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Maude Summer School: Lecture 2

Rewrite Proofs

Definition

Denoting by →+
~E

(resp. →∗~E ) the transitive (resp. reflexive transitive)

closure of →~E , a (Σ, ~E )-rewrite proof of t →∗~E t ′ is, by definition, either:

a 0-step rewrite t →∗~E t for Σ-term t, i.e., t ≡ t ′, or

a sequence of ~E -rewrite steps of the form

t ≡ t0 →~E t1 →~E t2 . . . tn−1 →~E tn ≡ t ′

n ≥ 1, witnessing t →+
~E
t ′, where u ≡ v denotes syntactic equality.

Remark: The rules R in a term rewriting system (Σ,R) need not
be oriented equations ~E . Then, a rewrite proof is just written as:
t →∗R t ′. Non-equational rules R will be treated in Lectures 3–4.
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The Equality Relation and Equational Proofs

The notion of an equational proof, that is, a sequence of steps of
replacement of equals by equals using equations E , is a trivial
instance of the notion of a rewrite proof.

Given an equational theory (Σ,E ), all we need to do is to consider

proofs in the term rewriting system (Σ,
−→
E ∪
←−
E ), where, by

definition:
−→
E is the set of left-to-right orientations−→
E = {t → t ′ | t = t ′ ∈ E}; and

←−
E is the set of right-to-left orientations←−
E = {t ′ → t | t = t ′ ∈ E}.
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The Equality Relation and Equational Proofs (II)

Definition

Given an equational theory (Σ,E ), an E -equality step is, by

definition, a (
−→
E ∪
←−
E )-rewrite step u →

(
−→
E ∪
←−
E )

v .

The relation →∗
(
−→
E ∪
←−
E )

is called the E -equality relation, often

abbreviated to =E . It is also called the relation of equality modulo
E .

A (Σ,E )-equality proof of t =E t ′ is just a (
−→
E ∪
←−
E )-rewrite proof

t →∗
(
−→
E ∪
←−
E )

t ′. But then we also have: t ′ →∗
(
−→
E ∪
←−
E )

t (symmetry).

We write (Σ,E ) ` t = t ′ iff t →∗
(
−→
E ∪
←−
E )

t ′, and say that E proves

the equality t = t ′. By definition, t =E t ′ is an equivalence relation.
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Term Rewriting Modulo Axioms

Certain equations are intrinsically problematic for term rewriting.

For example, the commutativity equation x + y = y + x is
intrinsically problematic for rewriting because:

we do not obtain a simpler term, but only a “mirror image” of
the original term; for example, (x ∗ 7) + (0 ∗ y) is rewritten to
(0 ∗ y) + (x ∗ 7); and
even worse, we can easily loop when applying this equation, as
in the infinite, alternating sequence

(x ∗7)+(0∗y)→E (0∗y)+(x ∗7)→E (x ∗7)+(0∗y)→E . . .

The solution to this problem is to build in certain, commonly
occurring equational axioms like commutativity, so that rewriting
takes place modulo such axioms.
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Term Rewriting Modulo Axioms (II)

For example, we can decompose some equations E into a built-in,
commutative part, e.g.,

C = {x + y = y + x , x ∗ y = y ∗ x} and an
oriented part, e.g., ~E0 = {(x + y) + z → x + (y + z), x + 0→
x , x ∗ 1→ x , x ∗ (y + z)→ (x ∗ y) + (x ∗ z)}. Then, we can rewrite
with the oriented equations in ~E0 applying them, not just to the
given term t, but to any other term t ′ which is provably equal to t
by the commutativity equations C .

This more powerful rewrite relation is called rewriting modulo C ,
denoted →E0/C . For example, we can simplify the expression
((0 + x) ∗ ((1 ∗ y) + 7)) + z to (x ∗ y) + ((x ∗ 7) + z) in just four
steps with →E0/C as follows:

((0+x)∗((1∗y)+7))+z →E0/C (x∗((1∗y)+7))+z →E0/C (x∗(y+7))+z →E0/C

((x ∗ y) + (x ∗ 7)) + z →E0/C (x ∗ y) + ((x ∗ 7) + z)
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Term Rewriting Modulo Axioms (III)

But why stopping with commutativity? How about associativity?

An associativity (A) equation such as (x + y) + z = x + (y + z) has
no looping problems; but parentheses around associative operators
are a nuisance and can block the application of many equations.

For example, we can simplify to 0 the term
((x + y) + z) + −(y + (z + x)) in one step of rewriting modulo
the following set AC of associativity and commutativity axioms for

+ and ∗ , AC = {x + y = y + x , x ∗ y = y ∗ x , (x + y) + z =
x + (y + z), (x ∗ y) ∗ z = x ∗ (y ∗ z)}, using the single equation
E0 = {x + −x = 0} oriented as the rule ~E0 = {x + −x → 0}.

((x + y) + z) + −(y + (z + x))→~E0,/AC
0.

Rewriting modulo AC : (i) the order of the arguments does not
matter (by C ), and (ii) parentheses do not matter (by A).
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Rewrite Theories

Likewise, we could also build in the unit element axioms
U = {x + 0 = x , x ∗ 1 = x}.

Or any combination of C , and/or A,
and/or U axioms could be built in. Maude supports all such
combinations.

In fact, the idea of building in a set B of equational axioms, so
that we rewrite with a set of rules R modulo B, is entirely general,
and is associated to the notion of a rewrite theory.

Definition

Let Σ be an order-sorted signature. A rewrite theory is a triple
(Σ,B,R), where B is a set of Σ-equations, and R is a set of
Σ-rewrite rules.

