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In Machine-Readable Format
(set-logic HORN)

(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)

(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))

(check-sat)
(get-model)

SMT-LIB
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Definition
Suppose
●      is some constraint language;
●      is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula
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●      is a constraint in      (no symbols from     );
●  each      is a literal of the form                   ;
●      is either        , or of the same form as the     .

More formally ...
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Definition
Suppose
●      is some constraint language;
●      is a set of relation symbols;

Then a Constrained Horn Clause (CHC) is a formula

in which
●      is a constraint in      (no symbols from     );
●  each      is a literal of the form                   ;
●      is either        , or of the same form as the     .

More formally ... Combination of
theories; e.g.,

integers, rationals,
arrays, etc.

Definition
A set     of Horn clauses is satisfiable if it is
satisfiable in the first-order/model-theoretic sense.

[This means: for some interpretation of     symbols
all clauses become valid.]
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Floyd-Hoare
Design by contract
Owicki-Gries
Rely Guarantee
etc.
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From Proof Rules to CHC

Example 2

Constraints/CHCs Solution/Model

Substitute to
obtain a closed
proof ...
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Function calls

+ proof obligations
ensuring correctness

of contract
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int f(int x) {
  if (x > 100) {
    int t0 = x – 10;
    return t0;
  } else {
    int t0 = x + 11;
    int t1 = f(t0);
    int t2 = f(t1);
    return t2;
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Example 3: Functions

int f(int x) {
  if (x > 100) {
    int t0 = x – 10;
    return t0;
  } else {
    int t0 = x + 11;
    int t1 = f(t0);
    int t2 = f(t1);
    return t2;
  }
}

Assume that f has:
Pre-condition true

Post-condition post_f(x, result)
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Encoding as CHC

i0(X0, X)      :- X0=X.                       % int f(int x) {
i1(X0, X)      :- i0(X0, X), X > 100.         %   if (x > 100) {
i2(X0, T0)     :- i1(X0, X), T0=X-10.         %     int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0).                 %     return t0;
i3(X0, X)      :- i0(X0, X), X =< 100.        %   } else {
i4(X0, T0)     :- i3(X0, X), T0=X+11.         %     int t0 = x + 11;
i5(X0, T1)     :- i4(X0, T0), post_f(T0, T1). %     int t1 = f(t0);
i6(X0, T2)     :- i5(X0, T1), post_f(T1, T2). %     int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2).                 %     return t2;
                                              %   }
                                              % } 

false :- post_f(X, R), X =< 100, \+(R = 91).  % Assertion
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Fragments of CHC

● Linear:
≤1 literals per clause body

● Non-linear/general:
some clause with ≥1 body literals
→ function calls, concurrency, etc.

● “Transition systems” (TS):
exactly three clauses (init, trans, err)
(linear clauses can be reduced to this)
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Summary so far

● Relation symbols in CHCs represent
Program annotations

● for instance
state invariants
pre-/post-conditions
class/process invariants

● CHCs encode preservation:
initiation, consecution, etc.

● CHCs also encode safety properties:
invariants exclude error states
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Summary so far

● Relation symbols in CHCs represent
Program annotations

● for instance
state invariants
pre-/post-conditions
class/process invariants

● CHCs encode preservation:
initiation, consecution, etc.

● CHCs also encode safety properties:
invariants exclude error states

Program is
correct
SAFE

Clauses
are solvable

SAT
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Duality
Eldarica(-abs)
Hoice
HSF
IC3IA
PCSat
PECOS
ProphIC3
Sally
Spacer
TransfHORNer
Ultimate TreeAutomizer
Ultimate Unihorn
etc.
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Algorithms in CHC

● CEGAR, predicate abstraction
● IC3, Spacer
● Syntax-guided synthesis (SyGuS)
● Decision trees, data-driven methods
● Transformation, unfold/fold, etc.
● Abstract interpretation

● to be continued ...



47/165

Algorithms in CHC

● CEGAR, predicate abstraction
● IC3, Spacer
● Syntax-guided synthesis (SyGuS)
● Decision trees, data-driven methods
● Transformation, unfold/fold, etc.
● Abstract interpretation

● to be continued ...



