Constrained Horn Clauses in Verification: 10 Years later

Philipp Rümmer Uppsala University

7th September 2020 LOPSTR, AoE

Joint work with ...

- Anoud Alshnakat
- Peter Backeman
- Marc Brockschmidt
- Zafer Esen
- Florent Garnier
- Dilian Gurov
- Hossein Hojjat
- Radu Iosif
- Temesghen Kahsai
- Rody Kersten
- Filip Konecny

- Viktor Kuncak
- Jerome Leroux
- Chencheng Liang
- Christian Lidström
- Huascar Sanchez
- Martin Schäf
- Ali Shamakhi
- Pavle Subotic
- Wang Yi
- Aleksandar Zeljic

+ based on the work of many other people!

- Anoud Alshnakat
- Peter Backeman
- Marc Brockschmidt
- Zafer Esen
- Florent Garnier
- Dilian Gurov
- Hossein Hojjat
- Radu Iosif
- Temesghen Kahsai
- Rody Kersten
- Filip Konecny

- Viktor Kuncak
- Jerome Leroux
- Chencheng Liang
- Christian Lidström
- Huascar Sanchez
- Martin Schäf
- Ali Shamakhi
- Pavle Subotic
- Wang Yi
- Aleksandar Zeljic

Program/ Safety System Property Horn Encoder (proof rules) Constrained Horn Clauses (CHC) Solver Horn (theory solvers) UNSAT SAT = "UNSAFE" = "SAFE"

5/165

C Java Ada Rust Networks of TA BIP models *etc.*

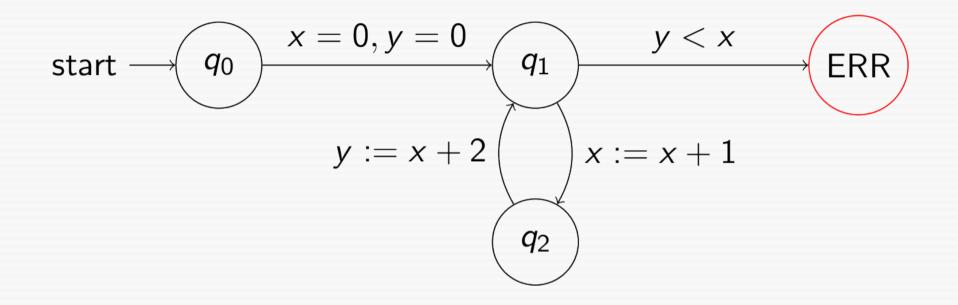
Program/ Safety System Property Floyd-Hoare Horn Encoder Design by contract **Owicki-Gries** (proof rules) **Rely Guarantee** etc. Constrained Horn Duality Eldarica(-abs) Clauses (CHC) Hoice **HSF** IC3IA V **PCSat** PECOS Horn Solver ProphIC3 (theory solvers) Sally Spacer TransfHORNer Ultimate TreeAutomizer **Ultimate Unihorn** etc. UNSAT SA

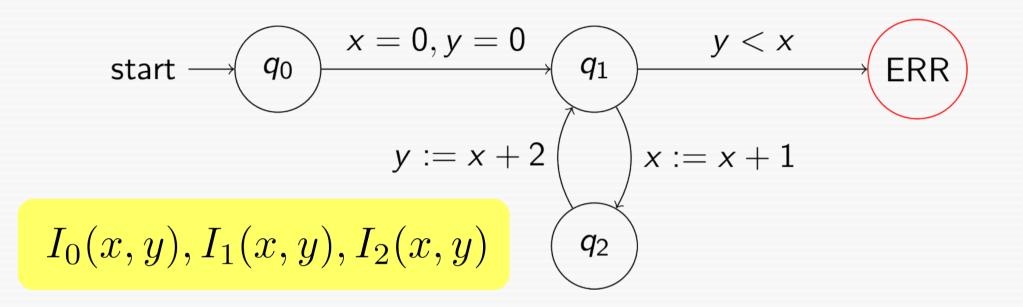
= "UNSAFE"

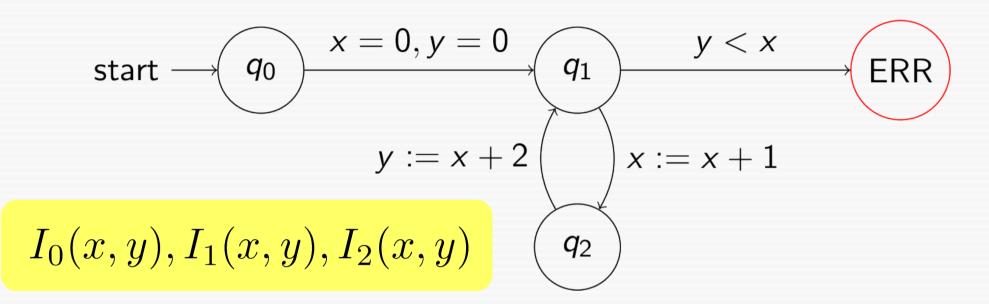
Linear Integers Linear Rationals Bit-vectors Algebraic data-types Arrays *etc.*

= "SAFE"

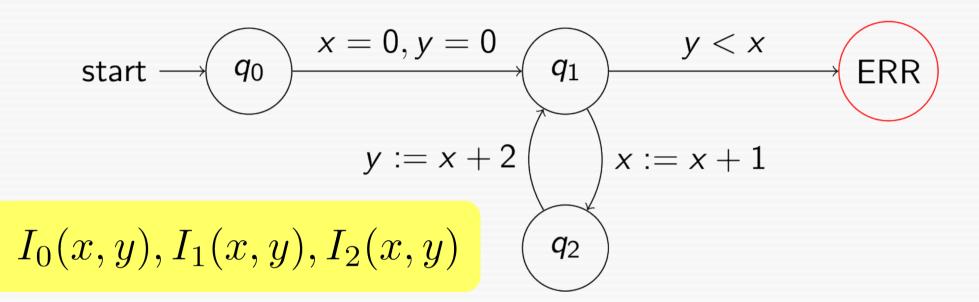
6/165



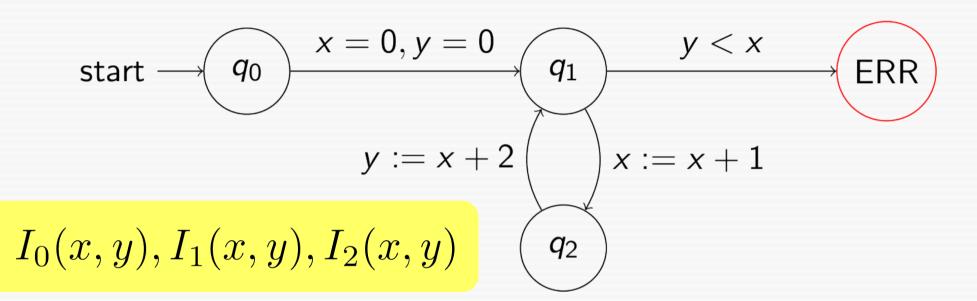




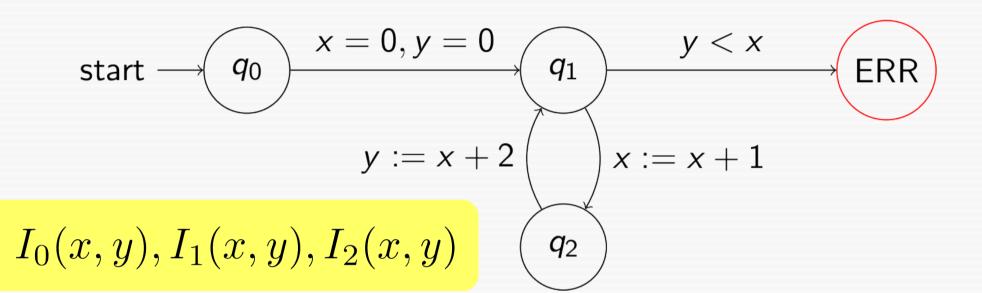
• When the program is in q_0 , $I_0(x, y)$ holds



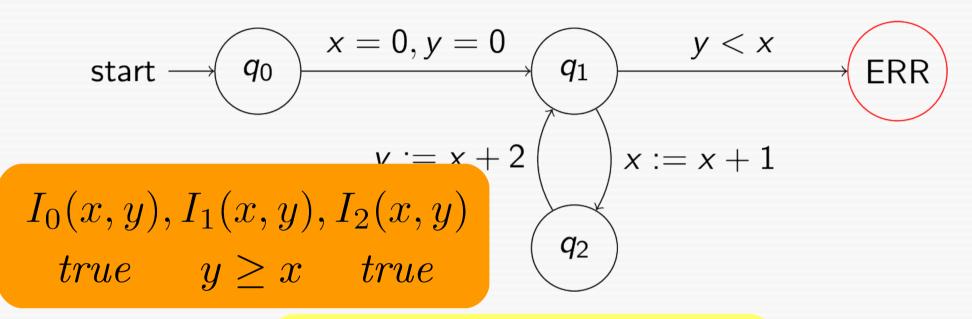
- When the program is in q_0 , $I_0(x, y)$ holds
- When the program is in q_0 and $I_0(x, y)$ holds, then after transition to q_1 the formula $I_1(x, y)$ holds



- When the program is in q_0 , $I_0(x, y)$ holds
- When the program is in q_0 and $I_0(x, y)$ holds, then after transition to q_1 the formula $I_1(x, y)$ holds
- etc.



• When the product of the second structureConstraints:y holds• When the product of the second structure $\forall x, y. true \rightarrow I_0(x, y)$ y holds• Nolds, the product of the second structure $\forall x, y. true \rightarrow I_0(x, y)$ $I_0(x, y)$ $\forall x, y. I_0(x, y) \rightarrow I_1(0, 0)$ $\forall x, y. I_1(x, y) \rightarrow I_2(x + 1, y)$ $I_0(x, y)$ $\forall x, y. I_2(x, y) \rightarrow I_1(x, x + 2)$ $\forall x, y. I_1(x, y) \land y < x \rightarrow false$ $I_{2/165}$



When the second s

Constraints:

When the holds, the formula

• etc.

 $\begin{array}{l} \forall x, y. \ true \rightarrow I_0(x, y) \\ \forall x, y. \ I_0(x, y) \rightarrow I_1(0, 0) \\ \forall x, y. \ I_1(x, y) \rightarrow I_2(x + 1, y) \\ \forall x, y. \ I_2(x, y) \rightarrow I_1(x, x + 2) \\ \forall x, y. \ I_1(x, y) \land y < x \rightarrow false \end{array}$

y) holds $I_0(x,y)$ 1 the

In Machine-Readable Format

```
(set-logic HORN)
```

SMT-LIB

```
(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)
```

```
(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))</pre>
```

(check-sat)
(get-model)

In Machine-Readable Format

```
(set-logic HORN)
```

SMT-LIB

Prolog

15/165

```
(declare-fun I0 (Int Int) Bool)
(declare-fun I1 (Int Int) Bool)
(declare-fun I2 (Int Int) Bool)
```

```
(assert (forall ((x Int) (y Int)) (I0 x y)))
(assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
(assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2)))))
(assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))</pre>
```

(check-sat)
(get-model)

<mark>i0</mark> (X, Y)	:- 1=1.
il(X', Y')	:- $i0(X, Y), X'=0, Y'=0$.
i2(X', Y)	:- i1(X, Y), X'=X+1.
il(X, Y')	:-i2(X, Y), Y'=X+2.
false	:- i1(X, Y), Y < X.

eldarica

```
Are the following Horn clauses satisfiable? / Is the program safe?
          1 (set-logic HORN)
          2
          3 (declare-fun I0 (Int Int) Bool)
          4 (declare-fun I1 (Int Int) Bool)
(set
          5 (declare-fun I2 (Int Int) Bool)
          6
          7 (assert (forall ((x Int) (y Int)) (I0 x y)))
(dec
          8 (assert (forall ((x Int) (y Int)) (=> (I0 x y) (I1 0 0))))
(dec
          9 (assert (forall ((x Int) (y Int)) (=> (I1 x y) (I2 (+ x 1) y))))
         10 (assert (forall ((x Int) (y Int)) (=> (I2 x y) (I1 x (+ x 2))))
(dec
         11 (assert (forall ((x Int) (y Int)) (=> (and (I1 x y) (< y x)) false)))
         12
         13 (check-sat)
(ass
         14 (get-model)
(ass
(ass
(ass
(ass
      DISCLAIMER: Eldarica is a 3rd party tool offered by Uppsala University. By clicking '>', you instruct
       to be analyzed. Please refer to the terms of use and privacy policy of Eldarica.
(che
                                          permalink
                                  home
(get
                                '▶' shortcut: Alt+B
                   tutorial
       sat
       (define-fun IO ((A Int) (B Int)) Bool true)
       (define-fun I1 ((A Int) (B Int)) Bool (and (>= B A) (>= A 0)))
       (define-fun I2 ((A Int) (B Int)) Bool (and (>= (- B A) (- 1)) (>= A 1)))
```

B

e)))

5/165

More formally ...

