Maude Summer School: Lecture 3-I

José Meseguer

University of Illinois at Urbana-Champaign and
Leverhulme visiting professor at King's College, London

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution?

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$.

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have $\operatorname{vars}(v) \subseteq \operatorname{vars}(u)$. Furthermore,

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have $\operatorname{vars}(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination.

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have $\operatorname{vars}(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have $\operatorname{vars}(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have $\operatorname{vars}(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

(ii) All such sequences from t terminate in a unique result, denoted $t!_{E}$

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

(ii) All such sequences from t terminate in a unique result, denoted $t!_{E}$ (computed by Maude's red t command).

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

(ii) All such sequences from t terminate in a unique result, denoted $t!_{E}$ (computed by Maude's red t command).
(2) Sufficient Completenes:

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

(ii) All such sequences from t terminate in a unique result, denoted $t!_{E}$ (computed by Maude's red t command).
(2) Sufficient Completenes: for any Σ-term t without variables (called a ground term), $t!_{E}$ is an Ω-term (constructor term).

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors (the [ctor] attribute) have for correct execution? First, for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$. Furthermore,
(1) Unique termination. (i) Termination, i.e., no infinite sequences:

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

(ii) All such sequences from t terminate in a unique result, denoted $t!_{E}$ (computed by Maude's red t command).
(2) Sufficient Completenes: for any Σ-term t without variables (called a ground term), $t!_{E}$ is an Ω-term (constructor term).
(3) Sort Preservation means that if t has sort s and $t \rightarrow_{\vec{E}} t^{\prime}$, then t^{\prime} also has sort s.

Executability Conditions

What properties should a Maude functional module fmod (Σ, E) endfm with $\Omega \subseteq \Sigma$ its data constructors（the［ctor］attribute） have for correct execution？First，for each oriented equation $u \rightarrow v$ we must have vars $(v) \subseteq \operatorname{vars}(u)$ ．Furthermore，
（1）Unique termination．（i）Termination，i．e．，no infinite sequences：

$$
t_{0} \rightarrow_{\vec{E}} t_{1} \rightarrow_{\vec{E}} t_{2} \ldots t_{n} \rightarrow_{\vec{E}} t_{n+1} \ldots
$$

（ii）All such sequences from t terminate in a unique result， denoted $t!_{E}$（computed by Maude＇s red t command）．
（2）Sufficient Completenes：for any Σ－term t without variables （called a ground term），$t!_{E}$ is an Ω－term（constructor term）．
（3）Sort Preservation means that if t has sort s and $t \rightarrow_{\vec{E}} t^{\prime}$ ， then t^{\prime} also has sort s ．
These three properties have a straightforward generalization modulo axioms B ，replacing the relation $\rightarrow_{\vec{E}}$ by the relation $\overline{⿳ 一 一 ⿻ 上 丨}_{E / \overrightarrow{\bar{B}}}$ ．

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem);

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem); but it can often be checked with the MTT and MTA tools.

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem); but it can often be checked with the MTT and MTA tools.
- The unique result property -that is, determinism- is checked by the CRC tool assuming termination.

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem); but it can often be checked with the MTT and MTA tools.
- The unique result property -that is, determinism- is checked by the CRC tool assuming termination.
- The sufficient completeness property can be checked automatically by the SCC tool under mild assumptions.

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem); but it can often be checked with the MTT and MTA tools.
- The unique result property -that is, determinism- is checked by the CRC tool assuming termination.
- The sufficient completeness property can be checked automatically by the SCC tool under mild assumptions.
- Sort preservation is an easy syntactic check also supported by the CRC tool.

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the checking of conditions (1)-(3):

- The termination property is undecidable (the halting problem); but it can often be checked with the MTT and MTA tools.
- The unique result property -that is, determinism- is checked by the CRC tool assuming termination.
- The sufficient completeness property can be checked automatically by the SCC tool under mild assumptions.
- Sort preservation is an easy syntactic check also supported by the CRC tool.