48/165

Linear CHC

Constraints



49/165

Linear CHC

Constraints

Back to a “control-flow graph”:



50/165

Linear CHC

Constraints

Back to a “control-flow graph”:

Horn clauses are sat
if

no feasible path from true to false exists



51/165

Linear CHC

Constraints

Back to a “control-flow graph”:

Horn clauses are sat
if

no feasible path from true to false exists

“Duality”
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CEGAR
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Non-linear CHC

i0(X0, X)      :- X0=X.                       % int f(int x) {
i1(X0, X)      :- i0(X0, X), X > 100.         %   if (x > 100) {
i2(X0, T0)     :- i1(X0, X), T0=X-10.         %     int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0).                 %     return t0;
i3(X0, X)      :- i0(X0, X), X =< 100.        %   } else {
i4(X0, T0)     :- i3(X0, X), T0=X+11.         %     int t0 = x + 11;
i5(X0, T1)     :- i4(X0, T0), post_f(T0, T1). %     int t1 = f(t0);
i6(X0, T2)     :- i5(X0, T1), post_f(T1, T2). %     int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2).                 %     return t2;
                                              %   }
                                              % } 
false :- post_f(X, R), X =< 100, \+(R = 91).  % Assertion
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Non-linear CHC

i0(X0, X)      :- X0=X.                       % int f(int x) {
i1(X0, X)      :- i0(X0, X), X > 100.         %   if (x > 100) {
i2(X0, T0)     :- i1(X0, X), T0=X-10.         %     int t0 = x - 10;
post_f(X0, T0) :- i2(X0, T0).                 %     return t0;
i3(X0, X)      :- i0(X0, X), X =< 100.        %   } else {
i4(X0, T0)     :- i3(X0, X), T0=X+11.         %     int t0 = x + 11;
i5(X0, T1)     :- i4(X0, T0), post_f(T0, T1). %     int t1 = f(t0);
i6(X0, T2)     :- i5(X0, T1), post_f(T1, T2). %     int t2 = f(t1);
post_f(X0, T2) :- i6(X0, T2).                 %     return t2;
                                              %   }
                                              % } 
false :- post_f(X, R), X =< 100, \+(R = 91).  % Assertion

“Control-flow hyper-graph”
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Linear → Non-Linear CHC

Linear CHC Non-linear CHC

Abstract reachability: graph hyper-graph

Counterexample: path dag/tree

Craig Interpolant: sequence tree
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Competition affiliated with Workshop on Horn 
Clauses for Verification and Synthesis (HCVS)
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Clauses for Verification and Synthesis (HCVS)
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Competition Design in 2020

● 4 tracks:
LIA-nonlin
LIA-lin
LIA-lin-arrays
LRA-TS

● 8 solvers competing, 1 hors concours
● StarExec; 1800s timeout; 64GB memory
● https://chc-comp.github.io/
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Competition Design in 2020

● 4 tracks:
LIA-nonlin
LIA-lin
LIA-lin-arrays
LRA-TS

● 8 solvers competing, 1 hors concours
● StarExec; 1800s timeout; 64GB memory
● https://chc-comp.github.io/

Linear arithmetic
constraints

Non-linear
clauses

https://chc-comp.github.io/
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https://chc-comp.github.io/
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What next?

● More tracks?

● More benchmarks?

● More solvers?
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C
Java
Ada
Rust
Networks of TA
BIP models
etc.
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Verifying Java Programs

[1] Temesghen Kahsai, PR, Huascar Sanchez, Martin Schäf
JayHorn: A Framework for Verifying Java programs. CAV 2016
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● Horn-based verification tool for Java, 
written in Java

● Open source, MIT licence
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McCarthy 91 Example
import org.sosy_lab.sv_benchmarks.Verifier;

public class McCarthy91 {
    private static int f(int n) {
        if (n > 100)
            return n - 10;
        else
            return f(f(n + 11));
    }

    public static void main(String[] args) {
        int x = Verifier.nondetInt();
        int y = f(x);
        assert(x > 101 || y == 91);
    }
}
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Representation of Heap