Definition

Suppose

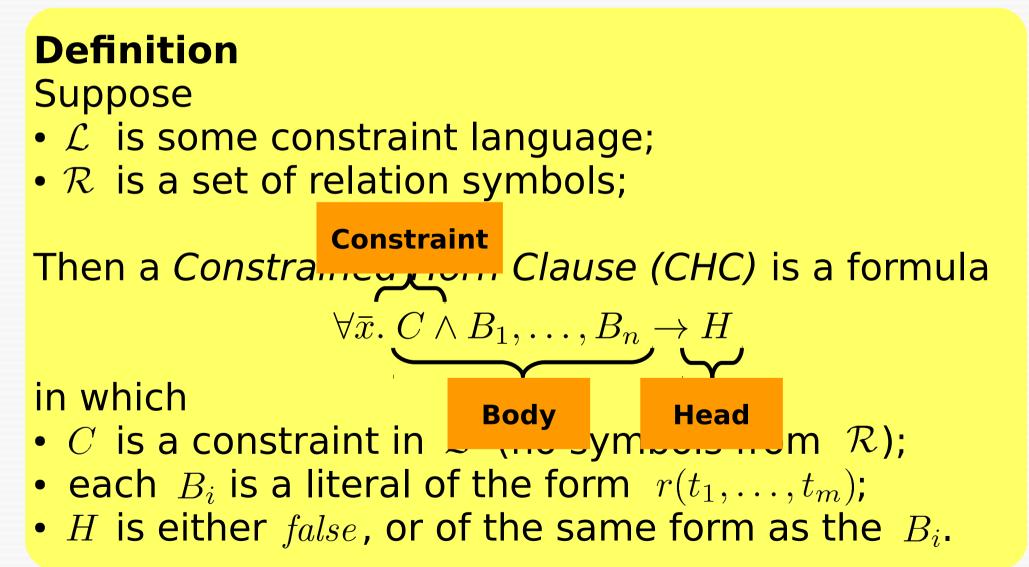
- *L* is some constraint language;
- \mathcal{R} is a set of relation symbols;

Then a *Constrained Horn Clause (CHC)* is a formula $\forall \bar{x}. C \land B_1, \dots, B_n \rightarrow H$

in which

- C is a constraint in \mathcal{L} (no symbols from \mathcal{R});
- each B_i is a literal of the form $r(t_1, \ldots, t_m)$;
- *H* is either *false*, or of the same form as the B_i .

More formally ...



More formally

Combination of theories; e.g., integers, rationals, arrays, etc.

Definition

Suppose

- *L* is some constraint language;
- \mathcal{R} is a set of relation symbols;

Constraint

Then a Constra

 $\forall \bar{x}. \ C \land B_1, \ldots, B_n \to H$

in which

- C is a constraint in 2^{Body} ym 2^{Head} m \mathcal{R});
- each B_i is a literal of the form $r(t_1, \ldots, t_m)$;
- *H* is either *false*, or of the same form as the B_i .

More formally

Combination of theories; e.g., integers, rationals, arrays, etc.

Definition

Suppose

- *L* is some constraint language;
- \mathcal{R} is a set of relation symbols;

Then a *Constrained Horn Clause (CHC)* is a formula **Definition** A set C of Horn clauses is *satisfiable* if it is satisfiable in the first-order/model-theoretic sense.

[This means: for some interpretation of \mathcal{R} symbols all clauses become valid.]

Program/ Safety System Property **Floyd-Hoare** Horn Encoder Design by contract **Owicki-Gries** (proof rules) **Rely Guarantee** etc. Constrained Horn Clauses (CHC) Horn Solver (theory solvers) UNSAT SA = "UNSAFE" = "SAFE"

21/165

From Proof Rules to CHC

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \text{ Assign}'$$

$$\frac{\{P\} S \{Q\} \quad \{Q\} T \{R\}}{\{P\} S; T \{R\}} \quad \text{Comp}$$

 $\frac{\{P \land B\} S \{R\}}{\{P\} \text{ if } B \text{ then } S \text{ else } T \{R\}} \text{ COND } \frac{P}{P}$

$$\Rightarrow I \qquad \{I \land B\} S \{I\} \qquad I \land \neg B \Rightarrow R \\ \{P\} \text{ while } B \text{ do } S \{R\}$$
 Loop

From Proof Rules to CHC

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \ \text{Assign'} \qquad \qquad \frac{\{P\} \ S \ \{Q\}}{\{P\} \ S; T \ \{R\}} \ \text{Comp}$$

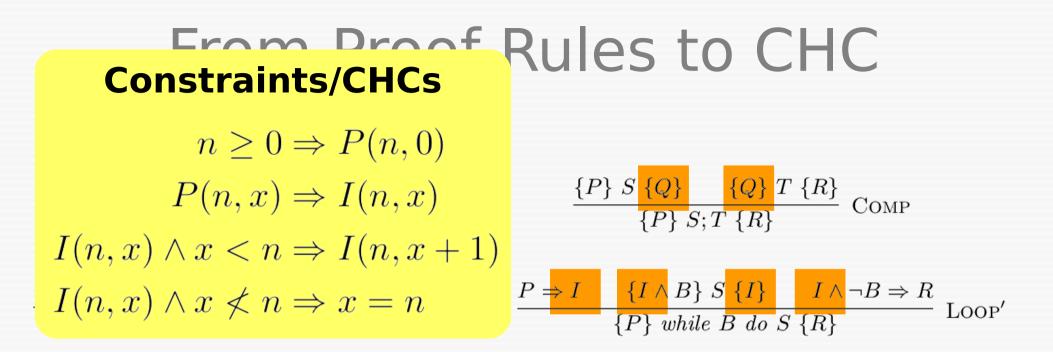
$$\frac{\{P \land B\} \ S \ \{R\}}{\{P\} \ if \ B \ then \ S \ else \ T \ \{R\}} \ \text{Cond} \qquad \qquad \frac{P \Rightarrow I}{\{P\} \ while \ B \ do \ S \ \{R\}} \ Loop'$$

From Proof Rules to CHC

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \text{ Assign'} \qquad \qquad \frac{\{P\} \ S \ \{Q\}}{\{P\} \ S; T \ \{R\}} \frac{\{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}} \text{ Comp}$$

$$\frac{P \land B\} \ S \ \{R\}}{\{P\} \ if \ B \ then \ S \ else \ T \ \{R\}} \text{ Cond} \qquad \frac{P \Rightarrow I}{\{P\} \ while \ B \ do \ S \ \{R\}} \frac{I \land \neg B \Rightarrow R}{\{P\} \ while \ B \ do \ S \ \{R\}} \text{ Loop'}$$

$$\begin{array}{c|c} I(n,x) \land x < n \Rightarrow I(n,x+1) \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{n \ge 0\} \; x = 0 \; \{P(n,x)\} \\ \hline \{n \ge 0\} \; x = 0; \ while \; x < n \; do \; x = x+1 \; \{x = n\} \\ \hline \{n \ge 0\} \; x = 0; \ while \; x < n \; do \; x = x+1 \; \{x = n\} \end{array}$$



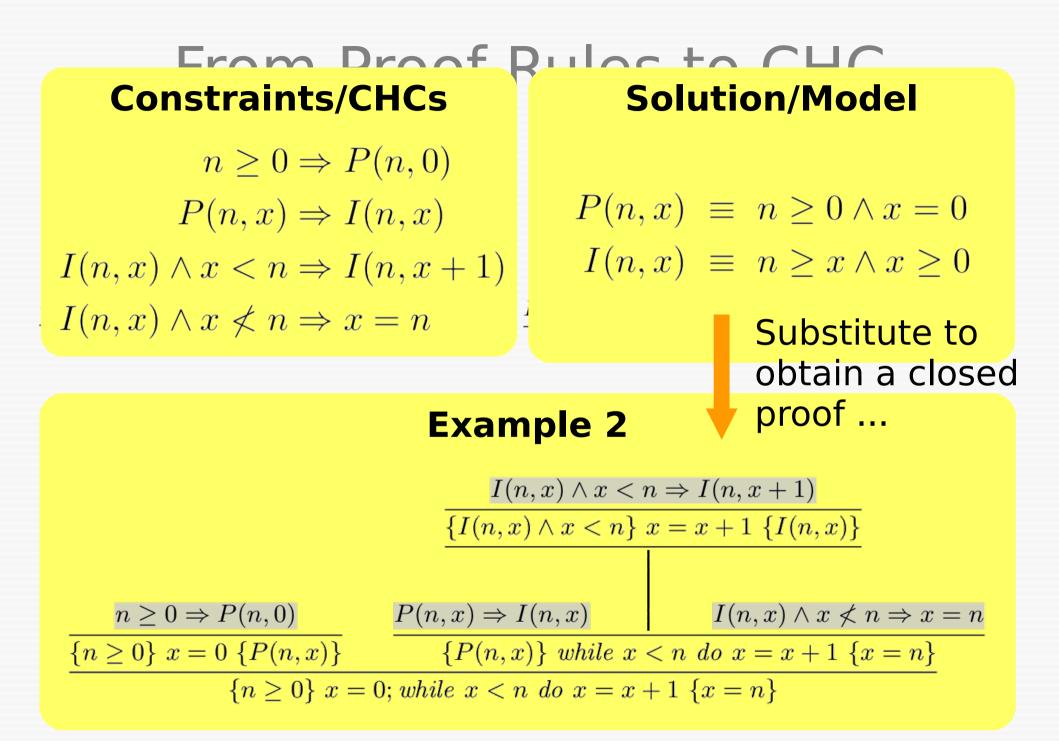
Example 2

$$\begin{array}{c|c} I(n,x) \land x < n \Rightarrow I(n,x+1) \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{n \ge 0\} \; x = 0 \; \{P(n,x)\} \\ \hline \{n \ge 0\} \; x = 0; \ while \; x < n \; do \; x = x+1 \; \{x = n\} \\ \hline \{n \ge 0\} \; x = 0; \ while \; x < n \; do \; x = x+1 \; \{x = n\} \end{array}$$

Constraints/CHCsSolution/Model $n \ge 0 \Rightarrow P(n, 0)$ $P(n, x) \Rightarrow I(n, x)$ $P(n, x) \Rightarrow I(n, x)$ $P(n, x) \equiv n \ge 0 \land x = 0$ $I(n, x) \land x < n \Rightarrow I(n, x+1)$ $I(n, x) \equiv n \ge x \land x \ge 0$ $I(n, x) \land x < n \Rightarrow x = n$ $I(n, x) \equiv n \ge x \land x \ge 0$

Example 2

$$\begin{array}{c|c} I(n,x) \land x < n \Rightarrow I(n,x+1) \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{I(n,x) \land x < n\} \; x = x+1 \; \{I(n,x)\} \\ \hline \{n \ge 0\} \; x = 0 \; \{P(n,x)\} \\ \hline \{P(n,x)\} \; while \; x < n \; do \; x = x+1 \; \{x = n\} \\ \hline \{n \ge 0\} \; x = 0; while \; x < n \; do \; x = x+1 \; \{x = n\} \end{array}$$



