉 = t in u if x, y ∈ fv(u) and fv(t) ∩ fv(u)=∅

Note that when projecting from a pair, we use both projections. A simple ex-
ample of such a term is the function that swaps the components of a pair:
λx.let 〈y, z〉 = x in 〈z, y〉.
Booleans: true and false, and a conditional:

cond t u v if fv(t) ∩ fv(u) = ∅ and fv(u) = fv(v)

Note that this linear conditional uses the same resources in each branch.
Numbers: 0 and S, and an iterator:

iter t u v if fv(t)∩fv(u)= fv(u)∩fv(v)= fv(v)∩fv(t)=∅

Construction Variable Constraint Free Variables (fv)

0, true, false − ∅
S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = fv(t) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λx.t x ∈ fv(t) fv(t) r {x}
〈t, u〉 fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

let 〈x, y〉 = t in u fv(t) ∩ fv(u) = ∅, x, y ∈ fv(u) fv(t) ∪ (fv(u) r {x, y})
cond t u v fv(u) = fv(v), fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

Table 1.



Definition 1 (Closed Reduction). Table 2 gives the reduction rules for Sys-
tem L, substitution is a meta-operation defined as usual. Reductions can take
place in any context.

Name Reduction Condition

Beta (λx.t)v −→ t[v/x] fv(v) = ∅
Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y] fv(t) = fv(u) = ∅
Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v) fv(tv) = ∅
Iter iter 0 u v −→ u fv(v) = ∅

Table 2. Closed reduction

Reduction is weak: for example, λx.(λy.y)x is a normal form. Note that
all the substitutions created during reduction (rules Beta, Let) are closed; this
corresponds to a closed-argument reduction strategy (called ca in [6]). Also note
that Iter rules are only triggered when the function v is closed.

The following results are proved by induction, by showing that substitution
and reduction preserve the variable constraints given in Table 1.

Lemma 3 (Correctness of Substitution). Let t and u be valid terms, x ∈
fv(t), and fv(u) = ∅, then t[u/x] is valid.

Lemma 4 (Correctness of −→). Let t be a valid term, and t −→ u, then:

1. fv(t) = fv(u);
2. u is a valid term.

Although reduction preserves the free variables of the term, a subterm of the
form iter n u v may become closed after a reduction in a superterm, triggering
in this way a reduction with an Iter rule.

3.1 Typed Terms

The set of linear types is generated by the grammar:

A,B ::= Nat | Bool | A−◦B | A⊗B

Definition 2. Let A0, . . . , An be a list of linear types (note that A0, . . . , An

cannot be empty). It(A0, . . . , An) denotes a non-empty set of iterative types
defined by induction on n:

n = 0 : It(A0) = {A0 −◦A0}
n = 1 : It(A0, A1) = {A0 −◦A1}
n ≥ 2 : It(A0, . . . , An) = It(A0, . . . , An−1) ∪ {An−1 −◦An}



Axiom and Structural Rule:

(Axiom)
x : A `L x : A

Γ, x : A, y : B, ∆ `L t : C
(Exchange)

Γ, y : B, x : A, ∆ `L t : C

Logical Rules:

Γ, x : A `L t : B
(−◦Intro)

Γ `L λx.t : A−◦B

Γ `L t : A−◦B ∆ `L u : A
(−◦Elim)

Γ, ∆ `L tu : B

Γ `L t : A ∆ `L u : B
(⊗Intro)

Γ, ∆ `L 〈t, u〉 : A⊗B

Γ `L t : A⊗B x : A, y : B, ∆ `L u : C
(⊗Elim)

Γ, ∆ `L let 〈x, y〉 = t in u : C

Numbers

(Zero)
`L 0 : Nat

Γ `L n : Nat
(Succ)

Γ `L S n : Nat

Γ `L t : Nat Θ `L u : A0 ∆ `L v : It(A0, . . . , An) (?)
(Iter)

Γ, Θ, ∆ `L iter t u v : An

(?) where if t ≡ Sm 0 then n = m otherwise n = 0
Booleans

(True)
`L true : Bool

(False)
`L false : Bool

∆ `L t : Bool Γ `L u : A Γ `L v : A
(Cond)

Γ, ∆ `L cond t u v : A

Fig. 1. Type System for System L

Iterative types will serve to type the functions used in iterators. Note that
It(A0) = It(A0, A0) = It(A0, . . . , A0). We associate types to terms in System L
using the typing rules given in Figure 1, where we use the following abbrevia-
tions: Γ `L t : It(A0, . . . , An) iff Γ `L t : B for each B ∈ It(A0, . . . , An). We
use a Curry-style type system; the typing rules specify how to assign types to
untyped terms (there are no type decorations).

