
Maude Summer School: Lecture 4

José Meseguer

Computer Science Department
University of Illinois at Urbana-Champaign and

Leverhulme visiting professor at King’s College, London

1

The Mathematical Model of a Rewrite Theory

Remember Lecture 1’s statement about Maude:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

For a functional module fmod (Σ, E) endfm satisfying executability
conditions (1)–(3) we saw in Lecture 3-I what that model is: the
canonical term algebra CΣ/E . But what is the model CP for P a
system module mod (Σ, E,R) endm?

Intuitively, it should be a transition system. For its functional part
(Σ, E), we should again require conditions (1)–(3). Therefore its
states should the the elements of the canonical term algebra CΣ/E .
What about its transition relation? They should be transitions
defined by the rules R.

2

The Mathematical Model of a Rewrite Theory (II)

But there is a problem, called the coherence problem. Let (Σ, E,R)

have Σ unsorted with just three constants a, b, c, E = {a = c}, and
R = {a → b}, with Ω = {c, b}, so that CΣ/E = {c, b} has just two
states. The problem is that there is no meaningful way to apply the
rule a → b to obtain the transition that should exist from state c to
state b.

The mathematical model we want is called a Σ-transition system,
where the states have a Σ-algebra structure —in our case CΣ/E—
and there is a transition relation between states. We just need to
have suitable executability conditions to properly define the
transition relation.

3

Executability of Rewrite Theories: Coherence

When is a rewrite theory R = (Σ, E ∪B,R) executable? (Σ, E ∪B)

should be sort-decreasing, terminating, confluent, and sufficiently
complete modulo B. But this is not enough. We also need that the
rules R are coherent with E modulo the axioms B (in our example,
we just add rule c → b):

t
R/B

//

!E/B ��

t′

!E/B!!
w

u
R/B

// u′

!E/B

==

Maude’s Coherence Checker tool checks this property.

4

The Canonical Σ-Transition System CR

Given a system module mod R endm, with, say, R = (Σ, E ∪B,R),
Maude assumes the following executability conditions: (i) the usual
ones for (Σ, E ∪B), and (ii) the coherence of R with respect to E

modulo B.

Assuming (i)–(ii), we can define the canonical Σ-transition system
CR = (CΣ/E,B ,→CR), were CΣ/E,B is the canonical term algebra
modulo B, and given [u], [v] ∈ CΣ/E,B,[s], [u] →CR [v] holds iff there
exists v′ such that u →R/B v′ and [v] = [v′!E/B]. I.e., states are
elements of CΣ/E,B ; transitions from [u] are the normal forms
[v′!E/B] of rewrites u →R/B v′.

5

Verification of Declarative Concurrent Programs in Maude

Remember again Lecture 1:

“Saying that program P satisfies a formal property φ exactly
means that CP |= φ in the first-order logic sense.”

What does this mean for a system module mod R endm, with
R = (Σ, E ∪B,R)?

It means exactly what it says. CP is precisely the canonical
Σ-transition system CR. And φ can be a formula in the first-order
language based on the signature Σ plus the binary transition
relation symbol →.

Then we say that program mod R endm satisfies property φ iff

CR |= φ.

6

Invariants

In fact, we may verify properties φ not expressible in the first-order
language Σ ∪ {→}. For example, liveness properties about the
infinite behavior of a system, expressible in temporal logic. Maude
supports verification of linear temporal logic (LTL) properties in its
LTL model checker (see Chapter 13 of All About Maude).

In these lectures we will just focus on verifying invariants, the most
basic safety properties, which are expressible in the first-order
language of Σ ∪ {→}.

7

Invariants (II)

Invariants specify safety properties, that is, properties guaranteeing
that nothing “bad” can happen or, equivalently, that the system
will always be in a “good” state. Given a rewrite theory R and an
equationally-defined Boolean predicate I, we say that I is an
invariant for CR from an initial state [t], written

CR, [t] |= 2I

if and only if CR satisfies the following first-order formula:

(∀x : k) (t →∗ x) ⇒ I(x) = true.

8

Verifying Invariants in Maude

We can prove that an invariant I, i.e., a Boolean predicate on sates,
holds for a Maude system module mod R endm from an initial state
init, by searching for a violation of invariant I with the command:

search init =>* X:State s.t. I(X:State) =/= true .

If Maude, (i) replies No solution, then I has been proved.
Instead, (ii) if I does not hold, we are guaranteed that Maude will
find a counterexample. The only other possibility is (iii) I holds,
but the set of states reachable from init is infinite; then we wait
forever without getting an answer.

We can illustrate this model checking method by means of some
examples.

