
Problem Set 1

1. In this first problem you are asked to define a few arithmetic functions on the natural numbers. We encourage
you to do so without using any special props, such as Maude’s if_then_else_fi operator (included together
with the built-in BOOL module, which is imported by default into any other module), or the [owise] feature.
We suggest that you not use such props at this point in order to help you become familiar with flexible ways of
defining functions in Maude with equations. The typing of the functions you are asked to define is already given.
We also include some test results that you should expect to get if these functions are correctly defined. All
functions should be familiar to you, except perhaps the monus .-. operator, which has an easy specification:
N .-. M is the usual integer difference N - M when N is greater than or equal to M, and 0 otherwise. One last
point —which you may find useful when defining some of the predicates below— is that, since Maude’s built-in
module BOOL is automatically imported, besides the sort Bool, you also have at your disposal the constants
true and false and the Boolean functions and, or and not.

fmod NAT-MIXFIX is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

op _*_ : Nat Nat -> Nat .

vars N M : Nat .

eq N + 0 = N .

eq N + s(M) = s(N + M) .

eq N * 0 = 0 .

eq N * s(M) = N + (N * M) .

endfm

fmod ARITH-FUNS is protecting NAT-MIXFIX .

op _^_ : Nat Nat -> Nat . *** exponentiation

op fact : Nat -> Nat . *** factorial

op _>_ : Nat Nat -> Bool . *** greater than

op _.=._ : Nat Nat -> Bool . *** equality predicate on numbers

op max : Nat Nat -> Nat . *** biggest of two numbers

op min : Nat Nat -> Nat . *** smallest of two numbers

op _.-._ : Nat Nat -> Nat . *** monus

op |_-_| : Nat Nat -> Nat . *** absolute value of the integer difference

vars N M : Nat .

*** insert here your equations defining each of the above eight functions

endfm

*** Some tests:

red s(s(0)) ^ s(s(0)) . *** should be s(s(s(s(0))))

red s(s(s(0))) ^ s(s(s(0))) . ***(should be

s(0)))))))))))))))))))))))))))

)

red fact(s(s(s(0)))) . *** should be s(s(s(s(s(s(0))))))

1

red fact(s(s(s(s(0))))) . ***(should be

s(0))))))))))))))))))))))))

)

red s(s(s(s(0)))) > s(s(0)) . *** should be true

red s(s(0)) > s(s(s(s(0)))) . *** should be false

red s(s(0)) .=. s(s(s(s(0)))) . *** should be false

red s(s(s(0))) .=. s(s(s(0))) . *** should be true

red max(s(s(0)),s(s(s(s(0))))) . *** should be s(s(s(s(0))))

red min(s(s(0)),s(s(s(s(0))))) . *** should be s(s(0))

red s(s(0)) .-. s(s(s(s(0)))) . *** should be 0

red s(s(s(s(0)))) .-. s(s(0)) . *** should be s(s(0))

red | s(s(0)) - s(s(s(s(0)))) | . *** should be s(s(0))

2. This second problem is about defining some simple list-based functions in Maude. It is also about a couple
of other things. A first small point is making you aware of some parsing convenience. The list “cons” op-
erator _;_ can be made more readable by not having to write extra parentheses. For example, instead of
writing 0 ; (s(0) ; (s(s(0)) ; nil)) one would like to just write 0 ; s(0) ; s(s(0)) ; nil. This can
be achieved by giving the Maude parser the “gathering” information gather (e E) when declaring _;_ which
instructs it to “right associate” the parentheses when parsing. The second, no so small point, is to make you
familiar with ways in which subsorts can be quite powerful, for example to define odd and even natural numbers
by declaring subsorts subsorts Odd Even < Nat . with appropriate (subsort-overloaded) constructors. You
can reap the benefits in this problem by being able to define the functions oddL and evenL, that respectively
return the sublists of odd (resp. even) elements of a list, in a considerably simpler (and more efficient!) way
than by explicitly defining odd and even predicates on natural numbers. Again, we encourage you to define all
functions without using any special props, such as Maude’s if_then_else_fi operator or the [owise] feature,
since this will help you become familiar with flexible ways of defining functions in Maude by equations.

fmod NAT-LIST-II is protecting NAT-MIXFIX .

sorts Odd Even NeList List .

subsorts Odd Even < Nat .

subsorts NeList < List .

op 0 : -> Even [ctor] .

op s : Even -> Odd [ctor] .

op s : Odd -> Even [ctor] .

op nil : -> List [ctor] .

op _;_ : Nat List -> NeList [ctor gather (e E)] .

op length : List -> Nat .

op first : NeList -> Nat .

op rest : NeList -> List .

var N : Nat .

var L : List .

eq length(nil) = 0 .

eq length(N ; L) = s(length(L)) .

eq first(N ; L) = N .

eq rest(N ; L) = L .

endfm

fmod LIST-FUNS is protecting NAT-LIST-II .

2

op _@_ : List List -> List . *** list append

op rev : List -> List . *** list reverse

op odd-L : List -> List . *** sublist of odd numbers

op even-L : List -> List . *** sublist of even numbers

op sigma : List -> Nat . *** sum of all numbers in the list

*** by convention, sigma(nil) = 0 .

vars N M : Nat . var L Q : List . var O : Odd . var E : Even .

*** insert here your equations for each of the above five functions

endfm

*** Some tests:

red (0 ; s(0) ; s(s(0)) ; nil) @ (s(0) ; s(s(0)) ; s(s(s(0))) ; nil) . ***(should be

0 ; s(0) ; s(s(0)) ; s(0) ; s(s(0)) ; s(s(s(0))) ; nil

)

red rev(0 ; s(0) ; s(s(0)) ; nil) . *** should be s(s(0)) ; s(0) ; 0 ; nil

red odd-L(0 ; s(0) ; s(s(0)) ; s(0) ; s(s(0)) ; s(s(s(0))) ; nil) . ***(should be

s(0) ; s(0) ; s(s(s(0))) ; nil

)

red even-L(0 ; s(0) ; s(s(0)) ; s(0) ; s(s(0)) ; s(s(s(0))) ; nil) . ***(should be

0 ; s(s(0)) ; s(s(0)) ; nil

)

red sigma(0 ; s(0) ; s(s(0)) ; s(0) ; s(s(0)) ; s(s(s(0))) ; nil) . ***(should be

s(s(s(s(s(s(s(s(s(0)))))))))

)

3