Note that the only structural rule in Figure 1 is Exchange, we do not have
Weakening and Contraction rules: we are in a linear system. For the same reason,
the logical rules split the context between the premises. The rules for numbers
are standard. In the case of a term of the form iter t u v, we check that t is a term
of type Nat and that v and u are compatible. There are two cases: if t is Sn 0 then
we require v to be a function that can be iterated n times on u. Otherwise, if t is
not (yet) a number, we require v to have a type that allows it to be iterated any
number of times (i.e. u has type A and v : A−◦A, for some type A). The typing
of iterators is therefore more flexible than in System T , but we will see that this
extra flexibility does not compromise the confluence and strong normalisation
of the system. Also note that we allow the typing of iter t u v even if v is open
(in contrast with [16, 13]), but we do not allow reduction until v is closed. This



feature gives our system the full power of System T (whereas systems that do
not allow building iter with v open are strictly weaker [16]).

We denote by dom(Γ ) the set of variables xi such that xi : Ai ∈ Γ . Since
there are no Weakening and Contraction rules, we have:

Lemma 5. If Γ `L t : A then dom(Γ ) = fv(t).

Theorem 1 (Subject Reduction). If Γ `L M : A and M −→ N , then
Γ `L N : A.

Proof. By induction on the type derivation Γ `L M : A, using a Substitution
Lemma: If Γ, x : A `L t : B and ∆ `L u : A (where fv(t) ∩ fv(u) = ∅) then
Γ,∆ `L t[u/x] : B. @

3.2 Strong Normalisation.

In System L, every sequence of reductions starting from a typable term is finite
(i.e. typable terms are strongly normalisable). Note that, although System L
extends the linear λ-calculus (where every term is strongly normalisable), un-
typed terms of System L may have infinite reductions. Strong normalisation for
System L is a consequence of strong normalisation for System T . We start by
defining a translation from System L into System T .

Definition 3. We define the compilation of types and terms in System L into
System T , denoted J·K, in the following way:

JNatK =Nat JBoolK =Bool
JA−◦BK=JAK → JBK JA⊗BK=JAK× JBK

J0K = 0
JtrueK = true
JfalseK = false
JS tK = S(JtK)
JxK = x
Jλy.tK = λy.JtK
JtuK = JtKJuK
J〈t, u〉K = 〈JtK, JuK〉
Jlet 〈x, y〉 = t in uK = JuK[(π1JtK)/x][(π2JtK)/y]
Jcond t u vK = cond JtK JuK JvK

Jiter t u vK =

{
JvKm(JuK) if t = Sm0, m > 0
iter JtK JuK JvK otherwise

If Γ = x1 : A1, . . . xn : An, then JΓ K = x1 : JA1K, . . . xn : JAnK. Note that the
translation of an iterator where the number of times to iterate is known and
positive, develops this iteration. If it is zero or not known we use System T ’s
iterator.



Theorem 2 (Strong Normalisation). If Γ `L t : T , t is strongly normalis-
able.

Proof (Sketch). Strong normalisation for System L is proved by mapping all
the reduction steps in System L into one or more reduction steps in System T .
Notice that reduction steps of the form iter Sm+10 u v −→ v(iter Sm0 u v) map
into zero reduction steps in System T , but we can prove that any sequence of
reduction steps of that form is always terminating. @

3.3 Church-Rosser

System L is confluent, which implies that normal forms are unique. For typable
terms, confluence is a direct consequence of strong normalisation and the fact
that the rules are non-overlapping (using Newmann’s Lemma [21]). In fact, all
System L terms are confluent even if they are non-terminating: this can be
proved using parallel-reductions.

Theorem 3 (Church-Rosser). If t −→∗ t1 and t −→∗ t2, then there is a term
t3 such that t1 −→∗ t3 and t2 −→∗ t3.