9

TheQLOCK Mutual Exclusion Protocol

QLOCK is a mutual exclusion protocol proposed by K. Futatsugi,
where the number of processes is unbounded.

mod QLOCK is protecting NAT .
sorts NatMSet NatList State .
subsorts Nat < NatMSet NatList .
op mt : -> NatMSet [ctor] .
op _ _ : NatMSet NatMSet -> NatMSet [ctor assoc comm id: mt] .
op nil : -> NatList [ctor] .
op _;_ : NatList NatList -> NatList [ctor assoc id: nil] .
op {_<_|_|_|_>} : NatMSet NatMSet NatMSet NatMSet NatList -> State [ctor] .
op [_] : Nat -> NatMSet . *** set of first n numbers
op init : Nat -> State . *** initial state, parametric on n

vars n i j : Nat . vars S U W C : NatMSet . var Q : NatList .
eq [0] = mt .
eq [s(n)] = n [n] .
eq init(n) = {[n] < mt | mt | mt | nil >} .

10

rl [join] : {S i < U | W | C | Q >} => {S < U i | W | C | Q >} .
rl [n2w] : {S < U i | W | C | Q >} => {S < U | W i | C | Q ; i >} .
rl [w2c] : {S < U | W i | C | i ; Q >} => {S < U | W | C i | i ; Q >} .
rl [c2n] : {S < U | W | C i | i ; Q >} => {S < U i | W | C | Q >} .
rl [exit] : {S < U i | W | C | Q >} => {S i < U | W | C | Q >} .
endm

Processes are numbers. There is a left area for processes outside
the protocol, and a protocol area (inside angle brackets). Processes
outside can join the protocol ([join]). The protocol area has
normal, waiting, and critical stages, plus a waiting queue, where a
process can register its name to signal that it wants to enter the
critical section ([n2w]). When its name appears at the front of the
queue, it is allowed to enter the critical section (rule [w2c]). When
it has finished, it can go back to normal (rule [c2n]). Finally, a
normal process may leave the protocol ([exit]).

11

Verifying Invariants for QLOCK

We can verify two important invariants of QLOCK, namey,

• Mutual Exclusion, i.e., the critical section is either empty or
has at most one process, and

• Deadlock Freedom, i.e., the protocol never stops.

for, e.g., the initial state init(7) with seven processes.

We can use two styles for proving this. Let us call them the cool
style and the square style.

12

Cool Invariant Verification for QLOCK

In the cool style, we do not explicitly define an invariant predicates
I. Instead we specify its negation or complement by a pattern
(perhaps adding a s.t. constraint).

For example, we can characterize the violation of mutual exclusion
in QLOCK by the pattern (by ACU , C could be mt):

{S < U | W | C i j | Q >}

and verify mutual exclusion with the search command:

Maude> search init(7) =>* {S < U | W | C i j | Q >} .

No solution.

13

Cool Invariant Verification for QLOCK (II)

Likewise, we do not need to define an explicit invariant predicate
for deadlock freedom: we can instead take advantage of Maude’s
=>! search mode and give the search command to look for a
terminating state:

Maude> search init(7) =>! X:State .

No solution.

14

Square Invariant Verification for QLOCK

We can explicitly define mutex and enabled predicates:

mod QLOCK-PREDS is protecting QLOCK .
ops mutex enabled : State -> Bool .
vars n i j : Nat . vars S U W C : NatMSet . var Q : NatList .

eq mutex({S < U | W | mt | Q >}) = true .
eq mutex({S < U | W | i | Q >}) = true .
eq mutex({S < U | W | i j C | Q >}) = false .

eq enabled({S i < U | W | C | Q >}) = true .
eq enabled({S < U i | W | C | Q >}) = true .
eq enabled({S < U | W i | C | i ; Q >}) = true .
eq enabled({S < U | W | C i | i ; Q >}) = true .
eq enabled({S < U i | W | C | Q >}) = true .
eq enabled(X:State) = false [owise] .
endm

15

Square Invariant Verification for QLOCK (II)

Then we can verify both invariants the hard or square way by
giving the search commands:

Maude> search init(7) =>* X:State s.t. mutex(X:State) =/= true .

No solution.

Maude> search init(7) =>* X:State s.t. enabled(X:State) =/= true .

No solution.

16

Bounded Model Checking of Invariants

Although search can be a quite effective model checking technique
for invariants, it has some limitations:

• if the set of reachable states is infinite and the invariant is
satisfied, the search process never terminates;

• even if the number of reachable states is finite, it may be too
large to be explored in reasonable time and space, due to time
and memory limitations.