Function calls

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \ \text{Assign'} \qquad \qquad \frac{\{P\} \ S \ \{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}} \ \text{Comp}$$

$$\frac{\{P \land B\} \ S \ \{R\}}{\{P\} \ if \ B \ then \ S \ else \ T \ \{R\}} \ \text{Comp} \qquad \qquad \frac{P \Rightarrow I \quad \{I \land B\} \ S \ \{I\} \ I \land \neg B \Rightarrow R}{\{P\} \ while \ B \ do \ S \ \{R\}} \ \text{Loop'}$$

$$\frac{P \Rightarrow Pre_f[\bar{a}_f/\bar{t}] \quad P \land Post_f[\bar{a}_f/\bar{t}] \Rightarrow R[x/r_f]}{\{P\} \ x = f(\bar{t}) \ \{R\}} \ \text{Call}$$

Function calls

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \ \text{Assign'} \qquad \qquad \frac{\{P\} \ S \ \{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}} \ \text{Comp}$$

$$\frac{\{P \land B\} \ S \ \{R\}}{\{P\} \ if \ B \ then \ S \ else \ T \ \{R\}} \ \text{Cond} \qquad \frac{P \Rightarrow I \ \{I \land B\} \ S \ \{I\} \ I \land \neg B \Rightarrow R}{\{P\} \ while \ B \ do \ S \ \{R\}} \ \text{Loop'}$$

$$\frac{P \Rightarrow Pre_f[\bar{a}_f/\bar{t}]}{\{P\} \ x = f(\bar{t}) \ \{R\}} \ \text{Call}$$

Function calls

$$\frac{P \Rightarrow R[x/t]}{\{P\} \ x = t \ \{R\}} \ \text{ASSIGN'} \qquad \qquad \frac{\{P\} \ S \ \{Q\} \ T \ \{R\}}{\{P\} \ S; T \ \{R\}} \ \text{COMP}$$

$$\frac{\{P \land B\} \ S \ \{R\} \ \{P \land \neg B\} \ T \ \{R\}}{\{P\} \ if \ B \ then \ S \ else \ T \ \{R\}} \ \text{COND} \qquad \frac{P \Rightarrow I \ \{I \land B\} \ S \ \{I\} \ I \land \neg B \Rightarrow R}{\{P\} \ while \ B \ do \ S \ \{R\}} \ \text{Loop'}$$

$$\frac{P \Rightarrow Pre_{f}[\overline{a}_{f}/\overline{I}] \ P \land Post_{f}[\overline{a}_{f}/\overline{I}] \Rightarrow R[x/r_{f}]}{\{P\} \ x = f(t) \ \{R\}} \ \text{CALL}$$

$$+ \text{ proof obligations ensuring correctness of contract}$$

Example 3: Functions

$$f(x) = \begin{cases} x - 10, & \text{if } x > 100\\ f(f(x + 11)), & \text{if } x \le 100 \end{cases}$$

Verify $x \le 100 \rightarrow f(x) = 91$

Example 3: Functions

$$f(x) = \begin{cases} x - 10, & \text{if } x > 100\\ f(f(x + 11)), & \text{if } x \le 100 \end{cases}$$

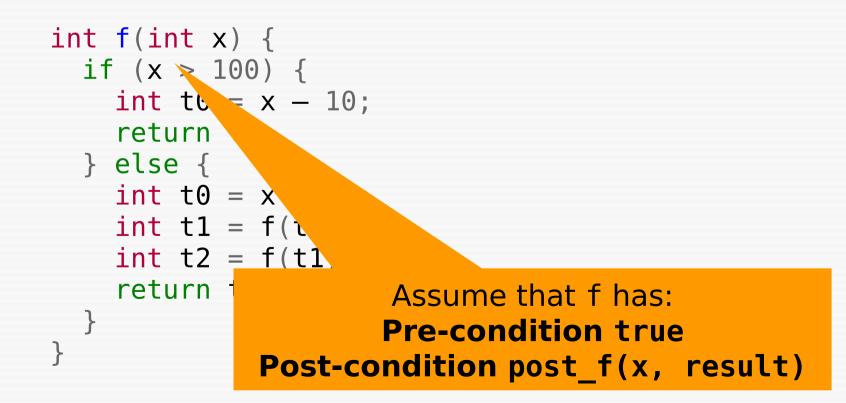
Verify $x \le 100 \to f(x) = 91$

```
int f(int x) {
    if (x > 100) {
        int t0 = x - 10;
        return t0;
    } else {
        int t0 = x + 11;
        int t1 = f(t0);
        int t2 = f(t1);
        return t2;
    }
}
```

Example 3: Functions

$$f(x) = \begin{cases} x - 10, & \text{if } x > 100\\ f(f(x + 11)), & \text{if } x \le 100 \end{cases}$$

Verify $x \le 100 \to f(x) = 91$



Encoding as CHC

i5(X0, T1) i6(X0, T2)	<pre>:- X0=X. :- i0(X0, X), X > 100. :- i1(X0, X), T0=X-10. :- i2(X0, T0). :- i0(X0, X), X =< 100. :- i3(X0, X), T0=X+11. :- i4(X0, T0), post_f(T0, T1). :- i5(X0, T1), post_f(T1, T2). :- i6(X0, T2).</pre>	<pre>% int t2 = f(t1); % return t2;</pre>
<pre>post_f(X0, T2)</pre>	:- i6 (X0, T2).	<pre>% return t2; % } % }</pre>

false :- post_f(X, R), X =< 100, \setminus +(R = 91). % Assertion

State invariants record function input and current value of variables

i0(X0, X)	:- X0=X.			% int	f(int x) {
i1(X0, X)	:- i0(X0,	X), $X > 100$.		% i	f (x > 100) {
i2(X0, T0)	:- i1(X0,	X), T0=X-10.		%	int $t0 = x - 10;$
<pre>post f(X0, T0)</pre>	:- i2(X0,	Τ0).		0/0	return t0;
i3(X0, X)	:- i0(X0,	X), $X = < 100$.		% }	else {
i4 (X0, T0)	:- i3(X0,	X), T0=X+11.		0/0	int $t0 = x + 11;$
i5(X0, T1)	:- i4(X0,	T0), post f(T0,	T1).		
i6 (X0, T2)		<pre>T1), post_f(T1,</pre>			int $t^{2} = f(t^{1});$
<pre>post f(X0, T2)</pre>				00	return t2;
				% }	
				% }	
				,	

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion</pre>

State invariants record function input and current value of variables	Upon return, assert that post-condition holds	CHC
i2(X0, T0) :- i1 post_f(X0, T0) :- i2 i3(X0, X) :- i0 i4(X0, T0) :- i3 i5(X0, T1) :- i4	<pre>(X0, X), X > 100. (X0, X), T0=X-10. (X0, T0). (X0, X), X =< 100. (X0, X), T0=X+11. (X0, T0), post_f(T0, T1 (X0, T1), post_f(T1, T2)</pre>	<pre>% int f(int x) { % if (x > 100) { % int t0 = x - 10; % return t0; % } else { % int t0 = x + 11; .). % int t1 = f(t0); 2). % int t2 = f(t1); % return t2; % }</pre>

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion</pre>

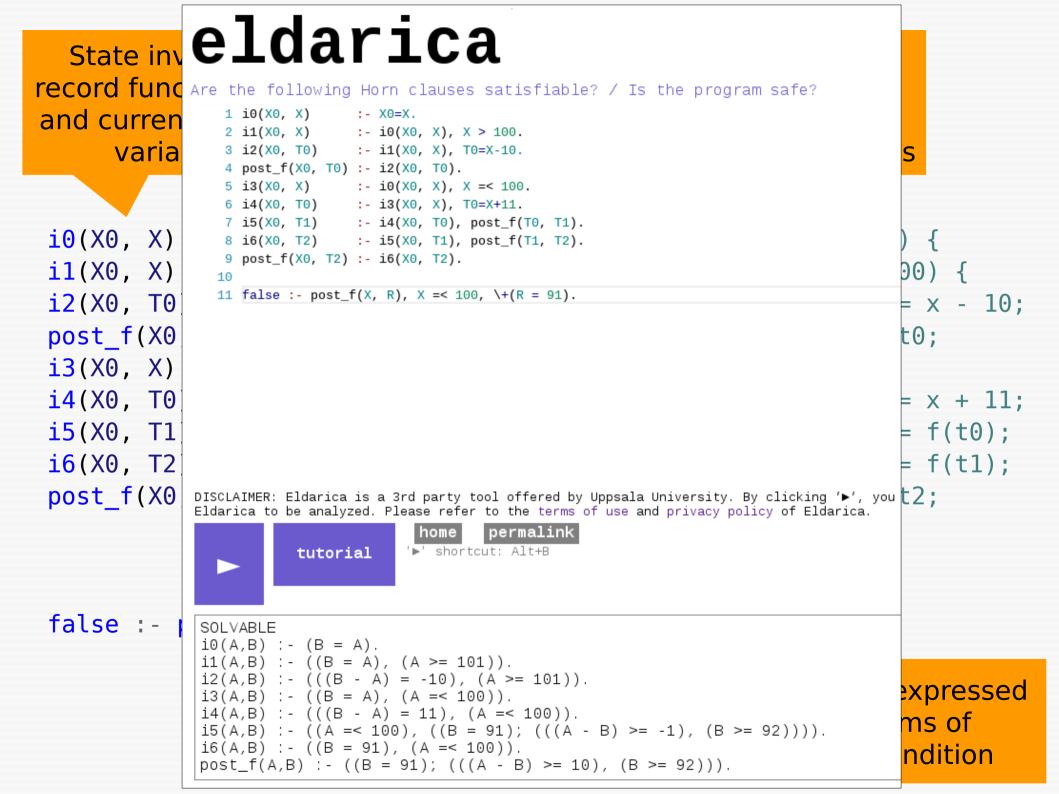
State invariants	Upon return,	Function calls
record function input	assert that	can assume the
and current value of	post-condition	post-condition
variables	holds	→ non-linear clauses
i2(X0, T0) :- i1(post_f(X0, T0) :- i2(i3(X0, X) :- i0(i4(X0, T0) :- i3(i5(X0, T1) :- i4(<pre>X0, X), X > 100. X0, X), T0=X-10. X0, T0). X0, X), X =< 100. X0, X), T0=X+11. X0, T0), post_f(T0, X0, T1), post_f(T1,</pre>	<pre>% int f(int x) { % if (x > 100) { % int t0 = x - 10; % return t0; % } else { % int t0 = x + 11; T1). % int t1 = f(t0); T2). % int t2 = f(t1); % return t2; % }</pre>

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion</pre>

State invariants	Upon return,	S Function calls
record function input	assert that	can assume the
and current value of	post-condition	post-condition
variables	holds	→ non-linear clauses
i2(X0, T0) :- i1(post_f(X0, T0) :- i2(i3(X0, X) :- i0(i4(X0, T0) :- i3(i5(X0, T1) :- i4(<pre>X0, X), X > 100. X0, X), T0=X-10. X0, T0). X0, X), X =< 100. X0, X), T0=X+11. X0, T0), post_f(T0 X0, T1), post_f(T1</pre>	<pre>% int f(int x) { % if (x > 100) { % int t0 = x - 10; % return t0; % } else { % int t0 = x + 11; , T1). % int t1 = f(t0); , T2). % int t2 = f(t1); % return t2; % }</pre>

false :- post_f(X, R), X =< 100, \+(R = 91). % Assertion</pre>

Property expressed in terms of post-condition



Fragments of CHC

Fragments of CHC

• Linear:

≤1 literals per clause body

Non-linear/general:

some clause with ≥ 1 body literals \rightarrow function calls, concurrency, etc.

Fragments of CHC

• Linear:

≤1 literals per clause body

Non-linear/general: some clause with ≥1 body literals → function calls, concurrency, etc.