Theorem 4 (Adequacy). If t is closed and typable, then one of the following
holds:

– `L t : Nat and t −→∗ n
– `L t : Bool and t −→∗ true or t −→∗ false
– `L t : A−◦B and t −→∗ λx.u for some term u.
– `L t : A⊗B and t −→∗ 〈u, v〉 for some terms u, v.

Proof. By Lemma 5, typing judgements for t have the form `L t : T , and T is
either Nat, Bool, A−◦B or A⊗B. By Subject Reduction, Strong Normalisation,
and Lemma 4, we know that t has a closed, typable normal form u. We show the
case when `L u : Nat, the others follow with similar reasoning. Since u is a closed
term of type Nat, it cannot be a variable, an abstraction or a pair. Hence u is
either an application, a pair projection, a conditional, an iterator or a number.

– Let u = u1u2 . . . un, n ≥ 2, such that u1 is not an application. Then u1 is
closed, and since u is typable, u1 must have an arrow type. But then by
induction u1 is an abstraction, and then the Beta rule would apply, contra-
dicting our assumptions.

– Let u = let 〈x, y〉 = s in v. Then s is closed and fv(v) = {x, y}. Since u
is typable, s has type A ⊗ B, and by induction it should be a (closed) pair
〈s1, s2〉. But then the Let rule would apply contradicting our assumptions.

– Let u = cond n s v. Then n, t, v are closed. Since u is typable, n must have
a Boolean type, and by induction it should be either true or false. But then
the Cond rule would apply contradicting our assumptions.

– Let u = iter n s v. Since u is closed, so are n, t and v. Since u is typable n
must be a term of type Nat, and by induction, n is a number. But then the
Iter rule would apply contradicting our assumptions.

Thus, if `L t : Nat then t reduces to a number. @



4 Primitive Recursive Functions Linearly

In this section we show how to define the primitive recursive functions in System
L. We conclude the section indicating that we can encode substantially more
than primitive recursive functions.

Erasing linearly. Although System L is a linear calculus, we can erase numbers.
In particular, we can define the projection functions fst, snd : Nat⊗ Nat−◦ Nat:

fst = λx.let 〈u, v〉 = x in iter v u (λz.z)
snd = λx.let 〈u, v〉 = x in iter u v (λz.z)

Lemma 6. For any numbers ā and b̄, fst〈ā, b̄〉 −→∗ ā and snd〈ā, b̄〉 −→∗ b̄.

Proof. We show the case for fst. Let ā = Sn 0, b̄ = Sm 0.
fst〈ā, b̄〉 −→ (let 〈u, v〉 = 〈Sn 0,Sm 0〉 in iter v u λz.z)

−→ iter (Sm 0) (Sn 0) λz.z −→∗ Sn 0 = ā. @

Copying linearly. We can also copy natural numbers in this linear calculus. For
this, we define a function C : Nat−◦Nat⊗Nat that given a number n̄ returns a
pair 〈n̄, n̄〉: C = λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉).

Lemma 7. For any number n̄, C n̄ −→∗ 〈n̄, n̄〉.

Proof. By induction on n̄.
C 0 −→ iter 0 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉) −→ 〈0, 0〉
C (St+1 0) = iter (St+1 0) 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)

−→ (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)
(iter (St 0) 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉))

−→∗ (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)〈t, t〉
−→ let 〈a, b〉 = 〈t, t〉 in 〈Sa,Sb〉 −→ 〈St,St〉 @

It is easy to apply this technique to other data structures (e.g. linear lists).
Note that we do not need iterative types for this (the standard typing of iterators
is sufficient). More interestingly, we will show in Section 5 that iterators will
indeed allow us to erase any closed term, and moreover copy any closed term.

