
1/165

Constrained Horn Clauses
in Verification: 10 Years later

Philipp Rümmer
Uppsala University

7th September 2020
LOPSTR, AoE

3/165

Joint work with ...
● Anoud Alshnakat

● Peter Backeman

● Marc Brockschmidt

● Zafer Esen

● Florent Garnier

● Dilian Gurov

● Hossein Hojjat

● Radu Iosif

● Temesghen Kahsai

● Rody Kersten

● Filip Konecny

● Viktor Kuncak

● Jerome Leroux

● Chencheng Liang

● Christian Lidström

● Huascar Sanchez

● Martin Schäf

● Ali Shamakhi

● Pavle Subotic

● Wang Yi

● Aleksandar Zeljic

4/165

Joint work with ...
● Anoud Alshnakat

● Peter Backeman

● Marc Brockschmidt

● Zafer Esen

● Florent Garnier

● Dilian Gurov

● Hossein Hojjat

● Radu Iosif

● Temesghen Kahsai

● Rody Kersten

● Filip Konecny

● Viktor Kuncak

● Jerome Leroux

● Chencheng Liang

● Christian Lidström

● Huascar Sanchez

● Martin Schäf

● Ali Shamakhi

● Pavle Subotic

● Wang Yi

● Aleksandar Zeljic

+ based on the work of many other people!

5/165

6/165

C
Java
Ada
Rust
Networks of TA
BIP models
etc.

Floyd-Hoare
Design by contract
Owicki-Gries
Rely Guarantee
etc.

Duality
Eldarica(-abs)
Hoice
HSF
IC3IA
PCSat
PECOS
ProphIC3
Sally
Spacer
TransfHORNer
Ultimate TreeAutomizer
Ultimate Unihorn
etc.

Linear Integers
Linear Rationals
Bit-vectors
Algebraic data-types
Arrays
etc.

7/165

Ex 1: Floyd-style invariants

8/165

Ex 1: Floyd-style invariants

9/165

Ex 1: Floyd-style invariants

● When the program is in , holds

10/165

Ex 1: Floyd-style invariants

● When the program is in , holds
● When the program is in and

holds, then after transition to the
formula holds

11/165

Ex 1: Floyd-style invariants

● When the program is in , holds
● When the program is in and

holds, then after transition to the
formula holds

● etc.

12/165

Ex 1: Floyd-style invariants

● When the program is in , holds
● When the program is in and

holds, then after transition to the
formula holds

● etc.

Constraints:

13/165

Ex 1: Floyd-style invariants

● When the program is in , holds
● When the program is in and

holds, then after transition to the
formula holds

● etc.

Constraints:

14/165

In Machine-Readable Format
(set-logic HORN)

(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)

(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))

(check-sat)
(get-model)

SMT-LIB

15/165

In Machine-Readable Format
(set-logic HORN)

(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)

(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))

(check-sat)
(get-model) i0(X, Y) :- 1=1.

i1(X', Y') :- i0(X, Y), X'=0, Y'=0.
i2(X', Y) :- i1(X, Y), X'=X+1.
i1(X, Y') :- i2(X, Y), Y'=X+2.
false :- i1(X, Y), Y < X.

SMT-LIB

Prolog

16/165

In Machine-Readable Format
(set-logic HORN)

(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)

(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))

(check-sat)
(get-model) i0(X, Y) :- 1=1.

i1(X', Y') :- i0(X, Y), X'=0, Y'=0.
i2(X', Y) :- i1(X, Y), X'=X+1.
i1(X, Y') :- i2(X, Y), Y'=X+2.
false :- i1(X, Y), Y < X.

SMT-LIB

Prolog

17/165

Definition
Suppose
● is some constraint language;
● is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula

in which
● is a constraint in (no symbols from);
● each is a literal of the form ;
● is either , or of the same form as the .

More formally ...

18/165

Definition
Suppose
● is some constraint language;
● is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula

in which
● is a constraint in (no symbols from);
● each is a literal of the form ;
● is either , or of the same form as the .

More formally ...

Body Head

Constraint

19/165

Definition
Suppose
● is some constraint language;
● is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula

in which
● is a constraint in (no symbols from);
● each is a literal of the form ;
● is either , or of the same form as the .