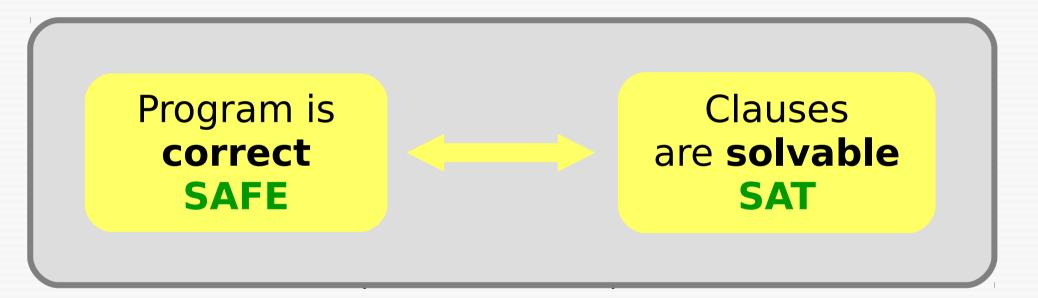
• **"Transition systems" (TS):** exactly three clauses (init, trans, err) (linear clauses can be reduced to this)

Summary so far

- Relation symbols in CHCs represent
 Program annotations
- for instance state invariants pre-/post-conditions class/process invariants
- CHCs encode preservation: initiation, consecution, etc.
- CHCs also encode safety properties: invariants exclude error states

Summary so far

Relation symbols in CHCs represent
 Program annotations



 CHCs also encode safety properties: invariants exclude error states

Program/ Safety System Property Horn Encoder (proof rules) Constrained Horn Duality Clauses (CHC) Hoice **HSF** IC3IA **PCSat** PECOS Solver Horn (theory solvers) Sally Spacer etc. UNSAT SA = "UNSAFE" = "SAFE"

Duality Eldarica(-abs) Hoice HSF IC3IA PCSat PECOS ProphIC3 Sally Spacer TransfHORNer Ultimate TreeAutomizer Ultimate Unihorn *etc.*

45/165

Algorithms in CHC

- CEGAR, predicate abstraction
- IC3, Spacer
- Syntax-guided synthesis (SyGuS)
- Decision trees, data-driven methods
- Transformation, unfold/fold, etc.
- Abstract interpretation

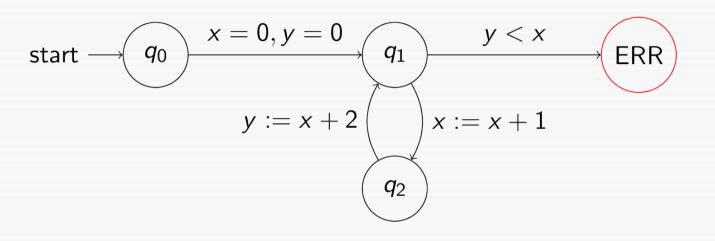
• to be continued ...

Algorithms in CHC

- CEGAR, predicate abstraction
- IC3, Spacer
- Syntax-guided synthesis (SyGuS)
- Decision trees, data-driven methods
- Transformation, unfold/fold, etc.
- Abstract interpretation

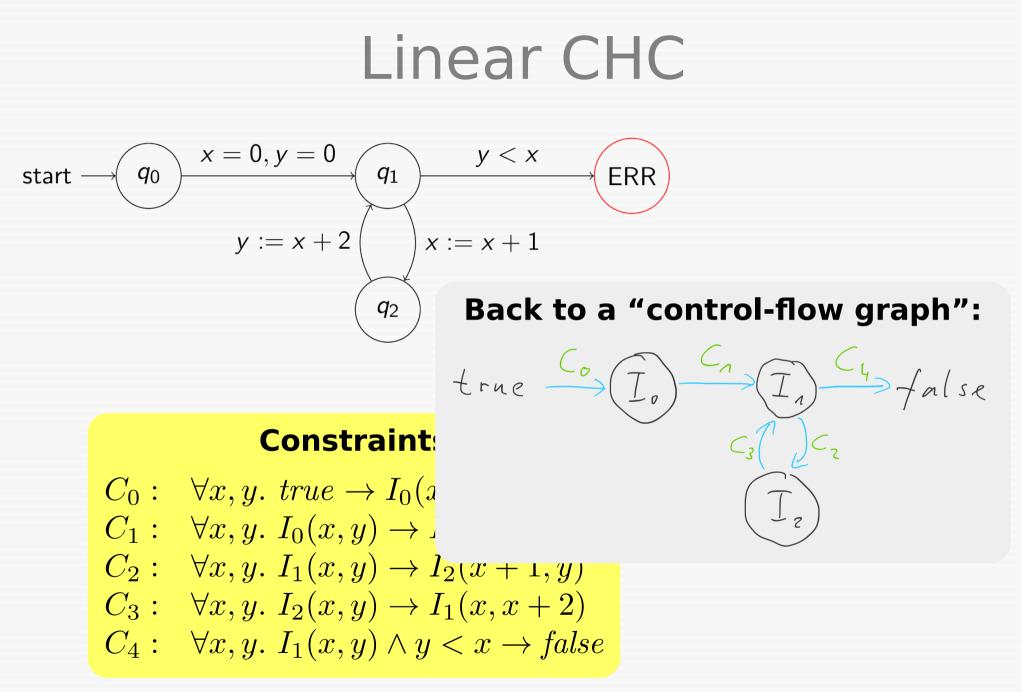
to be continued ...

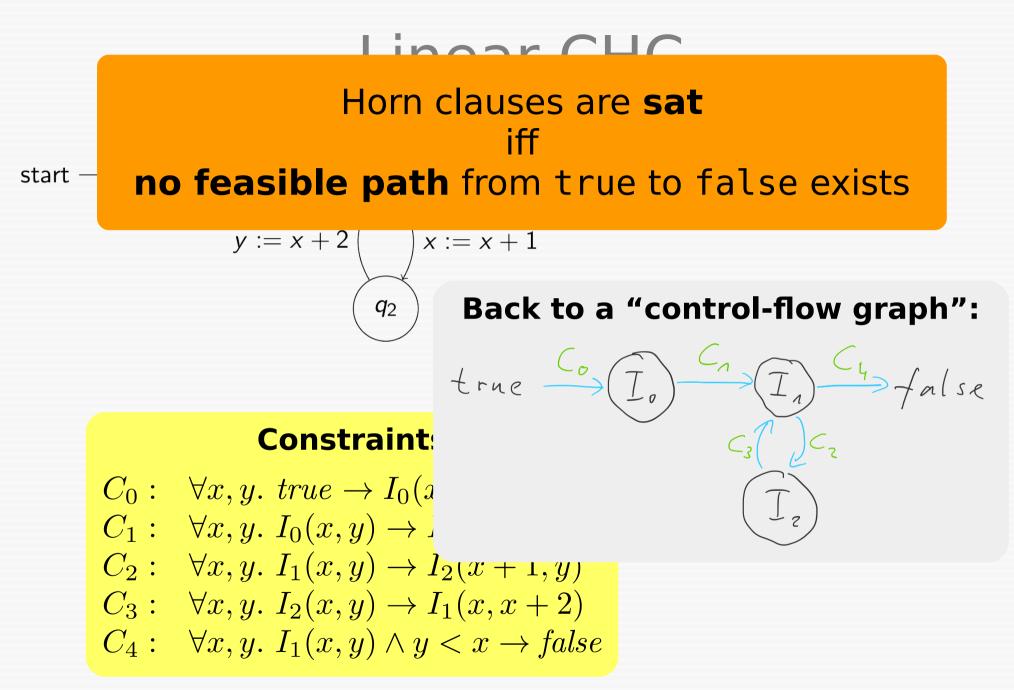
Linear CHC

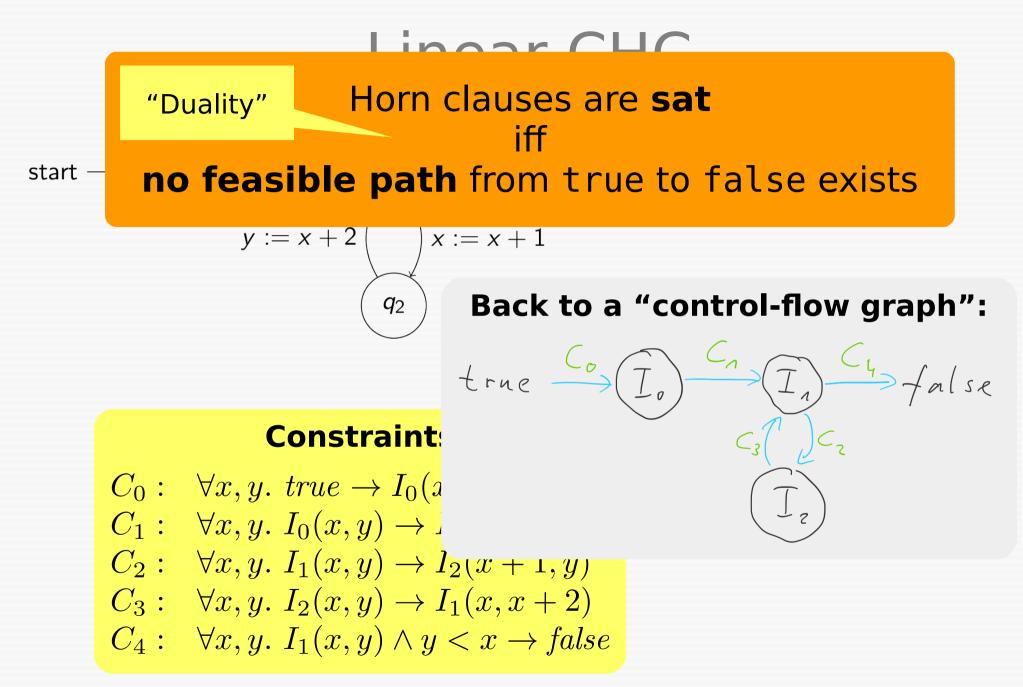


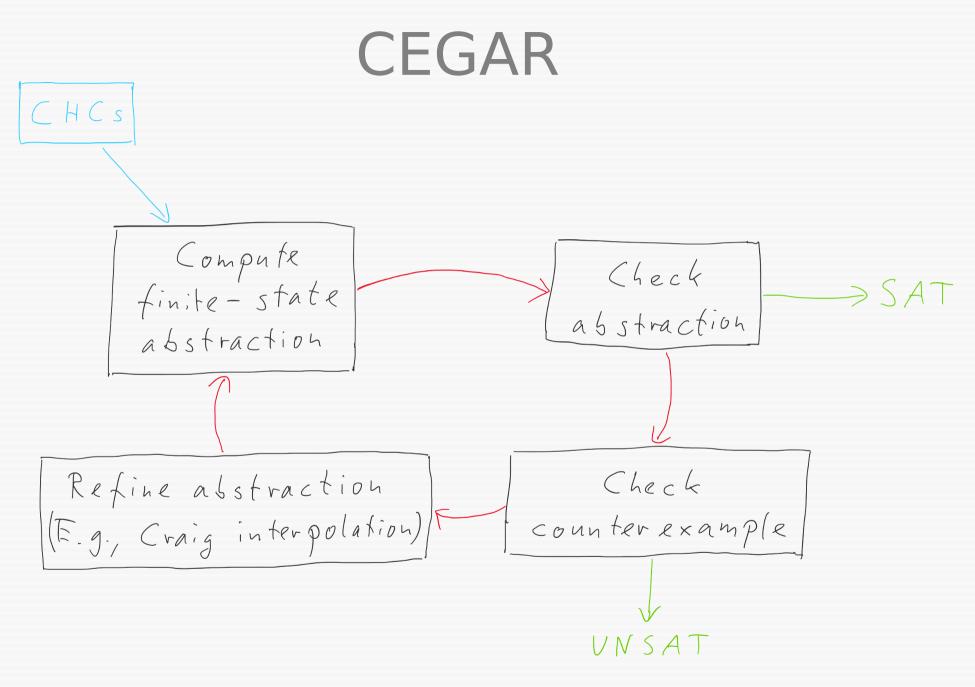
Constraints

$$\begin{array}{ll} C_0: & \forall x, y. \ true \to I_0(x, y) \\ C_1: & \forall x, y. \ I_0(x, y) \to I_1(0, 0) \\ C_2: & \forall x, y. \ I_1(x, y) \to I_2(x+1, y) \\ C_3: & \forall x, y. \ I_2(x, y) \to I_1(x, x+2) \\ C_4: & \forall x, y. \ I_1(x, y) \land y < x \to false \end{array}$$