Determinism $=$ Confluence

Determinism is captured by confluence. The rules \vec{E} of (Σ, B, \vec{E}) are confluent modulo B iff for each \sum-term t, whenever $t \rightarrow{ }_{\vec{E} / B}^{\circledast}$ u and $t \rightarrow{ }_{\stackrel{E}{*} / B}^{\circledast} v$, there is a w such that $u \rightarrow{ }_{E}^{\circledast} / B$ w and $v \rightarrow{ }_{\stackrel{E}{E} / B}^{\circledast} w$.

Determinism $=$ Confluence

Determinism is captured by confluence. The rules \vec{E} of (Σ, B, \vec{E}) are confluent modulo B iff for each \sum-term t, whenever $t \rightarrow{ }_{\vec{E} / B}^{\circledast}$ u and $t \rightarrow{ }_{\stackrel{E}{E} / B}^{\circledast} v$, there is a w such that $u \rightarrow{ }_{\vec{E} / B}^{\circledast} w$ and $v \rightarrow{ }_{\stackrel{\rightharpoonup}{E} / B}^{\circledast} w$. This can be described diagrammatically (dashed arrows denote existential quantification):

Determinism $=$ Confluence

Determinism is captured by confluence. The rules \vec{E} of (Σ, B, \vec{E}) are confluent modulo B iff for each \sum-term t, whenever $t \rightarrow{ }_{\vec{E} / B}^{\circledast}$ u and $t \rightarrow{ }_{\stackrel{E}{E} / B}^{\circledast} v$, there is a w such that $u \rightarrow{ }_{\vec{E} / B}^{\circledast} w$ and $v \rightarrow{ }_{\stackrel{\rightharpoonup}{E} / B}^{\circledast} w$. This can be described diagrammatically (dashed arrows denote existential quantification):

$$
\begin{aligned}
& \quad V^{\vec{E} \not \mathscr{F} B} \mathcal{L}^{2} \\
& \vec{E} / B W * *
\end{aligned}
$$

Determinism $=$ Confluence

Determinism is captured by confluence. The rules \vec{E} of (Σ, B, \vec{E}) are confluent modulo B iff for each \sum-term t, whenever $t \rightarrow{ }_{\vec{E} / B}^{\circledast}$ u and $t \rightarrow{ }_{\stackrel{E}{E} / B}^{\circledast} v$, there is a w such that $u \rightarrow{ }_{E}^{\circledast} / B$ w and $v \rightarrow{ }_{\vec{E} / B}^{\circledast} w$. This can be described diagrammatically (dashed arrows denote existential quantification):

$$
\begin{aligned}
& V^{\vec{E} \not 干 B}{ }^{2} \\
& \vec{E} / B W * *
\end{aligned}
$$

Under the termination assumption, confluence is decidable and checkable by Maude's Church-Rosser Checker (CRC) toōl.

The Semantics of Functional Modules

In Lecture 1, I stated that:

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?
It means that there is a first-order interpretation of (Σ, E), namely, a (Σ, E)-algebra $\mathbb{C}_{\Sigma / E}$, called its canonical term algebra, that defines the mathematical meaning of $\operatorname{fmod}(\Sigma, E)$ endfm.

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?
It means that there is a first-order interpretation of (Σ, E), namely, a (Σ, E)-algebra $\mathbb{C}_{\Sigma / E}$, called its canonical term algebra, that defines the mathematical meaning of $\operatorname{fmod}(\Sigma, E)$ endfm.
In the algebra $\mathbb{C}_{\Sigma / E}$:

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?
It means that there is a first-order interpretation of (Σ, E), namely, a (Σ, E)-algebra $\mathbb{C}_{\Sigma / E}$, called its canonical term algebra, that defines the mathematical meaning of fmod (Σ, E) endfm.

