
Problem Set 2

1. In this first problem you are asked to define both insert sort and bubble sort functions on lists of natural
numbers defined with a list concatenation operator _;_ which is associative and has nil as its unit element.
Since you already became familiar with how to define functions by equations in Problem Set 1, you can feel
free to use other Maude features such as the built-in (but also equationally defined) if_then_else_fi operator
(included together with the built-in BOOL module, which is imported by default into any other module), and
also the [owise] feature. Another convenience in this example is the importation of the built-in module NAT,
so that Boolean predicates such as _>_ and _>=_ on natural numbers are already available to you. A last new
possibility that may be useful to you is the use of conditional equations, with syntax:

ceq u = v if cond .

Conditions can generally be a conjunction of equalities. Here, when declaring a conditional equation, it may be
quite enough for you to give a Boolean condition of the form bexp, where bexp is a Boolean expression, which
is just syntactic sugar for the equation: bexp = true. A few test cases are included for your convenience.

fmod INSERT&BUBBLE-SORT is protecting NAT .

sort List .

subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [ctor assoc id: nil] .

ops isort bsort : List -> List . *** insert, resp. bubble, sort

vars N M : Nat . vars L Q : List .

*** include here your equations for isort and bsort,

*** as well as definitions for any auxiliary operators

*** such as, e.g., an insert function, and the corresponding

*** equations defining such auxiliary operators.

endfm

red isort(6 ; 5 ; 4 ; 3 ; 1 ; 0) . *** should be: 0 ; 1 ; 3 ; 4 ; 5 ; 6

red isort(6 ; 3 ; 5 ; 3 ; 1 ; 1) . *** should be: 1 ; 1 ; 3 ; 3 ; 5 ; 6

red isort(6 ; 3 ; 5 ; 3 ; 1 ; 3) . *** should be: 1 ; 3 ; 3 ; 3 ; 5 ; 6

red bsort(6 ; 5 ; 4 ; 3 ; 1 ; 0) . *** same results as for isort

red bsort(6 ; 3 ; 5 ; 3 ; 1 ; 1) .

red bsort(6 ; 3 ; 5 ; 3 ; 1 ; 3) .

2. Multisets of natural numbers can be defined using a binary associative and commutative multiset union con-
structor , . Although , has mt as its identity element, the operator , will only be declared associative and
commutative, so that the identity property of the empty multiset mt has to be defined by an explicit equation.
The reason for not using the id: mt attribute here is to save you from potential non-termination problems
you might run into, since you are still becoming familiar with the use of axioms and combinations of the id:

axioms with A or AC can be tricky. Although you can use Maude features like the [owise] or Maude’s ==

built-in equality predicate, we would recommend that you do not use them in this example, since this can give
you a more complete experience on how to define equations modulo axioms without the help of extra props.
You are asked to write equations defining the following additional properties and functions:
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(a) an equation stating that mt is an identity element for ,

(b) an equality predicate on numbers

(c) multiset difference between two multisets

(d) the containment predicate ⊆ on multisets

(e) the membership relation ∈ of a number in a multiset

(f) an equality predicate between multisets

(g) intersection of multisets

(h) a function removing all occurrences of a number in a multiset

(i) cardinality of a multisets (counting repetitions)

(j) a function computing how many different naturals appear in a multiset.

Given a number n and a multiset U , define the multiplicity of n in U , denoted mult(n,U ), as the number of
occurrences of n in U . For example, mult(3 , (1 , 2 , 2 , 3 , 3 , 3 , 3 , 7 )) = 4 .

Since notions of multiset difference, containment, membership, intersection, and removing a number must take
account of multiplicities, we can specify precisely what these functions should do in terms of multiplicities:

• the multiplicity of any number n in the multiset difference U minus V should be mult(n,U )−mult(n,V ),

• we should have U ⊆ V true iff for each n we have mult(n,U ) ≤ mult(n,V ),

• n ∈ U should be true iff mult(n,U ) 6= 0 ,

• the multiplicity of any number n in the multiset intersection U∩V should be min(mult(n,U ),mult(n,V )),

• the multiplicity of n in rem(m,U ) should be 0 if n = m and mult(n,U ) otherwise.