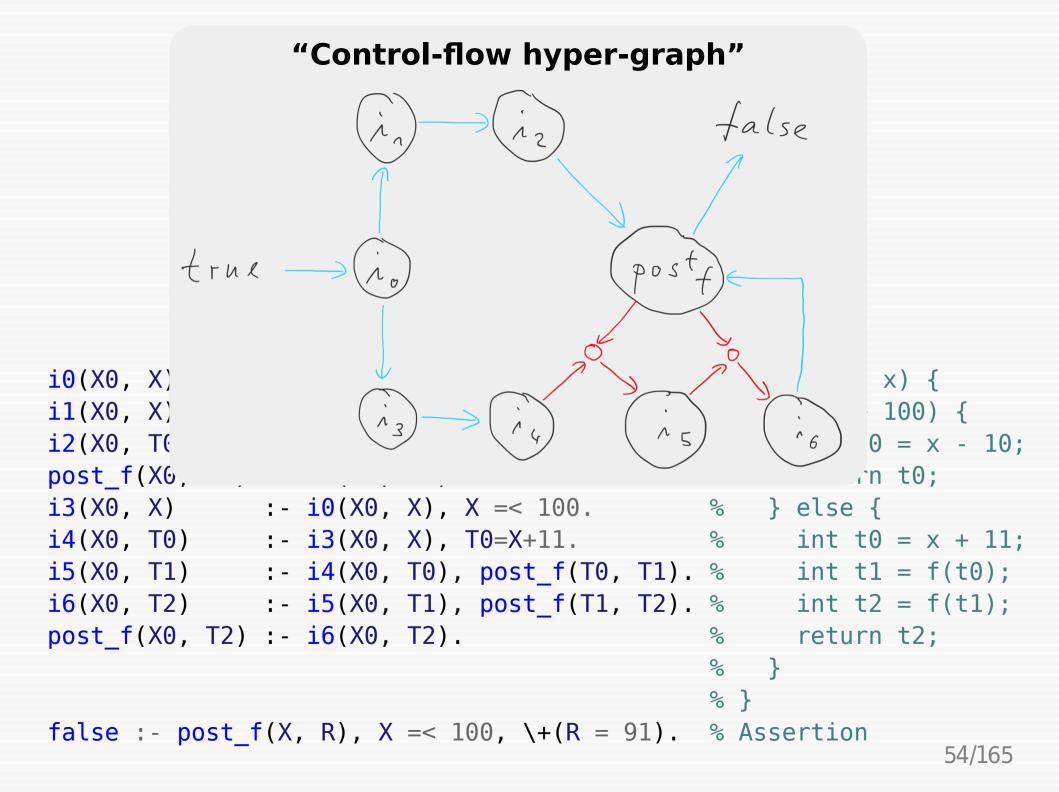






Non-linear CHC

iO(XO, X) :- XO=X. % int f(int x) { i1(X0, X) :- i0(X0, X), X > 100.% if (x > 100) { i2(X0, T0) :- i1(X0, X), T0=X-10. 0/0 int t0 = x - 10;% post f(X0, T0) := i2(X0, T0). return t0; % } else { i3(X0, X) :- i0(X0, X), X = < 100.0/0 i4(X0, T0) :- i3(X0, X), T0=X+11. int t0 = x + 11: i5(X0, T1) :- i4(X0, T0), post f(T0, T1). % int t1 = f(t0);i6(X0, T2) :- i5(X0, T1), post_f(T1, T2). % int $t^{2} = f(t^{1});$ post f(X0, T2) := i6(X0, T2). % return t2: } % % } false :- post f(X, R), X =< 100, \setminus +(R = 91). % Assertion 53/165



Linear → Non-Linear CHC

	Linear CHC	Non-linear CHC
Abstract reachability:	graph	hyper-graph
Counterexample:	path	dag/tree
Craig Interpolant:	sequence	tree

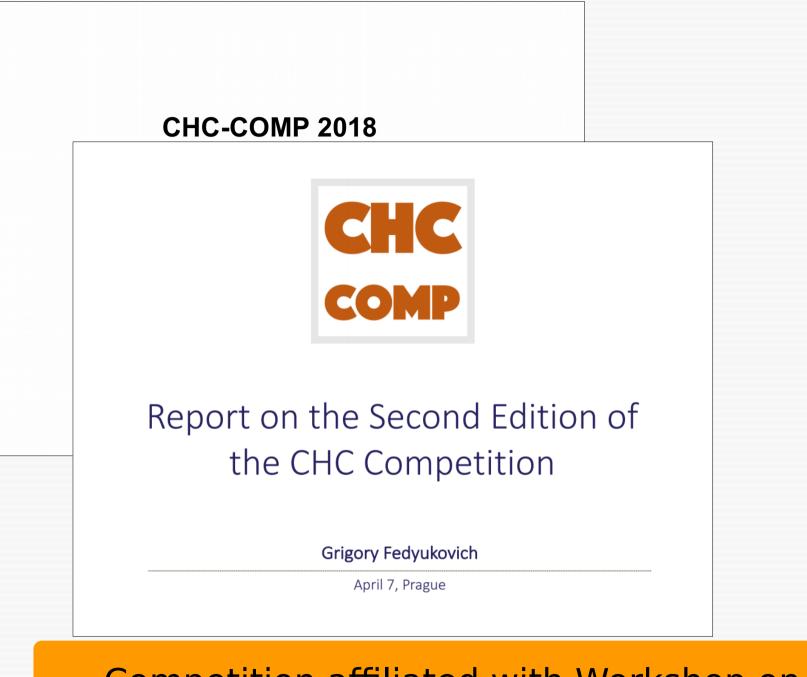
CHC-COMP 2018

Arie Gurfinkel

Philipp Ruemmer, Grigory Fedyukovich, Adrien Champion

1st Competition on Solving Constrained Horn Clauses

Competition affiliated with Workshop on Horn Clauses for Verification and Synthesis (HCVS)



Competition affiliated with Workshop on Horn Clauses for Verification and Synthesis (HCVS)

CHC-COMP 2018

CHC

Competition Report: CHC-COMP-20

Philipp Rümmer Uppsala University, Sweden

CHC-COMP-20¹ is the third competition of solvers for Constrained Horn Clauses. In this year, 9 solvers participated at the competition, and were evaluated in four separate tracks on problems in linear integer arithmetic, linear real arithmetic, and arrays. The competition was run in the first week of May 2020 using the StarExec computing cluster. This report gives an overview of the competition design, explains the organisation of the competition, and presents the competition results.

Con Clau

R

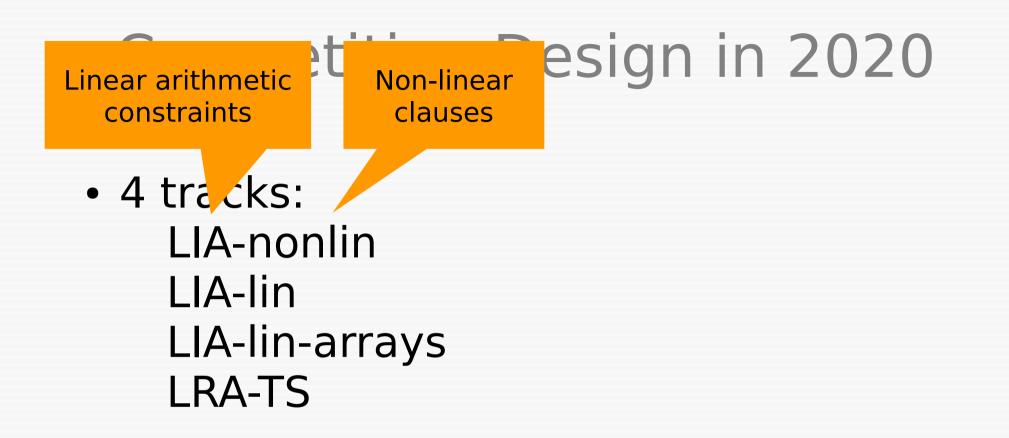
1 Introduction

Constrained Horn Clauses (CHC) have over the last decade emerged as a uniform framework for reasoning about different aspects of software safety [10, 2]. Constrained Horn clauses form a fragment of first-order logic, modulo various background theories, in which models can be constructed effectively

Competition Design in 2020

 4 tracks: LIA-nonlin LIA-lin LIA-lin-arrays LRA-TS

- 8 solvers competing, 1 hors concours
- StarExec; 1800s timeout; 64GB memory
- https://chc-comp.github.io/



- 8 solvers competing, 1 hors concours
- StarExec; 1800s timeout; 64GB memory
- https://chc-comp.github.io/

Solver	Score	#sat	#unsat	CPU time (s)	Wall-clock (s)	Speedup	SotAC
Spacer	554	292	262	6.03	6.11	0.99	0.28
Eldarica (HC)	513	265	248	43.58	19.10	2.28	0.23
Eldarica-abs	513	266	247	52.07	35.96	1.45	0.23
U. Unihorn	420	212	208	75.73	49.11	1.54	0.21
PCSat	331	156	175	92.10	29.54	3.12	0.20
U. TreeAutomizer	118	34	84	41.17	30.00	1.37	0.17
Any solver	560	298	262				

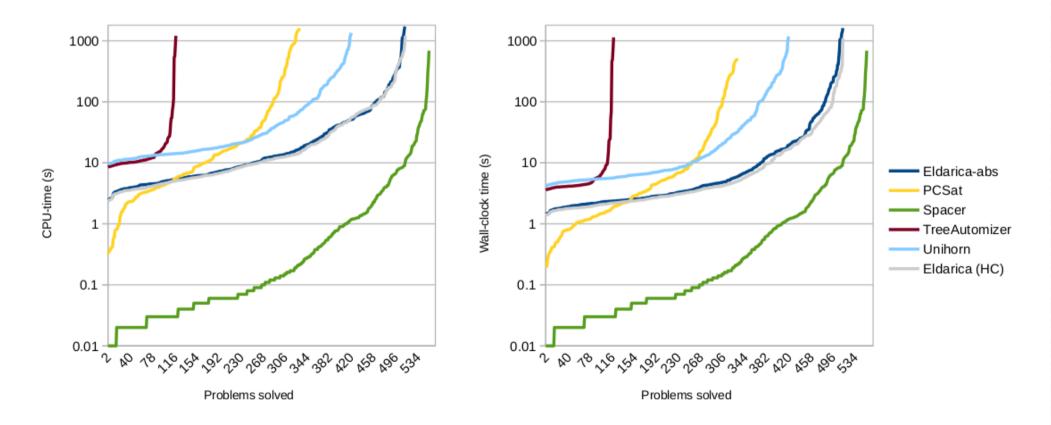


Figure 1: Solver performance on the 565 benchmarks of the LIA-nonlin track

Solver	Score	#sat	#unsat	CPU time (s)	Wall-clock (s)	Speedup	SotAC
Spacer	518	330	188	11.94	12.03	0.99	0.22
Eldarica-abs	477	300	177	57.26	39.59	1.45	0.20
Eldarica (HC)	476	300	176	48.58	20.00	2.43	0.20
U. Unihorn	407	240	167	43.57	26.21	1.66	0.17
IC3IA	400	260	140	46.09	46.23	1.00	0.20
PCSat	329	191	138	37.91	12.23	3.10	0.17
U. TreeAutomizer	307	166	141	50.30	37.43	1.34	0.17
Any solver	558	356	202				

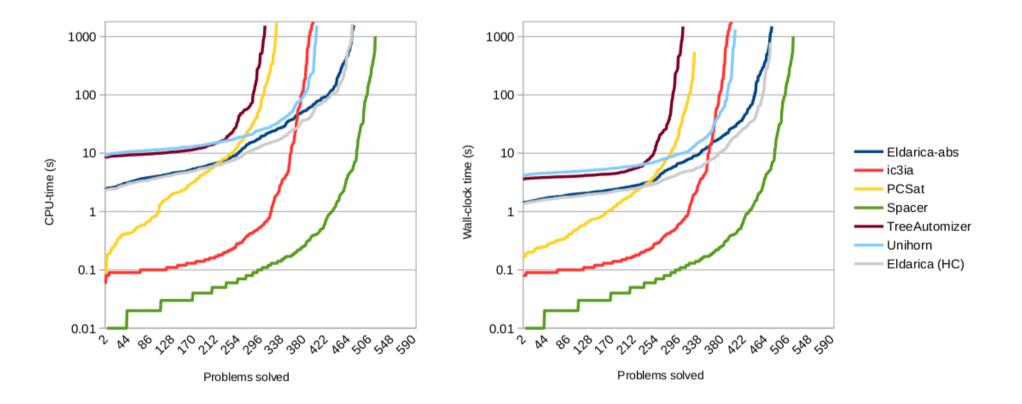


Figure 2: Solver performance on the 596 benchmarks of the LIA-lin track

Solver	Score	#sat	#unsat	CPU time (s)	Wall-clock (s)	Speedup	SotAC
Spacer	295	203	92	0.81	0.89	0.91	0.37
U. Unihorn	217	144	73	39.73	24.12	1.65	0.26
ProphIC3	214	140	74	38.24	19.17	1.99	0.34
IC3IA	147	92	55	9.17	9.30	0.99	0.24
U. TreeAutomizer	147	100	47	31.49	21.46	1.47	0.22
Eldarica (HC)	91	91	0	106.80	68.05	1.57	0.24
Any solver	350	250	100				