● Encoding using McCarthy Arrays
● Precise, relatively complete
● Hard to infer invariants

automatically

● Refinement types, etc.
● Incomplete
● Easier to automate

● (Separation logic, ownership systems, 
dynamic frames, etc.)
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Representation of Heap

● Encoding using McCarthy Arrays
● Precise, relatively complete
● Hard to infer invariants

automatically

● Refinement types, etc.
● Incomplete
● Easier to automate

● (Separation logic, ownership systems, 
dynamic frames, etc.)

One of our current projects:
A theory of heap to abstract

from those diferent encodings

 Zafer Esen, PR. Towards an SMT-LIB Theory of 
Heap. HCVS 2020
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                    Data-Flow
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Verifying Networks
of Timed Automata

[2] Hossein Hojjat, PR, Pavle Subotic, Wang Yi. Horn Clauses for 
Communicating Timed Systems. HCVS 2014
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Train Crossing Model

[FORTE'94]
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Train Crossing Model

TrainController[FORTE'94]

Critical
section

Binary
Communication

channel

Clock
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Train Crossing Model

TrainController[FORTE'94]

Critical
section

Is it possible that
two trains try to cross the bridge 

simultaneously?
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System invariant:

With Two TrainsThis includes
time
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System invariant:

With Two Trains

Horn Constraints
Local transitions:

Owicki-Gries-style non-interference:

+ time elapse, synch., initiation, assertions
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With Two Trains

System invariant:
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With Two Trains

System invariant:
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Modular
Separate invariant 
for each process

Spectrum of Possible Invariant
Schemata

Monolithic
Single invariant  
for whole system
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Parameterised systems
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Parameterised systems

Can we verify mutual
exclusion for any number

of trains?
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Horn Constraints

Local transitions:
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Parameterised systems
Horn Constraints

Local transitions:

Owicki-Gries-style non-interference:

+ time elapse, synch., initiation, assertions

“Self-reflection”
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Parameterised systems

Final invariant schema:

Need to analyse behaviour of ≥3 trains in
combination to prove mutual exclusion:
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k-indexed invariant/
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Linear Integers
Linear Rationals
Bit-vectors
Algebraic data-types
Arrays
etc.
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Bitvector Interpolation

[3] Peter Backeman, PR, Aleksandar Zeljic. Bit-Vector Interpolation 
and Quantifier Elimination by Lazy Reduction. FMCAD 2018



Recap:
Craig Interpolation
 Given an unsatisfiable formula         

 a (reverse) Interpolant is a formula    s.t.:

(a)            and

(b)    contains only non-logical symbols occuring
both in     and    .

 Interpolant sequences/trees can be reduced to this



Fixed-Length Bit-Vectors
 Formalisation of machine arithmetic
 Domains:              

 Operators: 
 Arithmetic:
 Bit-Vector:
 Bit-wise: 

 Efficient solvers (you-know-which)
 But usually no interpolation



Interpolants for
Bit-Vector Formulas?

 Solution 1: Bit-Blasting
 Encode into propositional logic

 Solution 2: Integer Encoding
 Encode into integer arithmetic



Bit-Blasting

 Blast every bit-vector to bits:
If              then 

 Model operations exactly

 Interpolation in SAT is well understood



Bit-Blasting

 Blast every bit-vector to bits:
If              then 

 Model operations exactly

 Interpolation in SAT is well understood
 But: this gives bit-level interpolants



Integer Encoding

 If            then             with 
 Model overflows arithmetically, e.g.:

[4] A. Griggio, “Effective word-level interpolation for software 
verification,” FMCAD 2011



Integer Encoding

 If            then             with 
 Model overflows arithmetically, e.g.:

 Hard LIA form., complicated interpolants

[4] A. Griggio, “Effective word-level interpolation for software 
verification,” FMCAD 2011



Integer Encoding

 If            then             with 
 Model overflows arithmetically, e.g.:

 Hard LIA form., complicated interpolants
 Many operations are difficult to encode

[4] A. Griggio, “Effective word-level interpolation for software 
verification,” FMCAD 2011



Lazy Reduction

 Lazily convert from a core language to 
integer arithmetic:



Lazy Reduction

 Lazily convert from a core language to 
integer arithmetic:

During proof construction;
can dynamically
choose between

multiple possible encodings

Pre-processing
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BV-Core Language
 LIA, extended with further predicates: 

 Eager translation rules (applied on flat NNF):



 Infix notation:

Example (taken from [4])
 BV-Formula:



Example (taken from [4])
 BV-Formula:

 BV-Core representation:



Example (taken from [4])
 BV-Formula:

 BV-Core representation:

+ domain constraints (omitted)



Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Int. Enc.

Presburger Arith.

BV-Core
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(In)equalities

Divisibility

Close

Split
Simp.

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination

Int. Enc.

Presburger Arith.

BV-Core



BV-Core Simplification Rules

 Eliminate           if only one branch possible:

for

 Eliminate nested



BV-Core Simplification Rules

 Eliminate           if only one branch possible:

for

 Eliminate nested

 Applied aggressively during proving  
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Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core
Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination



Rule: BMOD-SPLIT

 Given tight bounds in
consider cases explicitly:



Rule: BMOD-SPLIT

 Given tight bounds in
consider cases explicitly:

 Applied when literal with small number 
of cases is found



Rules for
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Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core
Gröbner B.

ICP

Cross-Mult.
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Rules for
BV-Core

Propositional

Quantifiers

(In)equalities

Divisibility

Close

Split
Simp.

Int. Enc.

Presburger Arith.

BV-Core

Applied when nothing
else works

Gröbner B.

ICP

Cross-Mult.

Splitting

Elimination
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Example – Interpolation 



Example – Interpolation 



Example – Interpolation 



Example – Interpolation 



Example – Interpolation 

    Final Interpolant: 

    Compare with [4]:                                  
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What is left?
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C
Java
Ada
Rust
Networks of TA
BIP models
etc.

Floyd-Hoare
Design by contract
Owicki-Gries
Rely Guarantee
etc.

Duality
Eldarica(-abs)
Hoice
HSF
IC3IA
PCSat
PECOS
ProphIC3
Sally
Spacer
TransfHORNer
Ultimate TreeAutomizer
Ultimate Unihorn
etc.

Linear Integers
Linear Rationals
Bit-vectors
Algebraic data-types
Arrays
etc.
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Proposed Extensions of CHCs

● Well-foundedness predicates
● Existential quantifiers in clause heads
● Universal quantifiers in clause bodies
● General fixed-point operators
● Optimisation with Horn clauses
● Non-Horn constraints
● etc.
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Other Horn Encodings
● Owicki-Gries

● Rely-guarantee

● Various forms of thread communication

● Parameterised systems

● Timed systems
● Synchronous programs

● Equivalence/Regression verification

● Games

● Networks, SDN

● etc.
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Convergence Heuristics

Local reasoning Global reasoning



164/165

Convergence Heuristics

Local reasoning Global reasoning

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time
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Convergence Heuristics

Local reasoning Global reasoning

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time

Fast, might diverge Guarantees convergence,
less scalable
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Convergence Heuristics

Local reasoning Global reasoning

[5] Jérôme Leroux, PR, Pavle Subotic. Guiding Craig Interpolation with 
Domain-specific Abstractions. Acta Informatica 2016
[6] Hari Govind V.K., YuTing Chen, Sharon Shoham, Arie Gurfinkel: 
Global Guidance for Local Generalization in Model Checking. CAV 2020

Syntax-guided
synthesis:

all constraints
at once

CEGAR:
one path
at a time

IC3: one
counterexample

at a time

Fast, might diverge Guarantees convergence,
less scalable
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Conclusions

Horn solvers and CHC ...
● provide highly optimised model 

checking engines
● enable experimentation with program 

logics and proof rules
● simplify implementation of verifiers

Questions?