More formally ... Combination of
theories; e.g.,

integers, rationals,
arrays, etc.

Body Head

Constraint

20/165

Definition
Suppose
● is some constraint language;
● is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula

in which
● is a constraint in (no symbols from);
● each is a literal of the form ;
● is either , or of the same form as the .

More formally ... Combination of
theories; e.g.,

integers, rationals,
arrays, etc.

Definition
A set of Horn clauses is satisfiable if it is
satisfiable in the first-order/model-theoretic sense.

[This means: for some interpretation of symbols
all clauses become valid.]

21/165

Floyd-Hoare
Design by contract
Owicki-Gries
Rely Guarantee
etc.

22/165

From Proof Rules to CHC

23/165

From Proof Rules to CHC

24/165

From Proof Rules to CHC

Example 2

25/165

From Proof Rules to CHC

Example 2

Constraints/CHCs

26/165

From Proof Rules to CHC

Example 2

Constraints/CHCs Solution/Model

27/165

From Proof Rules to CHC

Example 2

Constraints/CHCs Solution/Model

Substitute to
obtain a closed
proof ...

28/165

Function calls

29/165

Function calls

30/165

Function calls

+ proof obligations
ensuring correctness

of contract

31/165

Example 3: Functions

32/165

Example 3: Functions

int f(int x) {
 if (x > 100) {
 int t0 = x – 10;
 return t0;
 } else {
 int t0 = x + 11;
 int t1 = f(t0);
 int t2 = f(t1);
 return t2;
 }
}

33/165

Example 3: Functions

int f(int x) {
 if (x > 100) {
 int t0 = x – 10;
 return t0;
 } else {
 int t0 = x + 11;
 int t1 = f(t0);
 int t2 = f(t1);
 return t2;
 }
}

Assume that f has:
Pre-condition true

Post-condition post_f(x, result)

34/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

35/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

State invariants
record function input
and current value of

variables

36/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

State invariants
record function input
and current value of

variables

Upon return,
assert that

post-condition
holds

37/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

State invariants
record function input
and current value of

variables

Upon return,
assert that

post-condition
holds

Function calls
can assume the
post-condition

→ non-linear clauses

38/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

State invariants
record function input
and current value of

variables

Upon return,
assert that

post-condition
holds

Function calls
can assume the
post-condition

→ non-linear clauses

Property expressed
in terms of

post-condition

39/165

Encoding as CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

State invariants
record function input
and current value of

variables

Upon return,
assert that

post-condition
holds

Function calls
can assume the
post-condition

→ non-linear clauses

Property expressed
in terms of

post-condition

40/165

Fragments of CHC

41/165

Fragments of CHC

● Linear:
≤1 literals per clause body

● Non-linear/general:
some clause with ≥1 body literals
→ function calls, concurrency, etc.

42/165

Fragments of CHC

● Linear:
≤1 literals per clause body

● Non-linear/general:
some clause with ≥1 body literals
→ function calls, concurrency, etc.

● “Transition systems” (TS):
exactly three clauses (init, trans, err)
(linear clauses can be reduced to this)

43/165

Summary so far

● Relation symbols in CHCs represent
Program annotations

● for instance
state invariants
pre-/post-conditions
class/process invariants

● CHCs encode preservation:
initiation, consecution, etc.

● CHCs also encode safety properties:
invariants exclude error states

44/165

Summary so far

● Relation symbols in CHCs represent
Program annotations

● for instance
state invariants
pre-/post-conditions
class/process invariants

● CHCs encode preservation:
initiation, consecution, etc.

● CHCs also encode safety properties:
invariants exclude error states

Program is
correct
SAFE

Clauses
are solvable

SAT

45/165

Duality
Eldarica(-abs)
Hoice
HSF
IC3IA
PCSat
PECOS
ProphIC3
Sally
Spacer
TransfHORNer
Ultimate TreeAutomizer
Ultimate Unihorn
etc.

46/165

Algorithms in CHC

● CEGAR, predicate abstraction
● IC3, Spacer
● Syntax-guided synthesis (SyGuS)
● Decision trees, data-driven methods
● Transformation, unfold/fold, etc.
● Abstract interpretation

● to be continued ...