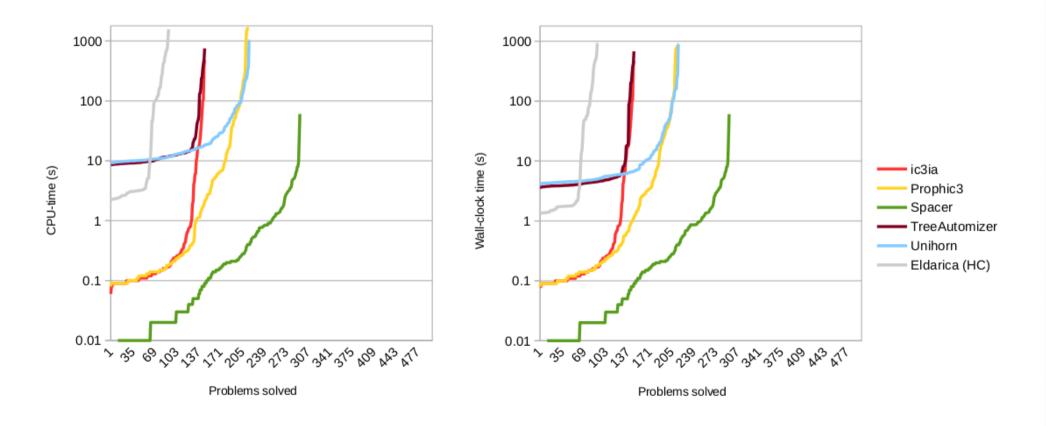


Figure 3: Solver performance on 500 benchmarks of the LIA-lin-arrays track (one benchmark on which Spacer and Ultimate Unihorn give conflicting answers is not counted)

Solver	Score	#sat	#unsat	CPU time (s)	Wall-clock (s)	Speedup	SotAC
IC3IA	468	378	90	136.94	137.05	1.00	0.29
Sally-parallel	439	360	79	138.81	47.37	2.93	0.24
Sally-decomposing-itp	438	357	81	107.61	107.68	1.00	0.24
Spacer	346	270	76	176.75	176.86	1.00	0.22
U. TreeAutomizer	168	131	37	239.75	202.11	1.19	0.19
U. Unihorn	160	103	57	213.33	158.57	1.35	0.18
Any solver	481	388	93				

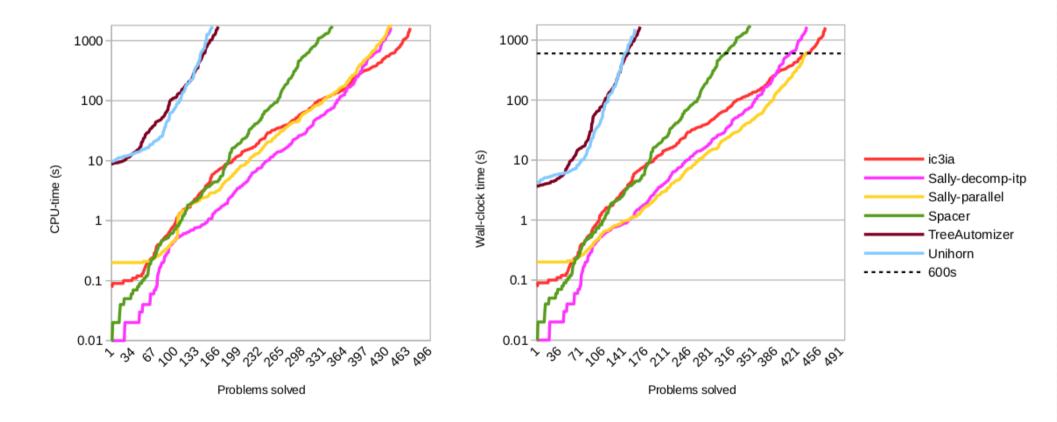


Figure 4: Solver performance on the 499 benchmarks of the LRA-TS track

What next?

More tracks?

More benchmarks?

More solvers?

C Java Ada Rust Networks of TA BIP models *etc.*

Program/ Safety System Property Horn Encoder (proof rules) Constrained Horn Clauses (CHC) Horn Solver (theory solvers) UNSAT SAT = "UNSAFE" = "SAFE"

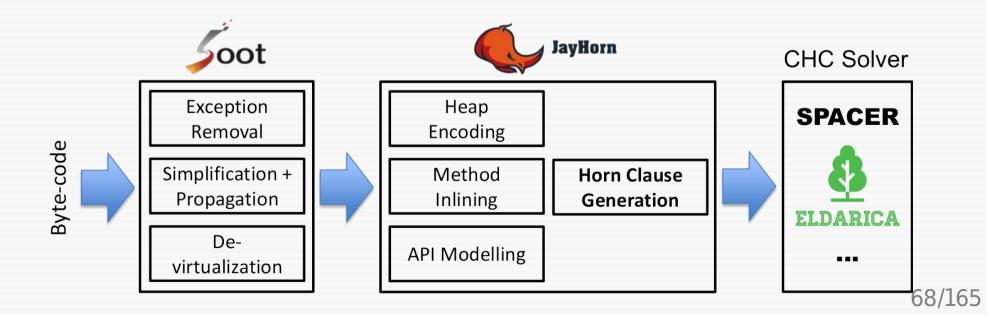
66/165

Verifying Java Programs

[1] Temesghen Kahsai, PR, Huascar Sanchez, Martin Schäf JayHorn: A Framework for Verifying Java programs. CAV 2016

67/165

- Horn-based verification tool for Java, written in Java
- Open source, MIT licence



McCarthy 91 Example

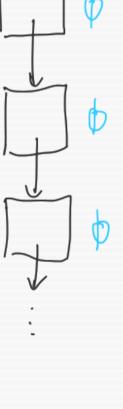
```
import org.sosy_lab.sv_benchmarks.Verifier;
```

```
public class McCarthy91 {
    private static int f(int n) {
        if (n > 100)
            return n - 10;
        else
            return f(f(n + 11));
    }
```

```
public static void main(String[] args) {
    int x = Verifier.nondetInt();
    int y = f(x);
    assert(x > 101 || y == 91);
}
```

- Encoding using McCarthy Arrays
 - Precise, relatively complete
 - Hard to infer invariants automatically
- Refinement types, etc.
 - Incomplete
 - Easier to automate
- (Separation logic, ownership systems, dynamic frames, etc.)

- Encoding using McCarthy Arrays
 - Precise, relatively complete
 - Hard to infer invariants automatically
- Refinement types, etc.
 - Incomplete
 - Easier to automate
- (Separation logic, ownership systems, dynamic frames, etc.)



One of our current projects: A theory of heap to abstract from those different encodings

Zafer Esen, PR. Towards an SMT-LIB Theory of Heap. HCVS 2020

• пеппепен сурез, есс.

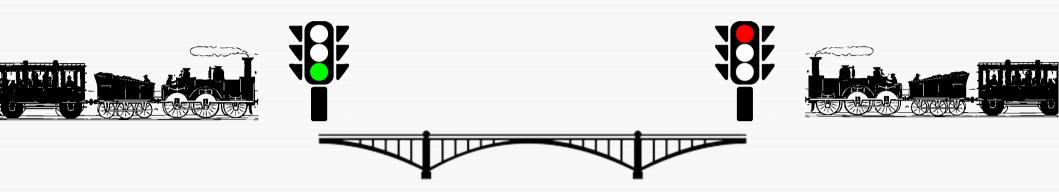
- Incomplete
- Easier to automate
- (Separation logic, ownership systems, dynamic frames, etc.)

JayHorn **Data-Flow** Assertion Exception Reconstruction Transformation Java -> Zimple -> Reconstruction Bytecode Static Method Switch Devivtualization Elimination Inibializer Transformation -> dayHorn IR Arvay Scot Elimination Optimizations Method E Inliner Push/Pull Simplifier Method C Stubber > Dataflow -> Push/Pull Singlifier Flow Push/Pull Horn clauses Analyzer 74/165

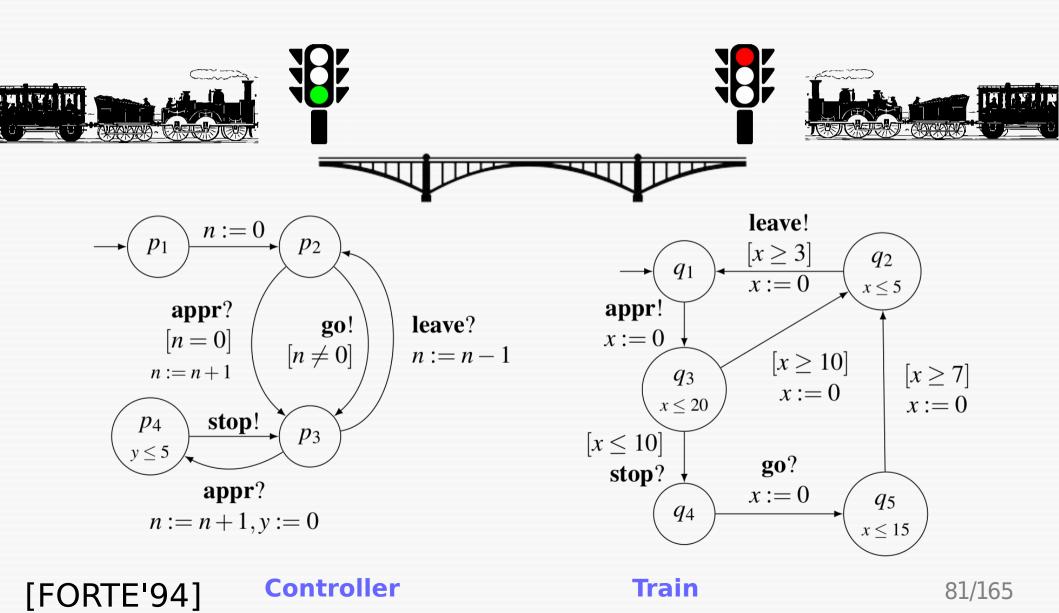
Verifying Networks of Timed Automata

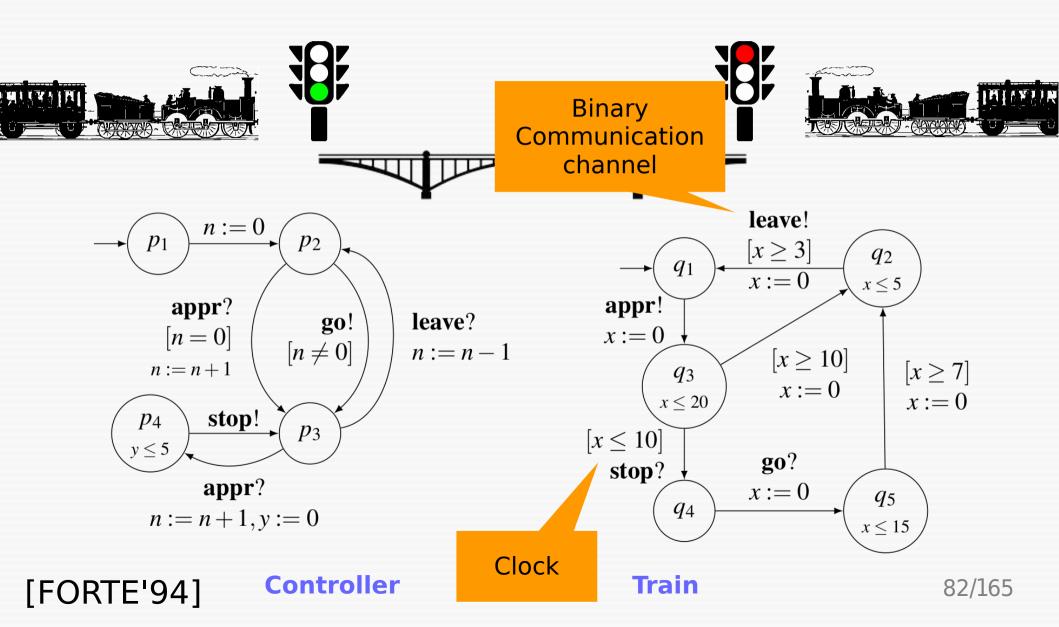
[2] Hossein Hojjat, PR, Pavle Subotic, Wang Yi. Horn Clauses for Communicating Timed Systems. HCVS 2014