Primitive Recursive Functions. System L can express the whole class of primitive
recursive functions. We have already shown we can project, and of course we have
composition. We now show how to encode a function h defined by primitive
recursion from f and g (see Section 2) using iter. First, assume h is defined by
the following, simpler scheme (it uses n only once in the second equation):

h(x, 0) = f(x)
h(x, n + 1) = g(x, h(x, n))

Given a function g : Nat−◦ Nat−◦ Nat, let g′ be the term:

λy.λz.let 〈z1, z2〉 = C z in gz1(yz2) : (Nat−◦ Nat)−◦ (Nat−◦ Nat)



then h(x, n) is defined by the term (iter n f g′)x : Nat, with f : Nat −◦ Nat.
Indeed, we can show by induction that (iter n f g′)x, where x and n are numbers,
reduces to the number h(x, n); we use Lemma 7 to copy numbers:

(iter 0 f g′)x −→ (f x) = h(x, 0)
(iter (Sn+1 0) f g′) x −→∗ (let 〈z1, z2〉 = C z in gz1(yz2))

[(iter (Sn 0) f g′)/y, x/z]
−→∗ let 〈z1, z2〉 = 〈x, x〉 in gz1((iter (Sn 0) f g′)z2)
−→ g x((iter (Sn 0) f g′)x) = h(x, n + 1) by induction.

Now to encode the standard primitive recursive scheme, which has an extra n in
the last equation, all we need to do is copy n: h(x, n) = let 〈n1, n2〉 = C n in sx,
where s = iter n2 f (λy.λz.let 〈z1, z2〉 = C z in gz1(yz2)n1). Note that the
iterator in the encoding of h(x, n) uses an open function, but it will be closed
before reduction.

Beyond Primitive Recursion. Ackermann’s function is a standard example of a
non primitive recursive function:

ack(0, n) = S n
ack(S n, 0) = ack(n, S 0)
ack(S n, S m) = ack(n, ack(S n, m))

In a higher-order functional language, we have an alternative definition. Let
succ = λx.S x : Nat −◦ Nat, then ack(m,n) = a m n where a is the function
defined by:

a 0 = succ A g 0 = g(S 0)
a (S n) = A (a n) A g (S n) = g(A g n)

Lemma 8. Both definitions are equivalent: For all x, y : Nat, a x y = ack(x, y).

Proof. By induction on x, proving first by induction on n that if g = λy.ack(x, y)
then A g n = ack(S x, n). @

We can define a and A in System L as follows:
a n = iter n succ A : Nat−◦ Nat A g n = iter (S n) (S 0) g : Nat

We show by induction that this encoding is correct:

– a 0 = iter 0 succ A = succ
A g 0 = iter (S 0) (S 0) g = g(S 0)

– a (S n) = iter (Sn 0) succ A = A(iter n succ A) = A(a n)
A g (S n) = iter (S(S n)) (S 0) g = g(iter (S n) (S 0) g) = g(A g n).

Then Ackermann’s function can be defined in System L as:
ack(m,n) = (iter m succ (λgu.iter (S u) (S 0) g)) n : Nat

The correctness of this encoding follows directly from the lemma above. Note
that iter (S u) (S 0) g cannot be typed in [16], because g is a free variable. We
allow building the term with the free variable g, but we do not allow reduction
until it is closed.



5 The Power of System L: System T Linearly

In this section we show how to compile System T programs into System L, i.e.
we show that System T and System L have the same computational power.

Explicit Erasing. In the linear λ-calculus, we are not able to erase arguments.
However, terms are consumed by reduction. The idea of erasing by consuming is
not new, it is known as Solvability (see [5] for instance). Our goal in this section
is to give an analogous result that allows us to obtain a general form of erasing.

Definition 4 (Erasing). We define the following mutually recursive operations
which, respectively, erase and create a System L term. If Γ `L t : T , then E(t, T )
is defined as follows (where I = λx.x):

E(t, Nat) = iter t I I E(t, A⊗B) = let 〈x, y〉 = t in E(x,A)E(y, B)
E(t, Bool) = cond t I I E(t, A−◦B) = E(tM(A), B)

M(Nat) = 0 M(A⊗B) = 〈M(A),M(B)〉
M(Bool) = true M(A−◦B) = λx.E(x, A)M(B)

Lemma 9. If Γ `L t : T then:

1. fv(E(t, T )) = fv(t) and Γ `L E(t, T ) : A−◦A.
2. M(T ) is a closed System L term such that `L M(T ) : T .

Proof. Simultaneous induction on T . We show two cases:

– fv(E(t, A⊗B)) = fv(let 〈x, y〉 = t in E(x, A)E(y, B)) = fv(t). By induction:
x : A `L E(x,A) : (C −◦ C)−◦ (C −◦ C) and y : B `L E(y, B) : C −◦ C
then x : A, y : B `L E(x,A)E(y, B) : C −◦ C. Then
x : A, y : B `L E(t, A⊗B) : C −◦ C, for any C.
fv(M(A⊗B)) = fv(〈M(A),M(B)〉) = ∅ by IH(2), and `L 〈M(A),M(B)〉 :
A⊗B by IH(2).