In the algebra $\mathbb{C}_{\Sigma / E}$: (i) each sort $s \in S$ is interpreted as the set $T_{\Omega, s}$ of (ground) constructor terms of sort s; and

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?
It means that there is a first-order interpretation of (Σ, E), namely, a (Σ, E)-algebra $\mathbb{C}_{\Sigma / E}$, called its canonical term algebra, that defines the mathematical meaning of $\operatorname{fmod}(\Sigma, E)$ endfm.
In the algebra $\mathbb{C}_{\Sigma / E}$: (i) each sort $s \in S$ is interpreted as the set $T_{\Omega, s}$ of (ground) constructor terms of sort s; and (i) each function symbol $f: s_{1} \ldots s_{n} \rightarrow s$ in Σ is interpreted as the function:

The Semantics of Functional Modules

In Lecture 1, I stated that:
"The meaning of a program P is a mathematical model \mathbb{C}_{P} in first-order logic, called its canonical model."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?
It means that there is a first-order interpretation of (Σ, E), namely, a (Σ, E)-algebra $\mathbb{C}_{\Sigma / E}$, called its canonical term algebra, that defines the mathematical meaning of $\operatorname{fmod}(\Sigma, E)$ endfm.
In the algebra $\mathbb{C}_{\Sigma / E}$: (i) each sort $s \in S$ is interpreted as the set $T_{\Omega, s}$ of (ground) constructor terms of sort s; and (i) each function symbol $f: s_{1} \ldots s_{n} \rightarrow s$ in Σ is interpreted as the function: $f_{\mathbb{C}_{\Sigma / E}}: T_{\Omega, s_{1}} \times \ldots \times T_{\Omega, s_{n}} \ni\left(t_{1}, \ldots, t_{n}\right) \mapsto f\left(t_{1}, \ldots, t_{n}\right)!_{E} \in T_{\Omega, s}$.

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

It exactly means what is says: that, for φ any first-order Σ-formula, fmod (Σ, E) endfm satisfies φ iff

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

It exactly means what is says: that, for φ any first-order Σ-formula, fmod (Σ, E) endfm satisfies φ iff

$$
\mathbb{C}_{\Sigma / E} \models \varphi .
$$

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

It exactly means what is says: that, for φ any first-order Σ-formula, fmod (Σ, E) endfm satisfies φ iff

$$
\mathbb{C}_{\Sigma / E} \models \varphi .
$$

The way we prove that $\mathbb{C}_{\Sigma / E} \models \varphi$ is by induction on the constructors Ω of $\mathbb{C}_{\Sigma / E}$.

Formal Verification of Functional Modules

In Lecture 1 I also stated that:
"Saying that program P satisfies a formal property φ exactly means that $\mathbb{C}_{P} \models \varphi$ in the first-order logic sense."

What does this mean for a functional module fmod (Σ, E) endfm satisfying executability conditions (1)-(3) and with $\Omega \subseteq \Sigma$?

It exactly means what is says: that, for φ any first-order Σ-formula, fmod (Σ, E) endfm satisfies φ iff

$$
\mathbb{C}_{\Sigma / E} \models \varphi .
$$

The way we prove that $\mathbb{C}_{\Sigma / E} \models \varphi$ is by induction on the constructors Ω of $\mathbb{C}_{\Sigma / E}$. This can be done with Maude's ITP tool.

Unit Testing for Maude Programs

Adrián Riesco at Madrid's Complutense University has developed the MUnit tool for unit testing of Maude programs.

Unit Testing for Maude Programs

Adrián Riesco at Madrid's Complutense University has developed the MUnit tool for unit testing of Maude programs.

A description of MUnit as well as pointer to its github repository can be found in the paper:

Unit Testing for Maude Programs

Adrián Riesco at Madrid's Complutense University has developed the MUnit tool for unit testing of Maude programs.

A description of MUnit as well as pointer to its github repository can be found in the paper:
A. Riesco, "MUnit: A Unit Framework for Maude," Proc. WRLA 2018, LNCS 11152, pp. 45-58, 2018.