Multiset cardinality counting repetitions is the obvious function, e.g., |3, 3, 4, 4, 4, 5, 5, 5, 5, 5| = 10. Instead,
the number of distinct elements is [3, 3, 4, 4, 4, 5, 5, 5, 5, 5] = 3. Finally, a multiset equality predicate has the
obvious meaning: two multisets are equal iff they are equal as terms modulo associativity and commutativity.

Now that the meaning of all these functions has been clarified, you are asked to give equations making mt

the identity element for multiset union and defining all the functions listed in the module below by writing
their appropriate equational definitions modulo the associativity and commutativity axioms of multiset union.
Example tests are included for your convenience.

Hints:

• The built-in module NAT is included for your convenience because: (i) it supports decimal notation and
also Peano notation: 3 can be written both as 3 and as s(s(s(0))), which is very convenient: you can for
example define the equality predicate between naturals just using the Peano notation; (ii) it imports the
BOOL module, so you have at your disposal all the Boolean operations, which can be useful when defining
some of the predicates; and (iii) BOOL itself imports the if-then-else-fi operator, which again can be helpful
when defining some functions.

• The order in which the functions are introduced gives you a hint that some functions earlier in the list
may be useful as auxiliary functions for defining other functions later down the list.

• Programming modulo axioms of associativity and commutativity is very powerful and allows writing
very short programs. For example, the identity property of mt and the nine functions in this example
can be defined with just 30 equations. However, with this power comes also the risk of losing sufficient
completeness: you may forget some cases in your equations if you are not careful.

fmod MULTISET-ALGEBRA is

protecting NAT .

sort Mult .

subsort Nat < Mult .

op mt : -> Mult [ctor] . *** empty multiset

op _,_ : Mult Mult -> Mult [ctor assoc comm] . *** multiset union

op _.=._ : Nat Nat -> Bool [comm] . *** equality predicate on naturals
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op _\_ : Mult Mult -> Mult . *** multiset difference

op _C=_ : Mult Mult -> Bool . *** multiset containment

op _in_ : Nat Mult -> Bool . *** multiset membership

op _.=._ : Mult Mult -> Bool [comm] . *** equality predicate on multisets

op _/\_ : Mult Mult -> Mult . *** multiset intersection

op rem : Nat Mult -> Mult . *** removes N everywhere in U

op |_| : Mult -> Nat . *** cardinality with repetitions

op [_] : Mult -> Nat . *** number of distinct elements

vars N M : Nat . vars U V W : Mult .

*** write here your equations for the identity of mt and all the functions above

endfm

red 5 .=. 12 . *** should be false

red 15 .=. 15 . *** should be true

red (3,3,4,4,4,2,2,9) \ (3,3,3,4,2,7) . *** should be 2,4,4,9

red (3,3,4,4,4,2,2,9) C= (3,3,3,4,2,7) . *** should be false

red (3,3,4,4,2,2,9) C= (3,3,3,4,4,2,2,2,7,9) . *** should be true

red 3 in (3,3,4,4,7) . *** should be true

red 9 in (3,3,4,4,7) . *** should be false

red (3,3,4,4,4,2,2,7) .=. (3,3,3,4,2,7) . *** should be false

red (3,3,3,4,2,2,7) .=. (3,3,3,4,2,2,7) . *** should be true

red (3,3,3,4,4,4,2,2,7,9) /\ (3,3,3,3,4,4,2,7,7) . *** should be 2,3,3,3,4,4,7

red rem(2,(3,3,2,2,2,4,4,4)) . *** should be 3,3,4,4,4

red | 3,3,4,4,4,2,2,9 | . *** should be 8

red [ 3,3,4,4,4,2,2,9 ] . *** should be 4
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