47/165

Algorithms in CHC

● CEGAR, predicate abstraction
● IC3, Spacer
● Syntax-guided synthesis (SyGuS)
● Decision trees, data-driven methods
● Transformation, unfold/fold, etc.
● Abstract interpretation

● to be continued ...

48/165

Linear CHC

Constraints

49/165

Linear CHC

Constraints

Back to a “control-flow graph”:

50/165

Linear CHC

Constraints

Back to a “control-flow graph”:

Horn clauses are sat
if

no feasible path from true to false exists

51/165

Linear CHC

Constraints

Back to a “control-flow graph”:

Horn clauses are sat
if

no feasible path from true to false exists

“Duality”

52/165

CEGAR

53/165

Non-linear CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }
false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

54/165

Non-linear CHC

i0(X0, X) :- X0=X. % int f(int x) {
i1(X0, X) :- i0(X0, X), X > 100. % if (x > 100) {
i2(X0, T0) :- i1(X0, X), T0=X-10. % int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0). % return t0;
i3(X0, X) :- i0(X0, X), X =< 100. % } else {
i4(X0, T0) :- i3(X0, X), T0=X+11. % int t0 = x + 11;
i5(X0, T1) :- i4(X0, T0), post_f(T0, T1). % int t1 = f(t0);
i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2). % return t2;
 % }
 % }
false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion

“Control-flow hyper-graph”

55/165

Linear → Non-Linear CHC

Linear CHC Non-linear CHC

Abstract reachability: graph hyper-graph

Counterexample: path dag/tree

Craig Interpolant: sequence tree

56/165

Competition affiliated with Workshop on Horn
Clauses for Verification and Synthesis (HCVS)

57/165

Competition affiliated with Workshop on Horn
Clauses for Verification and Synthesis (HCVS)

58/165

Competition affiliated with Workshop on Horn
Clauses for Verification and Synthesis (HCVS)

59/165

Competition Design in 2020

● 4 tracks:
LIA-nonlin
LIA-lin
LIA-lin-arrays
LRA-TS

● 8 solvers competing, 1 hors concours
● StarExec; 1800s timeout; 64GB memory
● https://chc-comp.github.io/

60/165

Competition Design in 2020

● 4 tracks:
LIA-nonlin
LIA-lin
LIA-lin-arrays
LRA-TS

● 8 solvers competing, 1 hors concours
● StarExec; 1800s timeout; 64GB memory
● https://chc-comp.github.io/

Linear arithmetic
constraints

Non-linear
clauses

https://chc-comp.github.io/

61/165

https://chc-comp.github.io/

62/165

63/165

64/165

65/165

What next?

● More tracks?

● More benchmarks?

● More solvers?

66/165

C
Java
Ada
Rust
Networks of TA
BIP models
etc.

67/165

Verifying Java Programs

[1] Temesghen Kahsai, PR, Huascar Sanchez, Martin Schäf
JayHorn: A Framework for Verifying Java programs. CAV 2016

68/165

● Horn-based verification tool for Java,
written in Java

● Open source, MIT licence

69/165

McCarthy 91 Example
import org.sosy_lab.sv_benchmarks.Verifier;

public class McCarthy91 {
 private static int f(int n) {
 if (n > 100)
 return n - 10;
 else
 return f(f(n + 11));
 }

 public static void main(String[] args) {
 int x = Verifier.nondetInt();
 int y = f(x);
 assert(x > 101 || y == 91);
 }
}

70/165

Representation of Heap

71/165

Representation of Heap

● Encoding using McCarthy Arrays
● Precise, relatively complete
● Hard to infer invariants

automatically

● Refinement types, etc.
● Incomplete
● Easier to automate

● (Separation logic, ownership systems,
dynamic frames, etc.)

72/165

Representation of Heap

● Encoding using McCarthy Arrays
● Precise, relatively complete
● Hard to infer invariants

automatically

● Refinement types, etc.
● Incomplete
● Easier to automate

● (Separation logic, ownership systems,
dynamic frames, etc.)

73/165

Representation of Heap

● Encoding using McCarthy Arrays
● Precise, relatively complete
● Hard to infer invariants

automatically

● Refinement types, etc.
● Incomplete
● Easier to automate

● (Separation logic, ownership systems,
dynamic frames, etc.)