Rewriting with R modulo B can then be formalized as follows:
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Rewriting Modulo B

Definition

Let (Σ,B,R) be a rewrite theory. Then the R-rewrite relation
modulo B, denoted u →R/B v , holds between Σ-terms u, v iff
there exist Σ-terms u′, v ′ such that:

(i) u =B u′, (ii) u′ →R v ′, and
(iii) v ′ =B v . That is, we have:

u =B u′ →R v ′ =B v .

We denote by →0
R/B the relation =B , called the 0-step R-rewrite

relation modulo B, by →+
R/B the transitive closure of →R/B , and

by →~
R/B the relation →+

R/B ∪ =B .
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Rewrite Proofs Modulo B

Definition

An R-rewrite proof modulo B of u →~
R/B v , is either:

a 0-step R-rewrite modulo B of the form u →0
R/B v , so that,

by definition, u =B v , for Σ-terms u, v , or

a sequence of R-rewrite steps modulo B of the form:

u ≡ u0 →R/B u1 →R/B u2 . . . un−1 →R/B un ≡ v

with n ≥ 1, witnessing u →+
R/B v .
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Examples of Equational Simplification Modulo B

Lists modulo associativity and identity (AU), with membership:

fmod LIST-AU is

protecting NAT .

sort List .

subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [assoc id: nil ctor] .

op _in_ : Nat List -> Bool .

var N : Nat . vars L L’ : List .

eq N in L ; N ; L’ = true .

eq N in L = false [owise] .

endfm

reduce in LIST-AU : 7 in 3 ; 4 ; 9 .

result Bool: false

==========================================

reduce in LIST-AU : 7 in 4 ; 3 ; 7 .

result Bool: true
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Examples of Equational Simplification Modulo B (II)

Lists modulo associativity (A) with membership. More patterns are
need.

fmod LIST-A is

protecting NAT . sort List . subsort Nat < List .

op nil : -> List [ctor] .

op _;_ : List List -> List [assoc ctor] .

op _in_ : Nat List -> Bool .

var N : Nat . vars L L’ : List .

eq nil ; L = L .

eq L ; nil = L .

eq N in N = true .

eq N in N ; L = true .

eq N in L ; N = true .

eq N in L ; N ; L’ = true .

eq N in L = false [owise] .

endfm

reduce in LIST-A : 7 in 4 ; 3 ; 7 .

result Bool: true
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Examples of Equational Simplification Modulo B (III)

Multisets modulo associativity, commutativity, and identity (ACU).

fmod MSET-ACU is

protecting NAT .

sort MSet .

subsort Nat < MSet .

op nil : -> MSet [ctor] .

op _;_ : MSet MSet -> MSet [assoc comm id: nil ctor] .

op _in_ : Nat MSet -> Bool .

var N : Nat . var S : MSet .

eq N in N ; S = true .

eq N in S = false [owise] .

endfm

reduce in MSET-ACU : 7 in 3 ; 4 ; 9 .

result Bool: false

==========================================

reduce in MSET-ACU : 7 in 4 ; 3 ; 7 .

result Bool: true
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Examples of Equational Simplification Modulo B (IV)

Multisets modulo associativity and commutativity (AC ): more
patterns needed.

fmod MSET-AC is

protecting NAT .

sort MSet . subsort Nat < MSet .

op nil : -> MSet [ctor] .

op _;_ : MSet MSet -> MSet [assoc comm ctor] .

op _in_ : Nat MSet -> Bool .

var N : Nat . var S : MSet .

eq nil ; S = S .

eq N in N = true .

eq N in N ; S = true .

eq N in S = false [owise] .

endfm

reduce in MSET-AC : 7 in 3 ; 4 ; 9 .

result Bool: false

==========================================

reduce in MSET-AC : 7 in 4 ; 3 ; 7 .

result Bool: true

14/17



Maude Summer School: Lecture 2

Examples of Equational Simplification Modulo B (V)

Sets of natural numbers using identity and idempotency equations.

fmod NAT-SET is protecting NAT .

sort NatSet .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm] . *** set union

op _/\ _ : NatSet NatSet -> NatSet [assoc comm] . *** intersection

vars X Y : NatSet . var N : Nat .

eq mt X = X . *** identity

eq X X = X . *** idempotency

eq N /\ N = N .

eq N /\ (N X) = N .

eq (N X) /\ (N Y) = N (X /\ Y) .

eq X /\ Y = mt [owise] .

endfm

Maude> red (1 2 3 4 5) /\ (3 4 5 6 7) .

result NatSet: 3 4 5
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Caveats on Equational Simplification Modulo B

Equational simplification modulo identity is trickier. For example,
the innocent-looking idempotency equation in

fmod NAT-SET’ is protecting NAT .

sort NatSet .

subsort Nat < NatSet .

op mt : -> NatSet [ctor] .

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] .

var X : NatSet .

eq X X = X .

endfm

is nonterminating, since we have,

mt =ACU mt mt −→E mt =ACU mt mt −→E . . .
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Caveats on Equational Simplification Modulo B (II)

Nontermination can be avoided by giving instead a more careful
equation, where we restrict idempotency to pairs of elements (yet,
with the same effect, sice this ensures that all repeated elements
will be eliminated) by means of the (now terminating) equation,

var N : Nat .

eq N N = N .

Another alternative is to declare:

sort NatSet NeNatSet .

subsort Nat < NeNatSet < NatSet .

op mt : -> NatSet [ctor] .

op _ _ : NatSet NatSet -> NatSet [ctor assoc comm id: mt] .

op _ _ : NeNatSet NeNatSet -> NeNatSet [ctor assoc comm id: mt] .

var X : NeNatSet .

eq X X = X .
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