– fv(E(t, A −◦ B)) = fv(E(tM(A), B)) = fv(tM(A)) = fv(t) by IH (1 and 2).
Also, by IH(1) Γ `L E(tM(A), B) : C −◦ C for any C, since `L M(A) : A
by IH(2).
fv(M(A−◦B)) = fv(λx.E(x, A)M(B)) = ∅ by IH(1 and 2). Also, `L M(A−◦
B) : A −◦ B because by IH(1) x : A `L E(x,A) : B −◦ B and by IH(2)
`L M(B) : B. @

Lemma 10. If x : A `L t : T and `L v : A then: E(t, T )[v/x] = E(t[v/x], T ).

Proof. By induction on T , using the fact that `L t[v/x] : T . @

Lemma 11 (Erasing Lemma). If `L t : T (i.e. t closed) then E(t, T ) −→∗ I.

Proof. By induction on T , using Theorem 4:

E(t, Nat) = iter t I I −→∗ iter (Sn0) I I −→∗ I



E(t, Bool) = cond t I I −→∗ I.
If T = A ⊗ B, then t −→∗ 〈a, b〉 and by Theorem 1 and Lemma 4: `L a : A

and `L b : B. By induction, E(a,A) −→∗ I and E(b, B) −→∗ I, therefore
let 〈x, y〉 = 〈a, b〉 in E(x,A)E(y, B) −→∗ I.

If T = A −◦ B then E(t, A −◦ B) = E(tM(A), B) and by Lemma 9 M(A) is a
closed System L term of type A, thus by induction E(tM(A), B) −→∗ I. @

Explicit Copying. We have shown how to duplicate numbers in Section 4, but
to simulate System T we need to be able to copy arbitrary terms. The previous
technique can be generalised to other data structures, but not to functions.
However, the iterator copies (closed) functions. Our aim now is to harness this.
We proceed with an example before giving the general principle. Suppose that
we want to write λx.〈x, x〉. This term can be linearised : λxy.〈x, y〉. If we now
apply this term to two copies of the argument, we are done. Although we don’t
have the argument yet, we can write a System L term which will create these
copies: λz.iter (S2 0) (λxy.〈x, y〉) (λx.xz).

Lemma 12 (Duplication Lemma). If t is a closed System L term, then there
is a System L term D such that Dt = 〈t, t〉.

Proof. Let D = λz.iter S(S 0) (λxy.〈x, y〉) (λx.xz) then
Dt −→ iter S(S 0) (λxy.〈x, y〉) (λx.xt)

−→∗ (λx.xt)((λx.xt)(λxy.〈x, y〉)) −→∗ 〈t, t〉 @

This result also applies to numbers, so we have two different ways of copying
numbers in System L.

5.1 Compilation

We now put the previous ideas together to give a formal compilation of System
T into System L.

Definition 5. System T types are translated into System L types using 〈〈·〉〉 de-
fined by:

〈〈Nat〉〉 = Nat 〈〈Bool〉〉 = Bool
〈〈A → B〉〉 = 〈〈A〉〉 −◦ 〈〈B〉〉 〈〈A×B〉〉 = 〈〈A〉〉 ⊗ 〈〈B〉〉

If Γ = x1 : T1, . . . , xn : Tn then 〈〈Γ 〉〉 = x1 : 〈〈T1〉〉, . . . , xn : 〈〈Tn〉〉.

Definition 6 (Compilation). Let t be a System T term such that Γ `T t :
T . Its compilation into System L is defined as: [x1] . . . [xn]〈〈t〉〉 where fv(t) =
{x1, . . . , xn}, n ≥ 0, we assume without loss of generality that the variables are
processed in lexicographic order, and 〈〈·〉〉, [·]· are defined below. We abbreviate



iter (Sn 0) (λx1 · · ·xn.t) (λz.zx) as Cx1,...,xn
x t, and ([x]t)[y/x] as Ax

yt.