In such cases we have several alternatives. The most obvious is to
give up on completeness and settle for searching states only up to a
bound on the depth of paths reaching them. Another alternative is
to use an equational abstraction (see §12.4 of All About Maude) to
make the set of reachable states finite.

17

Bounded Model Checking of Invariants (II)

Bounded model checking is an appealing and widely used formal
analysis method. It cannot guarantee that an invariant holds
everywhere, but it can either: (i) find very useful and subtle
counterexamples; or (ii) guarantee that up to a certain depth the
invariant holds.

Bounded model checking of invariants is supported in Maude by
means of the bounded search command.

Consider the following specification of a readers-writers system.

18

Bounded Model Checking of Invariants (III)
mod R&W is
protecting NAT .
sort Config .
op <_,_> : Nat Nat -> Config [ctor] . --- readers/writers

vars R W : Nat .

rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .

endm

A state is represented by a tuple < R, W > indicating the number R
of readers and the number W of writers accessing a critical resource.
Readers and writers can leave the resource at any time, but writers
can only gain access to it if nobody else is using it, and readers
only if there are no writers.

19

Bounded Model Checking of Invariants (IV)

With initial state < 0, 0 > want to verify three invariants:

• mutual exclusion: readers and writers never access the resource
simultaneously: only readers or only writers can do so at any
given time.

• one writer: at most one writer will be able to access the
resource at any given time.

• deadlock freedom: there are no deadlocks.

We can try to model check these three invariants. In this example
the invariants themselves can be expressed in two different ways:
(i) implicitly (the cool way) by giving a pattern characterizing their
negation; or (ii) explicitly (the square way) by defining appropriate
state predicates.

20

Bounded Model Checking of Invariants (V)

The implicit method is the easiest:
Maude> search < 0,0 > =>* < s(N:Nat), s(M:Nat) > .

Maude> search < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .

Maude> search < 0,0 > =>! C:Config .

The negations of each of the first two invariants do not need to be
given explicitly: they can be described by the patterns we search
for. The negation of the first invariant corresponds to the
simultaneous presence of readers and writers, which is exactly
captured by the pattern < s(N:Nat), s(M:Nat) >; whereas the
negation of the fact that at most one writer should be present at
any given time is exactly captured by the pattern
< N:Nat, s(s(M:Nat)) >. For deadlock-freedom the pattern is
trivial: C:Config.

21

Bounded Model Checking of Invariants (V)

Since the number or readers is unbounded, the set of reachable
states is infinite and the search commands never terminate. We can
perform bounded model checking of these three invariants by giving
a 106 depth bound:

Maude> search [1, 1000000] < 0,0 > =>* < s(N:Nat), s(M:Nat) > .
No solution.
states: 1000002 rewrites: 2000001 in 36480ms cpu (50317ms real)

Maude> search [1, 1000000] < 0,0 > =>* < N:Nat, s(s(M:Nat)) > .
No solution.
states: 1000002 rewrites: 2000001 in 38910ms cpu (41650ms real)

Maude> search [1, 1000000] < 0,0 > =>! C:Config .
No solution.
states: 1000003 rewrites: 2000002 in 5752ms cpu (5821ms real)

22

Bounded Model Checking of Invariants (VI)

The second method is to explicitly define our invariants by means
of state predicates. This is also easy to do:
mod R&W-PREDS is

protecting R&W .
ops mutex one-writer enabled : Config -> Bool .
eq mutex(< s(N:Nat),s(M:Nat) >) = false .
eq mutex(< 0,N:Nat >) = true .
eq mutex(< N:Nat,0 >) = true .
eq one-writer(< N:Nat,s(s(M:Nat)) >) = false .
eq one-writer(< N:Nat,0 >) = true .
eq one-writer(< N:Nat,s(0) >) = true .
eq enabled(< 0, 0 >) = true .
eq enabled(< R:Nat, s(W:Nat) >) = true .
eq enabled(< R:Nat, 0 >) = true .
eq enabled(< s(R:Nat), W:Nat >) = true .
eq enabled(< N:Nat, M:Nat >) = false [owise] .

endm

23

Bounded Model Checking of Invariants (VII)

search [1, 1000000] < 0,0 > =>* C:Config s.t. mutex(C:Config) = false .

No solution.
states: 1000002 rewrites: 3000003 in 7935ms cpu (8027ms real)

search [1, 1000000] < 0,0 > =>* C:Config s.t. one-writer(C:Config) =
false .

No solution.
states: 1000002 rewrites: 3000003 in 7662ms cpu (7720ms real)

search [1, 1000000] < 0,0 > =>* C:Config s.t. enabled(C:Config) =
false .

No solution.
states: 1000002 rewrites: 3000003 in 11516ms cpu (13303ms real)

24

