
Maude Summer School: Lecture 3-I

Maude Summer School: Lecture 3-I

José Meseguer

University of Illinois at Urbana-Champaign and
Leverhulme visiting professor at King’s College, London

1/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution?

First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u).

Furthermore,
1 Unique termination. (i) Termination, i.e., no infinite

sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination.

(i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E

(computed by Maude’s red t command).
2 Sufficient Completenes: for any Σ-term t without variables

(called a ground term), t!E is an Ω-term (constructor term).
3 Sort Preservation means that if t has sort s and t →~E

t ′,
then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes:

for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Executability Conditions

What properties should a Maude functional module fmod (Σ,E)
endfm with Ω ⊆ Σ its data constructors (the [ctor] attribute)
have for correct execution? First, for each oriented equation u → v
we must have vars(v) ⊆ vars(u). Furthermore,

1 Unique termination. (i) Termination, i.e., no infinite
sequences:

t0 →~E
t1 →~E

t2 . . . tn →~E
tn+1 . . .

(ii) All such sequences from t terminate in a unique result,
denoted t!E (computed by Maude’s red t command).

2 Sufficient Completenes: for any Σ-term t without variables
(called a ground term), t!E is an Ω-term (constructor term).

3 Sort Preservation means that if t has sort s and t →~E
t ′,

then t ′ also has sort s.

These three properties have a straightforward generalization
modulo axioms B, replacing the relation →~E

by the relation → ~E/B
.

2/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);

but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Checking Executability Conditions

The Maude formal environment (MFE) has tools supporting the
checking of conditions (1)–(3):

The termination property is undecidable (the halting problem);
but it can often be checked with the MTT and MTA tools.

The unique result property —that is, determinism— is
checked by the CRC tool assuming termination.

The sufficient completeness property can be checked
automatically by the SCC tool under mild assumptions.

Sort preservation is an easy syntactic check also supported by
the CRC tool.

3/1

Maude Summer School: Lecture 3-I

Determinism = Confluence

Determinism is captured by confluence. The rules ~E of (Σ,B, ~E)
are confluent modulo B iff for each Σ-term t, whenever t →~

~E/B
u

and t →~
~E/B

v , there is a w such that u →~
~E/B

w and v →~
~E/B

w .

This can be described diagrammatically (dashed arrows denote
existential quantification):

t

~

~E/B ~~}}
}}
}}
}}

~
~E/B

 A
AA

AA
AA

A

u

~

~E/B

v

~

~E/B
~~

w

Under the termination assumption, confluence is decidable and
checkable by Maude’s Church-Rosser Checker (CRC) tool.

4/1

Maude Summer School: Lecture 3-I

Determinism = Confluence

Determinism is captured by confluence. The rules ~E of (Σ,B, ~E)
are confluent modulo B iff for each Σ-term t, whenever t →~

~E/B
u

and t →~
~E/B

v , there is a w such that u →~
~E/B

w and v →~
~E/B

w .

This can be described diagrammatically (dashed arrows denote
existential quantification):

t

~

~E/B ~~}}
}}
}}
}}

~
~E/B

 A
AA

AA
AA

A

u

~

~E/B

v

~

~E/B
~~

w

Under the termination assumption, confluence is decidable and
checkable by Maude’s Church-Rosser Checker (CRC) tool.

4/1

Maude Summer School: Lecture 3-I

Determinism = Confluence

Determinism is captured by confluence. The rules ~E of (Σ,B, ~E)
are confluent modulo B iff for each Σ-term t, whenever t →~

~E/B
u

and t →~
~E/B

v , there is a w such that u →~
~E/B

w and v →~
~E/B

w .

This can be described diagrammatically (dashed arrows denote
existential quantification):

t

~

~E/B ~~}}
}}
}}
}}

~
~E/B

 A
AA

AA
AA

A

u

~

~E/B

v

~

~E/B
~~

w

Under the termination assumption, confluence is decidable and
checkable by Maude’s Church-Rosser Checker (CRC) tool.

4/1

Maude Summer School: Lecture 3-I

Determinism = Confluence

Determinism is captured by confluence. The rules ~E of (Σ,B, ~E)
are confluent modulo B iff for each Σ-term t, whenever t →~

~E/B
u

and t →~
~E/B

v , there is a w such that u →~
~E/B

w and v →~
~E/B

w .

This can be described diagrammatically (dashed arrows denote
existential quantification):

t

~

~E/B ~~}}
}}
}}
}}

~
~E/B

 A
AA

AA
AA

A

u

~

~E/B

v

~

~E/B
~~

w

Under the termination assumption, confluence is decidable and
checkable by Maude’s Church-Rosser Checker (CRC) tool.

4/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E :

(i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and

(i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:

fCΣ/E
: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

The Semantics of Functional Modules

In Lecture 1, I stated that:

“The meaning of a program P is a mathematical model CP in
first-order logic, called its canonical model.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It means that there is a first-order interpretation of (Σ,E), namely,
a (Σ,E)-algebra CΣ/E , called its canonical term algebra, that
defines the mathematical meaning of fmod (Σ,E) endfm.

In the algebra CΣ/E : (i) each sort s ∈ S is interpreted as the set
TΩ,s of (ground) constructor terms of sort s; and (i) each function
symbol f : s1 . . . sn → s in Σ is interpreted as the function:
fCΣ/E

: TΩ,s1 × . . .× TΩ,sn 3 (t1, . . . , tn) 7→ f (t1, . . . , tn)!E ∈ TΩ,s .

5/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E .

This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Formal Verification of Functional Modules

In Lecture 1 I also stated that:

“Saying that program P satisfies a formal property ϕ exactly
means that CP |= ϕ in the first-order logic sense.”

What does this mean for a functional module fmod (Σ,E) endfm

satisfying executability conditions (1)–(3) and with Ω ⊆ Σ?

It exactly means what is says: that, for ϕ any first-order Σ-formula,
fmod (Σ,E) endfm satisfies ϕ iff

CΣ/E |= ϕ.

The way we prove that CΣ/E |= ϕ is by induction on the
constructors Ω of CΣ/E . This can be done with Maude’s ITP tool.

6/1

Maude Summer School: Lecture 3-I

Unit Testing for Maude Programs

Adrián Riesco at Madrid’s Complutense University has developed
the MUnit tool for unit testing of Maude programs.

A description of MUnit as well as pointer to its github repository
can be found in the paper:

A. Riesco, “MUnit: A Unit Framework for Maude,” Proc. WRLA
2018, LNCS 11152, pp. 45–58, 2018.

7/1

Maude Summer School: Lecture 3-I

Unit Testing for Maude Programs

Adrián Riesco at Madrid’s Complutense University has developed
the MUnit tool for unit testing of Maude programs.

A description of MUnit as well as pointer to its github repository
can be found in the paper:

A. Riesco, “MUnit: A Unit Framework for Maude,” Proc. WRLA
2018, LNCS 11152, pp. 45–58, 2018.

7/1

Maude Summer School: Lecture 3-I

Unit Testing for Maude Programs

Adrián Riesco at Madrid’s Complutense University has developed
the MUnit tool for unit testing of Maude programs.

A description of MUnit as well as pointer to its github repository
can be found in the paper:

A. Riesco, “MUnit: A Unit Framework for Maude,” Proc. WRLA
2018, LNCS 11152, pp. 45–58, 2018.

7/1

