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Formal Specification and Verification in Maude

These lectures will introduce you to Maude. The four main ideas of
Maude are that:

1. Programming in Maude is mathematical modeling using a
computational logic as the programming language.

2. Computation is formal deduction in the computational logic.

3. The meaning of a program P is a mathematical model CP in
first-order logic, called the canonical model of P .

4. Saying that program P satisfies a formal property φ exactly
means that CP |= φ in the first-order logic sense.
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High Performance, Tools, and Applications

Maude is a high-performance language. It ranked second, shortly
after Haskell, in the 2018 INRIA-Grenoble competition among 14
languages.

Maude has a formal tool environment supporting both deductive
and model checking verification of Maude programs.

Maude has been used in many applications worldwide. See:

• http://maude.cs.illinois.edu/w/index.php/Applications

• And for a (somewhat dated) survey: “J. Meseguer, “Twenty
years of rewriting logic,” J. Log. Algebr. Program. 81(7-8):
721–781 (2012).
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Modeling Deterministic and Concurrent Systems

Maude can naturally model:

1. Deterministic systems in equational logic, in its sublanguage of
functional modules.

2. Concurrent systems in rewriting logic, in its full language of
system modules.

• Lectures 1 and 2 will focus on equational logic and functional
modules.

• Lectures 3 and 4 will mainly focus on rewriting logic and
system modules.
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Equational Theories

Theories in equational logic are called equational theories. In
Computer Science they are sometimes referred to as algebraic
specifications.

An equational theory is a pair (Σ, E), where:

• Σ, called the signature, describes the syntax of the theory, that
is, what types of data and what (typed) operation symbols
(function symbols) are involved;

• E is a set of equations between expressions (called Σ-terms) in
the syntax of Σ.
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Unsorted, Many-Sorted, and Order-Sorted Signatures

Our syntax Σ can be more or less expressive, depending on how
many types (called sorts) of data it allows, and what relationships
between types it supports:

• unsorted (or single-sorted) signatures have only one sort, and
operation symbols on it;

• many-sorted signatures allow different sorts, such as Integer,
Bool, List, etc., and operation symbols relating these sorts;

• order-sorted signatures are many-sorted signatures that, in
addition, allow subtype relations between sorts, such as
Natural < Integer < Rational.
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Maude Functional Modules

Maude functional modules are equational theories (Σ, E), declared
with syntax

fmod (Σ, E) endfm

Such theories can be unsorted, many-sorted, or order-sorted.

In what follows we will see examples of unsorted, many-sorted and
order-sorted equational theories (Σ, E) expressed as Maude
functional modules, and of how such theories are used as functional
programs that compute by equational deduction (replacement of
equals for equals) with their equations E.
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Unsorted Functional Modules

*** Natural number addition in prefix syntax

fmod NAT-PREFIX is
sort Natural .
op 0 : -> Natural [ctor] .
op s : Natural -> Natural [ctor] .
op + : Natural Natural -> Natural .
vars N M : Natural .
eq +(N,0) = N .
eq +(N,s(M)) = s(+(N,M)) .

endfm

Maude> red +(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : +(s(s(0)), s(s(0))) .
result Natural: s(s(s(s(0))))
Maude>
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Tracing Maude’s Reduce Command

We can use Maude’s trace facility to see how Maude uses
equational deduction (replacement of equals for equals) in a left to
right manner to evaluate functional expressions with the reduce
command:

Maude> set trace on .
Maude> red +(s(s(0)),s(s(0))) .
reduce in NAT-PREFIX : +(s(s(0)), s(s(0))) .
*********** equation
eq +(N, s(M)) = s(+(N, M)) .
N --> s(s(0))
M --> s(0)
+(s(s(0)), s(s(0)))
--->
s(+(s(s(0)), s(0)))
*********** equation
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eq +(N, s(M)) = s(+(N, M)) .
N --> s(s(0))
M --> 0
+(s(s(0)), s(0))
--->
s(+(s(s(0)), 0))
*********** equation
eq +(N, 0) = N .
N --> s(s(0))
+(s(s(0)), 0)
--->
s(s(0))

result Natural: s(s(s(s(0))))
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Unsorted Functional Modules (II)
*** Natural's addition and multiplication in mixfix syntax

fmod NAT-MIXFIX is
sort Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> Natural [ctor] .
op _+_ : Natural Natural -> Natural .
op _*_ : Natural Natural -> Natural .
vars N M : Natural .
eq N + 0 = N .
eq N + s M = s(N + M) .
eq N * 0 = 0 .
eq N * s M = N + (N * M) .

endfm

Maude> red (s s 0) + (s s 0) .
reduce in NAT-MIXFIX : s s 0 + s s 0 .
result Natural: s s s s 0
Maude>
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Many-Sorted Functional Modules

fmod NAT-LIST is
protecting NAT-MIXFIX .
sort List .
op nil : -> List [ctor] .
op _._ : Natural List -> List [ctor] .
op length : List -> Natural .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .

endfm

Maude> red length(0 . (s 0 . (s s 0 . (0 . nil)))) .
reduce in NAT-LIST : length(0 . s 0 . s s 0 . 0 . nil) .
result Natural: s s s s 0
Maude>
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The Need for Order-Sorted Signatures

Many-sorted signatures are still too restrictive. The problem is that
some operations are partial, and there is no natural way of defining
them in just a many-sorted framework.