〈〈x〉〉 = x
〈〈tu〉〉 = 〈〈t〉〉〈〈u〉〉
〈〈λx.t〉〉 = λx.[x]〈〈t〉〉, if x ∈ fv(t)

= λx.E(x, 〈〈A〉〉)〈〈t〉〉, otherwise, where Γ `T t : A → B = T (Lemma 1)
〈〈0〉〉 = 0
〈〈S t〉〉 = S〈〈t〉〉
〈〈iter n u v〉〉 = iter 〈〈n〉〉 〈〈u〉〉 〈〈v〉〉
〈〈true〉〉 = true
〈〈false〉〉 = false
〈〈cond n u v〉〉 = cond 〈〈n〉〉 〈〈u〉〉 〈〈v〉〉
〈〈〈t, u〉〉〉 = 〈〈〈t〉〉, 〈〈u〉〉〉
〈〈π1t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(y, 〈〈B〉〉)x, where Γ `T t : A×B = T (Lemma 1)
〈〈π2t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(x, 〈〈A〉〉)y, where Γ `T t : A×B = T (Lemma 1)

and [·]· is defined as:

[x](S t) = S([x]t)
[x]x = x
[x](λy.t) = λy.[x]t

[x](tu) =


Cx1,x2

x (Ax
x1

t)(Ax
x2

u) x ∈ fv(t), x ∈ fv(u)
([x]t)u x ∈ fv(t), x 6∈ fv(u)
t([x]u) x ∈ fv(u), x 6∈ fv(t)

[x](iter n u v) =



iter [x]n u v x ∈ fv(n), x 6∈ fv(uv)
iter n [x]u v x 6∈ fv(nv), x ∈ fv(u)
iter n u [x]v x 6∈ fv(nu), x ∈ fv(v)
C

x,x2
x iter (Ax

x1
n) (Ax

x2
u) v x ∈ fv(n) ∩ fv(u), x 6∈ fv(v)

Cx1,x3
x iter (Ax

x1
n) u (Ax

x3
v) x ∈ fv(n) ∩ fv(v), x 6∈ fv(u)

Cx2,x3
x iter n (Ax

x2
u) (Ax

x3
v) x 6∈ fv(n), x ∈ fv(u) ∩ fv(v)

Cx1,x2,x3
x iter (Ax

x1
n) (Ax

x2
u) (Ax

x3
v) x ∈ fv(n) ∩ fv(u) ∩ fv(v)

[x](cond n u v) follows the same structure as iter above, replacing iter by cond.

[x]〈t, u〉 =


Cx1,x2

x 〈Ax
x1

t, Ax
x2

u〉, x ∈ fv(t), x ∈ fv(u)
〈[x]t, u〉, x ∈ fv(t), x 6∈ fv(u)
〈t, [x]u〉, x ∈ fv(u), x 6∈ fv(t)

[x](let 〈y, z〉 = t in u) =


let 〈y, z〉 = [x]t in u x ∈ fv(t), x 6∈ fv(u)
let 〈y, z〉 = t in [x]u x 6∈ fv(t), x ∈ fv(u)
Cx1,x2

x (let 〈y, z〉 = Ax
x1

t in Ax
x2

u) x ∈ fv(t), x ∈ fv(u)

where the variables x1, x2 and x3 above are assumed fresh.



As an example, we show the compilation of the combinators:
− 〈〈λx.x〉〉 = λx.x
− 〈〈λxyz.xz(yz)〉〉 = λxyz.iter 2 (λz1z2.xz1(yz2)) λa.az
− 〈〈λxy.x〉〉 = λxy.E(y, B)x

Lemma 13. If t is a System T term, then:

1. fv([x1] · · · [xn]〈〈t〉〉) = fv(t).
2. [x1] · · · [xn]〈〈t〉〉 is a valid System L term (satisfying the constraints in Ta-

ble 1), if fv(t) = {x1, . . . , xn}.

Proof. The first part is by induction on t using Lemma 9, and the second part
by induction on t using the first part. @

We will now prove that the compilation produces a typable term in System
L. For this we will need a lemma in which we will use the type system for System
L augmented with weakening and contraction rules for variables in a certain set
X. Typing judgements in this system will be denoted Γ `L+X t : T . We will
denote Γ|X the restriction of Γ to the variables in X.