One of our current projects:
A theory of heap to abstract

from those diferent encodings

 Zafer Esen, PR. Towards an SMT-LIB Theory of
Heap. HCVS 2020

74/165

 Data-Flow

79/165

Verifying Networks
of Timed Automata

[2] Hossein Hojjat, PR, Pavle Subotic, Wang Yi. Horn Clauses for
Communicating Timed Systems. HCVS 2014

80/165

Train Crossing Model

[FORTE'94]

81/165

Train Crossing Model

TrainController[FORTE'94]

82/165

Train Crossing Model

TrainController[FORTE'94]

Binary
Communication

channel

Clock

83/165

Train Crossing Model

TrainController[FORTE'94]

Critical
section

Binary
Communication

channel

Clock

84/165

Train Crossing Model

TrainController[FORTE'94]

Critical
section

Is it possible that
two trains try to cross the bridge

simultaneously?

85/165

With Two Trains

86/165

With Two Trains

87/165

With Two TrainsThis includes
time

88/165

System invariant:

With Two TrainsThis includes
time

89/165

System invariant:

With Two Trains

Horn Constraints
Local transitions:

Owicki-Gries-style non-interference:

+ time elapse, synch., initiation, assertions

90/165

System invariant:

With Two Trains

91/165

With Two Trains

92/165

With Two Trains

System invariant:

93/165

With Two Trains

System invariant:

94/165

Modular
Separate invariant
for each process

Spectrum of Possible Invariant
Schemata

Monolithic
Single invariant
for whole system

95/165

Parameterised systems

96/165

Parameterised systems

Can we verify mutual
exclusion for any number

of trains?

97/165

Parameterised systems

98/165

Parameterised systems
Horn Constraints

Local transitions:

Owicki-Gries-style non-interference:

+ time elapse, synch., initiation, assertions

99/165

Parameterised systems
Horn Constraints

Local transitions:

Owicki-Gries-style non-interference:

+ time elapse, synch., initiation, assertions

“Self-reflection”

100/165

Parameterised systems

101/165

Parameterised systems

Final invariant schema:

Need to analyse behaviour of ≥3 trains in
combination to prove mutual exclusion:

102/165

Parameterised systems

Final invariant schema:

Need to analyse behaviour of ≥3 trains in
combination to prove mutual exclusion:

k-indexed invariant/
Ashcroft invariant

103/165

Parameterised systems

Final invariant schema:

Need to analyse behaviour of ≥3 trains in
combination to prove mutual exclusion:

k-indexed invariant/
Ashcroft invariant

105/165

Linear Integers
Linear Rationals
Bit-vectors
Algebraic data-types
Arrays
etc.

106/165

Bitvector Interpolation

[3] Peter Backeman, PR, Aleksandar Zeljic. Bit-Vector Interpolation
and Quantifier Elimination by Lazy Reduction. FMCAD 2018

Recap:
Craig Interpolation
 Given an unsatisfiable formula

 a (reverse) Interpolant is a formula s.t.:

(a) and

(b) contains only non-logical symbols occuring
both in and .

 Interpolant sequences/trees can be reduced to this

Fixed-Length Bit-Vectors
 Formalisation of machine arithmetic
 Domains:

 Operators:
 Arithmetic:
 Bit-Vector:
 Bit-wise:

 Efficient solvers (you-know-which)
 But usually no interpolation

Interpolants for
Bit-Vector Formulas?

 Solution 1: Bit-Blasting
 Encode into propositional logic

 Solution 2: Integer Encoding
 Encode into integer arithmetic

Bit-Blasting

 Blast every bit-vector to bits:
If then

 Model operations exactly

 Interpolation in SAT is well understood

Bit-Blasting

 Blast every bit-vector to bits:
If then

 Model operations exactly

 Interpolation in SAT is well understood
 But: this gives bit-level interpolants

Integer Encoding

 If then with
 Model overflows arithmetically, e.g.:

[4] A. Griggio, “Effective word-level interpolation for software
verification,” FMCAD 2011

Integer Encoding

 If then with
 Model overflows arithmetically, e.g.:

 Hard LIA form., complicated interpolants

[4] A. Griggio, “Effective word-level interpolation for software
verification,” FMCAD 2011

Integer Encoding

 If then with
 Model overflows arithmetically, e.g.:

 Hard LIA form., complicated interpolants
 Many operations are difficult to encode

[4] A. Griggio, “Effective word-level interpolation for software
verification,” FMCAD 2011

Lazy Reduction

 Lazily convert from a core language to
integer arithmetic:

Lazy Reduction

 Lazily convert from a core language to
integer arithmetic:

During proof construction;
can dynamically
choose between

multiple possible encodings

Pre-processing

BV-Core Language
 LIA, extended with further predicates:

BV-Core Language
 LIA, extended with further predicates:

BV-Core Language
 LIA, extended with further predicates:

BV-Core Language
 LIA, extended with further predicates:

BV-Core Language
 LIA, extended with further predicates:

 Eager translation rules (applied on flat NNF):

BV-Core Language
 LIA, extended with further predicates:

 Eager translation rules (applied on flat NNF):

BV-Core Language
 LIA, extended with further predicates:

 Eager translation rules (applied on flat NNF):

BV-Core Language
 LIA, extended with further predicates:

 Eager translation rules (applied on flat NNF):

BV-Core Language
 LIA, extended with further predicates:

 Eager translation rules (applied on flat NNF):

 Infix notation:

Example (taken from [4])
 BV-Formula:

Example (taken from [4])
 BV-Formula:

 BV-Core representation:

Example (taken from [4])
 BV-Formula:

 BV-Core representation:

+ domain constraints (omitted)

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Int. Enc.

Presburger Arith.

BV-Core

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Int. Enc.

Presburger Arith.

BV-Core

BV-Core Simplification Rules

 Eliminate if only one branch possible:

for

 Eliminate nested

BV-Core Simplification Rules

 Eliminate if only one branch possible:

for

 Eliminate nested

 Applied aggressively during proving

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core
Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core
Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Rule: BMOD-SPLIT

 Given tight bounds in
consider cases explicitly:

Rule: BMOD-SPLIT

 Given tight bounds in
consider cases explicitly:

 Applied when literal with small number
of cases is found

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core
Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core

Applied when nothing
else works

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Example – Proof

Example – Proof

Example – Proof

Example – Proof

Example – Proof

Example – Proof

Example – Proof

Example – Interpolation

Example – Interpolation

Example – Interpolation

Example – Interpolation

Example – Interpolation

 Final Interpolant:

 Compare with [4]:

159/165

What is left?

160/165

C
Java
Ada
Rust
Networks of TA
BIP models
etc.

Floyd-Hoare
Design by contract
Owicki-Gries
Rely Guarantee
etc.

Duality
Eldarica(-abs)
Hoice
HSF
IC3IA
PCSat
PECOS
ProphIC3
Sally
Spacer
TransfHORNer
Ultimate TreeAutomizer
Ultimate Unihorn
etc.

Linear Integers
Linear Rationals
Bit-vectors
Algebraic data-types
Arrays
etc.

161/165

Proposed Extensions of CHCs

● Well-foundedness predicates
● Existential quantifiers in clause heads
● Universal quantifiers in clause bodies
● General fixed-point operators
● Optimisation with Horn clauses
● Non-Horn constraints
● etc.

162/165

Other Horn Encodings
● Owicki-Gries

● Rely-guarantee

● Various forms of thread communication

● Parameterised systems

● Timed systems
● Synchronous programs

● Equivalence/Regression verification

● Games

● Networks, SDN

● etc.

163/165

Convergence Heuristics

Local reasoning Global reasoning

164/165

Convergence Heuristics

Local reasoning Global reasoning

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time

165/165

Convergence Heuristics

Local reasoning Global reasoning

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time

Fast, might diverge Guarantees convergence,
less scalable

166/165

Convergence Heuristics

Local reasoning Global reasoning

[5] Jérôme Leroux, PR, Pavle Subotic. Guiding Craig Interpolation with
Domain-specific Abstractions. Acta Informatica 2016
[6] Hari Govind V.K., YuTing Chen, Sharon Shoham, Arie Gurfinkel:
Global Guidance for Local Generalization in Model Checking. CAV 2020

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time

Fast, might diverge Guarantees convergence,
less scalable

171/165

Conclusions

Horn solvers and CHC ...
● provide highly optimised model

checking engines
● enable experimentation with program

logics and proof rules
● simplify implementation of verifiers

Questions?