Consider, division by 0, or defining a function first that takes the
first element of a list of natural numbers, or a predecessor function
p that assigns to each natural number its predecessor. What can
we do? Declaring operators:

op _/_ : Rat Rat -> Rat .
op first : List -> Natural .
op p_ : Natural -> Natural .

we then have the awkward problem of defining the values of 1 / 0,
first(nil) and p 0, which in fact are undefined.
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The Need for Order-Sorted Signatures (II)

These functions are partial with the typing just given, but become
total on appropriate subsorts NzRat < Rat of nonzero rationals,
NeList < List of nonempty lists, and NzNatural < Natural of
nonzero naturals. If we declare,

op _/_ : Rat NzRat -> Rat .
op s_ : Natural -> NzNatural .
op _._ : Natural List -> NeList .
op first : NeList -> Natural .
op p_ : NzNatural -> Natural .

everything is fine. Subsorts also allow us to overload operator
symbols. For example, Natural < Integer, and

op _+_ : Natural Natural -> Natural .
op _+_ : Integer Integer -> Integer .
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Order-Sorted Functional Modules

fmod NATURAL is
sorts Natural NzNatural .
subsorts NzNatural < Natural .
op 0 : -> Natural [ctor] .
op s_ : Natural -> NzNatural [ctor] .
op p_ : NzNatural -> Natural .
op _+_ : Natural Natural -> Natural .
op _+_ : NzNatural NzNatural -> NzNatural .
vars N M : Natural .
eq p s N = N .
eq N + 0 = N .
eq N + s M = s(N + M) .

endfm

Maude> red p((s s 0) + (s s 0)) .
reduce in NATURAL : p (s s 0 + s s 0) .
result NzNatural: s s s 0

15



Order-Sorted Functional Modules (II)

fmod NAT-LIST-II is
protecting NATURAL .
sorts NeList List .
subsorts NeList < List .
op nil : -> List [ctor] .
op _._ : Natural List -> NeList [ctor] .
op length : List -> Natural .
op first : NeList -> Natural .
op rest : NeList -> List .
var N : Natural .
var L : List .
eq length(nil) = 0 .
eq length(N . L) = s length(L) .
eq first(N . L) = N .
eq rest(N . L) = L .

endfm
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Rewriting as Efficient Equational Deduction

Maude computes with equations E from left to right. For example,
in the second step of our trace:

*********** equation
eq +(N, s(M)) = s(+(N, M)) .
N --> s(s(0))
M --> 0
+(s(s(0)), s(0)) ---> s(+(s(s(0)), 0))

the subexpression +(s(s(0)),s(0)) of the first step’s result:
s(+(s(s(0)),s(0))) has been matched as an instance of the
equation’s lefthand side +(N,s(M)) = s(+(N,M)) with matching
substitution {N 7→ s(s(0)), M 7→ 0}, which applied to the equation’s
righthand side yields the resulting subexpression s(+(s(s(0)),0))
within: s(s(+(s(s(0)),0))).
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Rewriting as Efficient Equational Deduction (II)

This efficient form of equational deduction is called term rewriting,
and is achieved as follows:

1. The equations E in (Σ, E) are oriented as a term rewriting
system (Σ, E⃗), where E⃗ = {u → v | (u = v) ∈ E} are called its
rewrite rules.

2. A functional expression or term t is rewritten or simplified to t′

with E⃗ in one step, written t →E⃗ t′, iff there is a subterm w in
t (notation: t = t[w]), a rule (u → v) ∈ E⃗ and a substitution θ

such that: (i) w = uθ, (ii) w′ = vθ, and (iii) t′ = t[w′] = t[vθ],
where, uθ (resp. vθ) denotes the instantiation of u (resp. v)
with substitution θ.

Let us illustrate all this in our trace example.
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Rewriting as Efficient Equational Deduction (III)

In our 2nd trace step for equation: +(N,s(M)) = s(+(N,M))

1. t = s(+(s(s(0)), s(0))) = s([+(s(s(0)), s(0))])

2. θ = {N 7→ s(s(0)), M 7→ 0}

3. w = +(s(s(0)), s(0)) = +(N, s(M))θ

4. w′ = s(+(N, M))θ = s(+(s(s(0)), 0)), and

5. t′ = s([w′]) = s([s(+(s(s(0)), 0))]) = s(s(+(s(s(0)), 0)))

yielding the one-step rewrite:

t = s([+(s(s(0)), s(0))]) →E⃗ s([s(+(s(s(0)), 0))]) = t′

with rule +(N,s(M)) → s(+(N,M)).
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