Lemma 14. If Γ `T t : T and {x1, . . . , xn} ⊆ fv(t) then

1. 〈〈Γ|fv(t)〉〉 `L+fv(t) 〈〈t〉〉 : 〈〈T 〉〉
2. 〈〈Γ|fv(t)〉〉 `L+X [x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉 implies

〈〈Γ|fv(t)〉〉 `L+X′ [x][x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉 where X = fv(t)−{x1, . . . , xn}, x ∈ X,
X ′ = X − {x}.

Proof. By simultaneous induction on t. @

Corollary 1. If Γ `T t : T and fv(t) = {x1, . . . , xn} then
〈〈Γ|fv(t)〉〉 `L [x1] . . . [xn]〈〈t〉〉 : 〈〈T 〉〉.

We will now prove that we can simulate System T evaluations. First we prove a
substitution lemma.

Lemma 15 (Substitution). Let t and w be System L terms such that fv(t) =
{x1, . . . , xn}, n ≥ 1, and fv(w) = ∅, then

([x1] . . . [xn]〈〈t〉〉)[〈〈w〉〉/x1] −→∗ [x2] . . . [xn]〈〈t[w/x1]〉〉.

Proof. By Lemma 13 (Part 1), fv(〈〈w〉〉) = ∅, and x1 ∈ fv([x1] . . . [xn]〈〈t〉〉). We
proceed by induction on t. @

Theorem 5 (Simulation). Let t be a System T program, then: t ⇓ u ⇒
〈〈t〉〉 −→∗ 〈〈u〉〉.

Proof. By induction on t ⇓ u. We show two cases:
Application. By induction: 〈〈tu〉〉 = 〈〈t〉〉〈〈u〉〉 −→∗ 〈〈λx.t′〉〉〈〈u〉〉. There are now two
cases:

If x ∈ fv(t′) then using Lemma 15:



〈〈λx.t′〉〉〈〈u〉〉 = (λx.[x]〈〈t′〉〉)〈〈u〉〉 −→ ([x]〈〈t′〉〉)[〈〈u〉〉/x] −→∗ 〈〈t′[u/x]〉〉 −→∗ 〈〈v〉〉
Otherwise, using Lemmas 10 and 11:

〈〈λx.t′〉〉〈〈u〉〉 = (λx.E(x,A)〈〈t′〉〉)〈〈u〉〉 −→∗ (E(〈〈u〉〉, 〈〈A〉〉)〈〈t′〉〉) −→ 〈〈t′〉〉
= 〈〈t′[u/x]〉〉 −→∗ 〈〈v〉〉

Projection. By induction and Lemmas 10 and 11:
〈〈π1t〉〉 = let 〈x, y〉 = 〈〈t〉〉 in E(y, 〈〈A〉〉)x −→∗ let 〈x, y〉 = 〈〈〈u, v〉〉〉 in E(y, 〈〈A〉〉)x

= let 〈x, y〉 = 〈〈〈u〉〉, 〈〈v〉〉〉 in E(y, 〈〈A〉〉)x −→ E(〈〈v〉〉, 〈〈A〉〉)〈〈u〉〉 −→∗ 〈〈v〉〉 @

6 Conclusions

We have shown how to build a powerful calculus starting from the (very weak in
terms of computational power) linear λ-calculus, by adding Booleans, numbers
and linear iterators. We have seen that linear iterators can express much more
than primitive recursive functions: the system has the computational power of
System T .

We have focused on the computational power of the linear calculus in this
paper; there are other interesting aspects that remain to be studied:

– By the Curry-Howard isomorphism, the results can also be expressed as a
property of the underlying logic (our translation from System T to System
L eliminates Weakening and Contraction rules).

– Applications to category theory: It is well-known that a Cartesian closed
category (CCC) models the structure of the simply typed λ-calculus (i.e.,
a CCC is the internal language for the λ-calculus [17, 18]). The internal
language of a symmetric monoidal closed category (SMCC) is the linear λ-
calculus [20]. If we add a natural numbers object (NNO) to this category,
then this corresponds to adding natural numbers and an iterator to the cal-
culus. In this setting, a natural question arises : what is the correspondence
between CCC+NNO and SMCC+NNO?

– Does the technique extend to other typed λ-calculi, for instance the Calculus
of Inductive Constructions [22]?
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