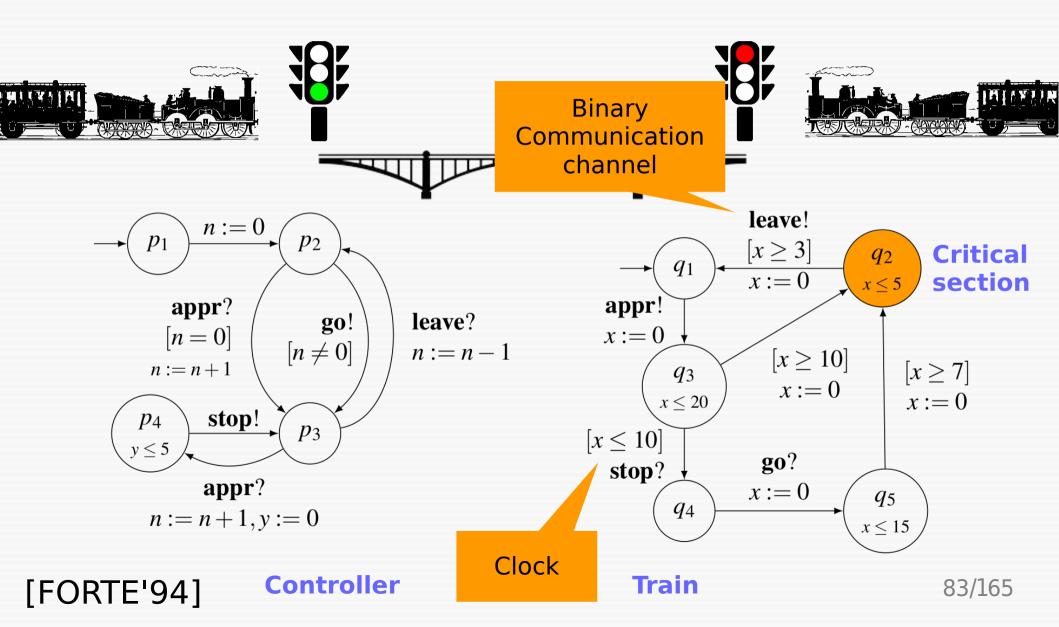
79/165

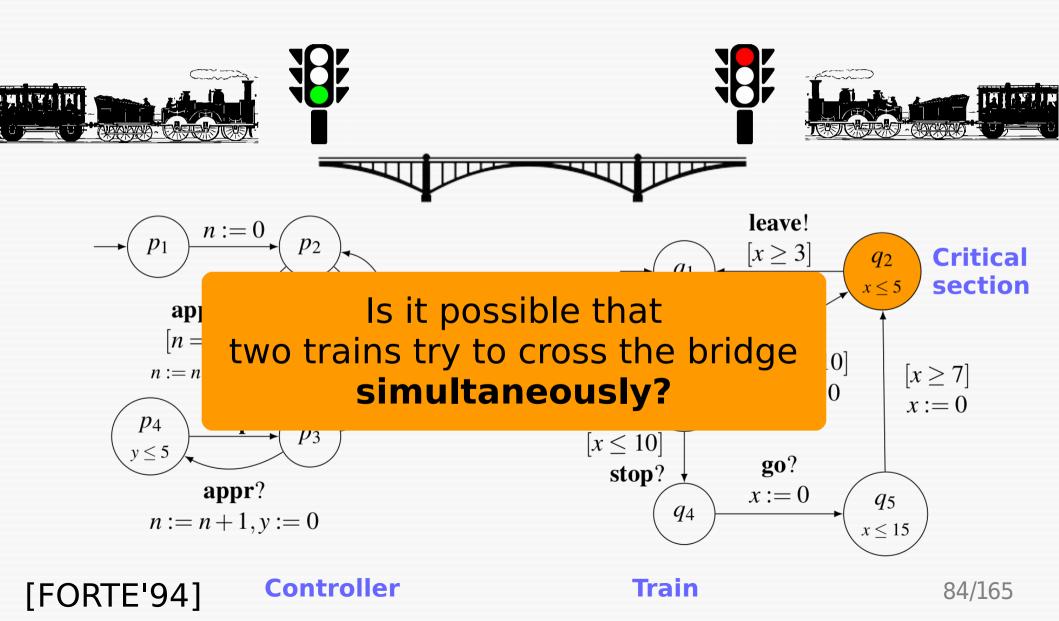


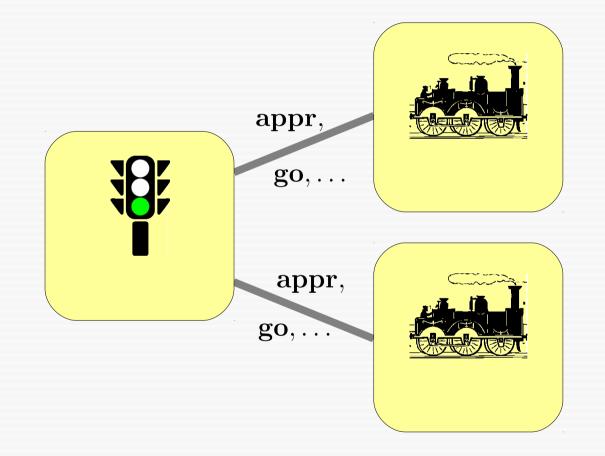
[FORTE'94]

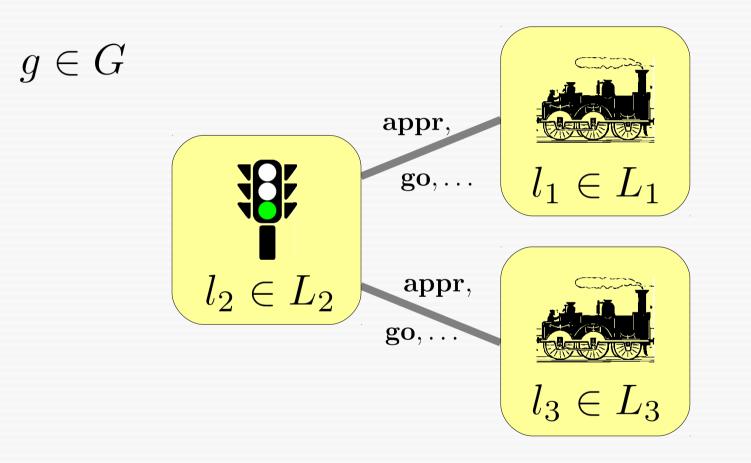


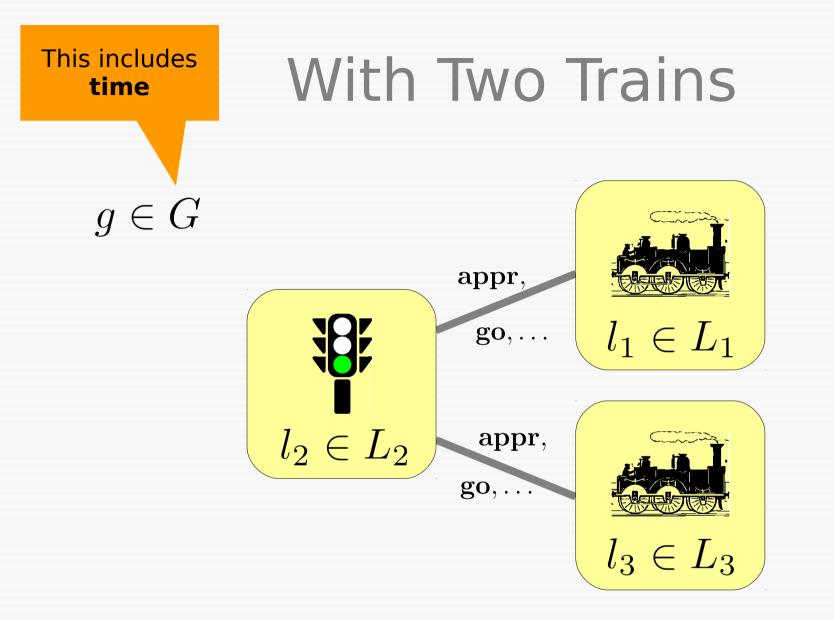


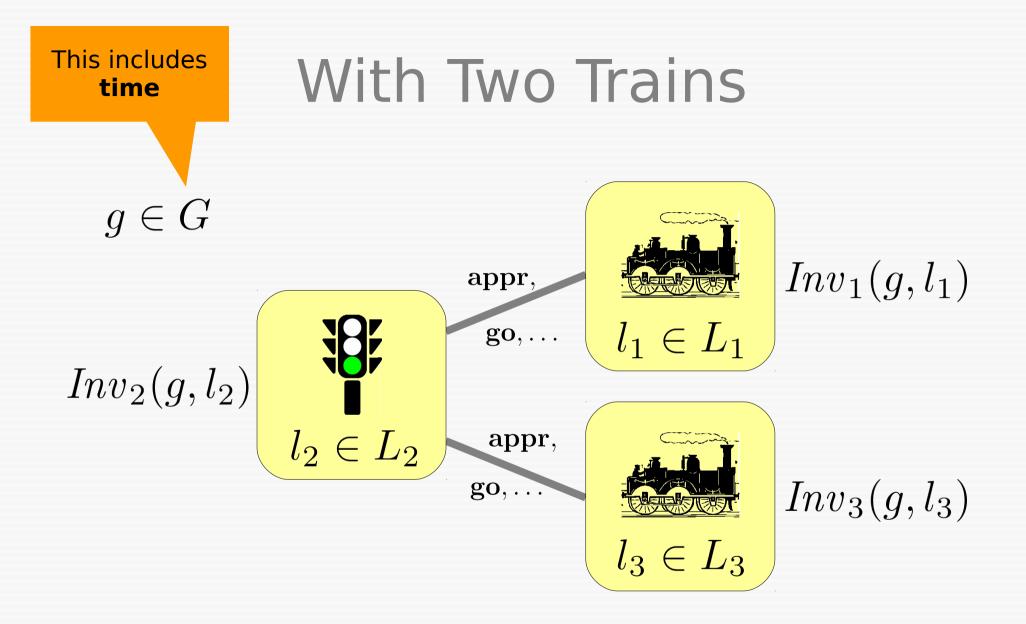




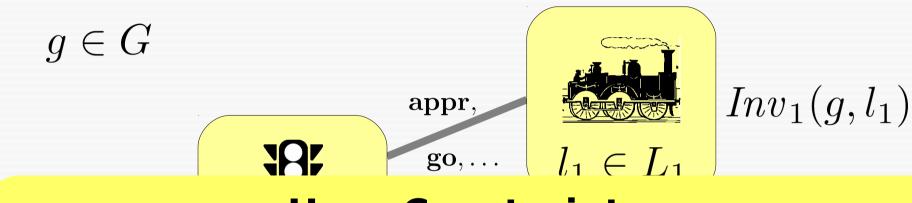








System invariant: $Inv_1(g, l_1) \wedge Inv_2(g, l_2) \wedge Inv_3(g, l_3)$



Horn Constraints

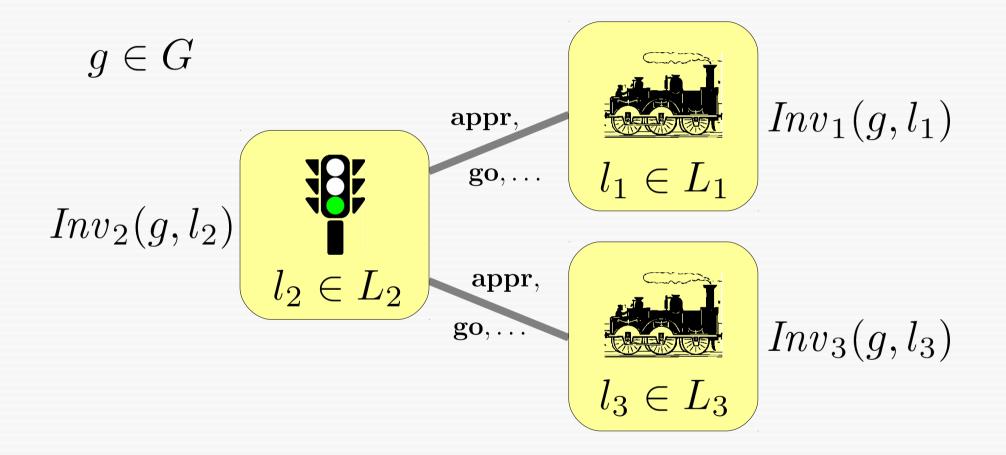
Local transitions:

 $(\langle g, l_1 \rangle \rightsquigarrow \langle g', l_1' \rangle) \land Inv_1(g, l_1) \to Inv_1(g', l_1')$

Owicki-Gries-style non-interference: $(\langle g, l_1 \rangle \rightsquigarrow \langle g', l'_1 \rangle) \land Inv_1(g, l_1) \land Inv_2(g, l_2) \rightarrow Inv_2(g', l_2)$

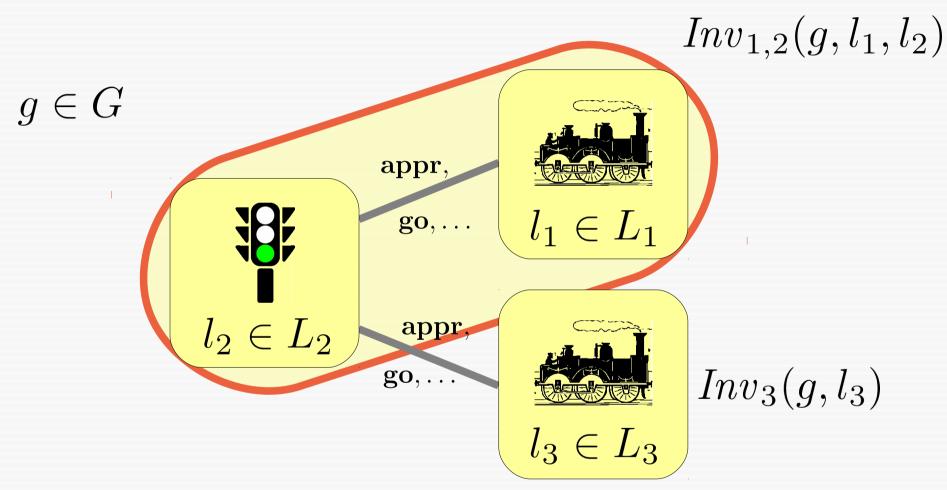
+ time elapse, synch., initiation, assertions

3)



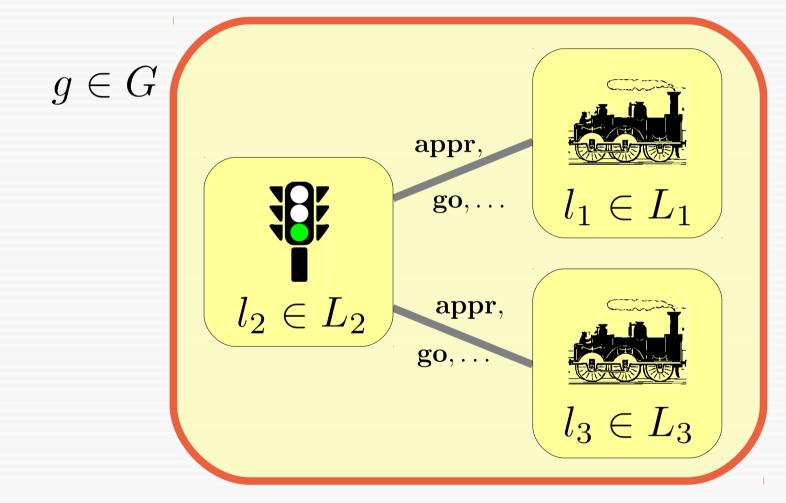
System invariant: $Inv_1(g, l_1) \wedge Inv_2(g, l_2) \wedge Inv_3(g, l_3)$

90/165



With Two Trains $Inv_{1,2}(g, l_1, l_2)$ $g \in G$ appr, **go**,... $l_1 \in L_1$ $l_2 \in L_2$ appr, \mathbf{go}, \dots $Inv_3(g, l_3)$ $l_3 \in L_3$

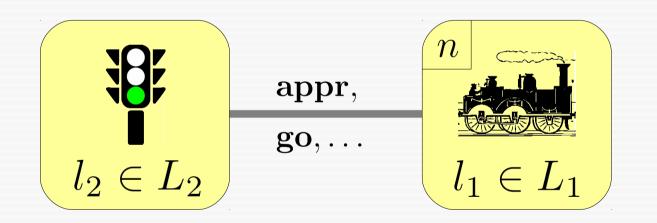
System invariant: $Inv_{1,2}(g, l_1, l_2) \wedge Inv_3(g, l_3)$



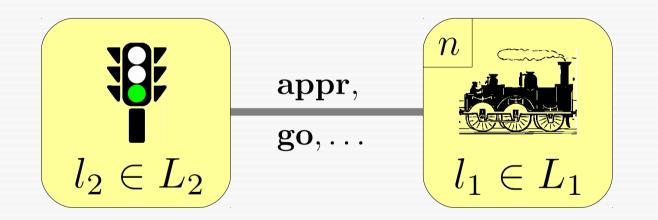
System invariant: $Inv_{1,2,3}(g, l_1, l_2, l_3)$

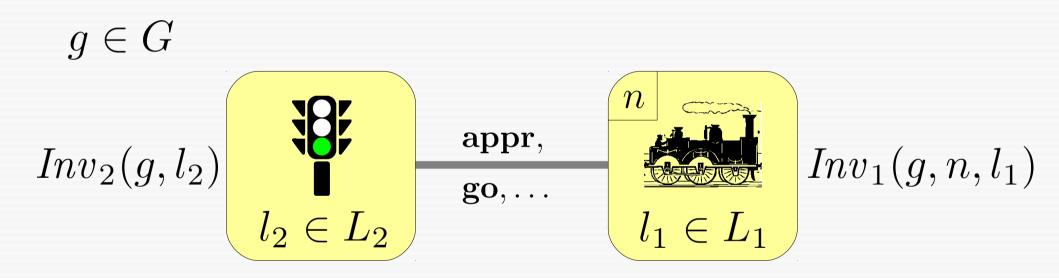
Spectrum of Possible Invariant Schemata

Modular Separate invariant for each process **Monolithic** Single invariant for whole system



Can we verify mutual exclusion for **any number** of trains?





$\forall n. Inv_1(g, n, \overline{l}_1[n]) \land Inv_2(g, l_2)$

Horn Constraints Local transitions: $(\langle g, l_1 \rangle \stackrel{n}{\rightsquigarrow} \langle g', l'_1 \rangle) \wedge Inv_1(g, n, l_1) \rightarrow Inv_1(g', n, l'_1)$

Owicki-Gries-style non-interference:

 $I \quad \begin{pmatrix} (\langle g, l_1 \rangle \stackrel{n_1}{\rightsquigarrow} \langle g', l_1' \rangle) \land n_1 \neq n_2 \land \\ Inv_1(g, n_1, l_1) \land Inv_1(g, n_2, l_1') \end{pmatrix} \to Inv_1(g', n_2, l_1')$

+ time elapse, synch., initiation, assertions

$$\forall n. Inv_1(g, n, \overline{l_1}[n]) \land Inv_2(g, l_2)$$

Horn Constraints Local transitions:

 $(\langle g, l_1 \rangle \stackrel{n}{\rightsquigarrow} \langle g', l_1' \rangle) \wedge Inv_1(g, n, l_1) \rightarrow Inv_1(g', n, l_1')$

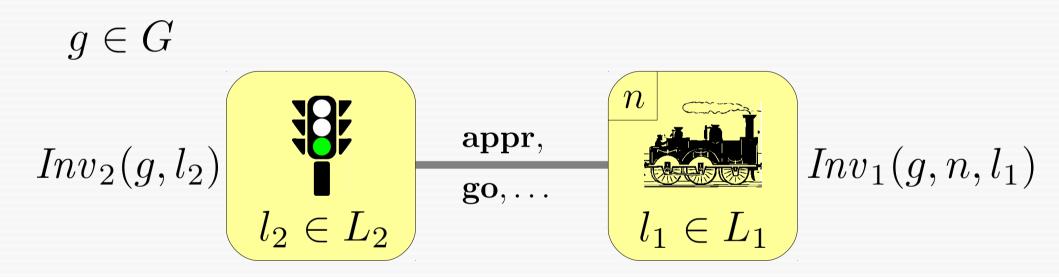
Owicki-Gries-style non-interference:

"Self-reflection"

 $I \quad \left(\begin{pmatrix} \langle g, l_1 \rangle \stackrel{n_1}{\rightsquigarrow} \langle g', l_1' \rangle \end{pmatrix} \land n_1 \neq n_2 \land \\ Inv_1(g, n_1, l_1) \land Inv_1(g, n_2, l_1') \end{pmatrix} \to Inv_1(g', n_2, l_1')$

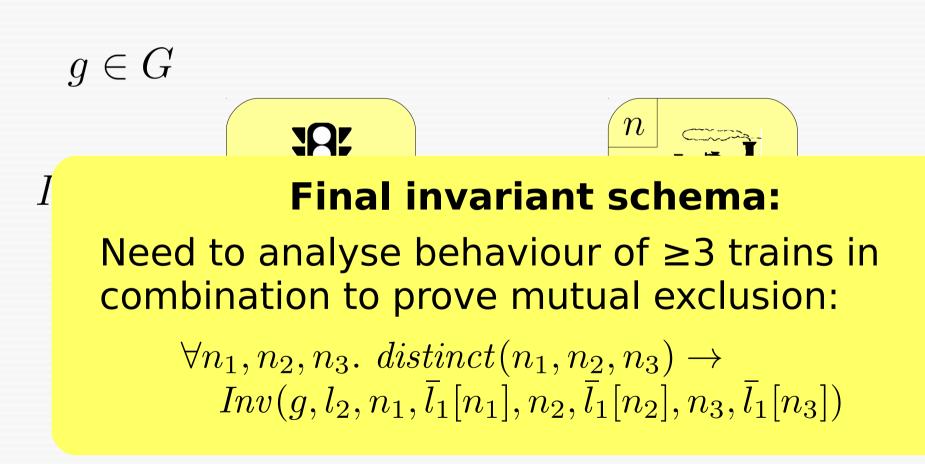
+ time elapse, synch., initiation, assertions

 $\forall n. Inv_1(g, n, \overline{l}_1[n]) \land Inv_2(g, l_2)$

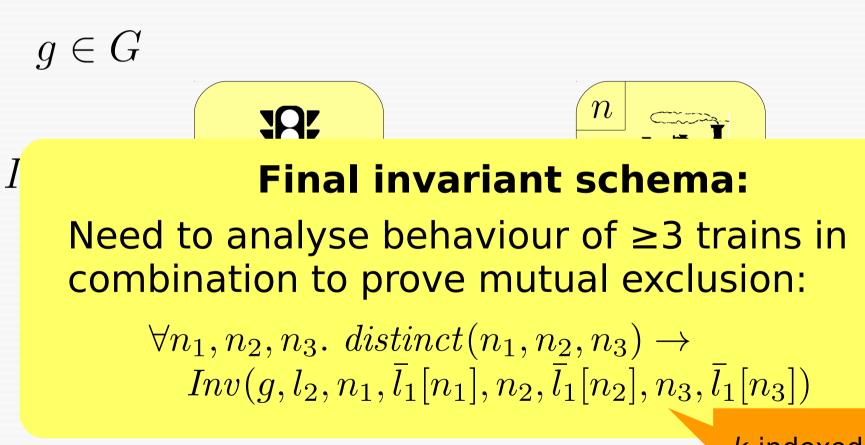


$\forall n. Inv_1(g, n, \overline{l}_1[n]) \land Inv_2(g, l_2)$

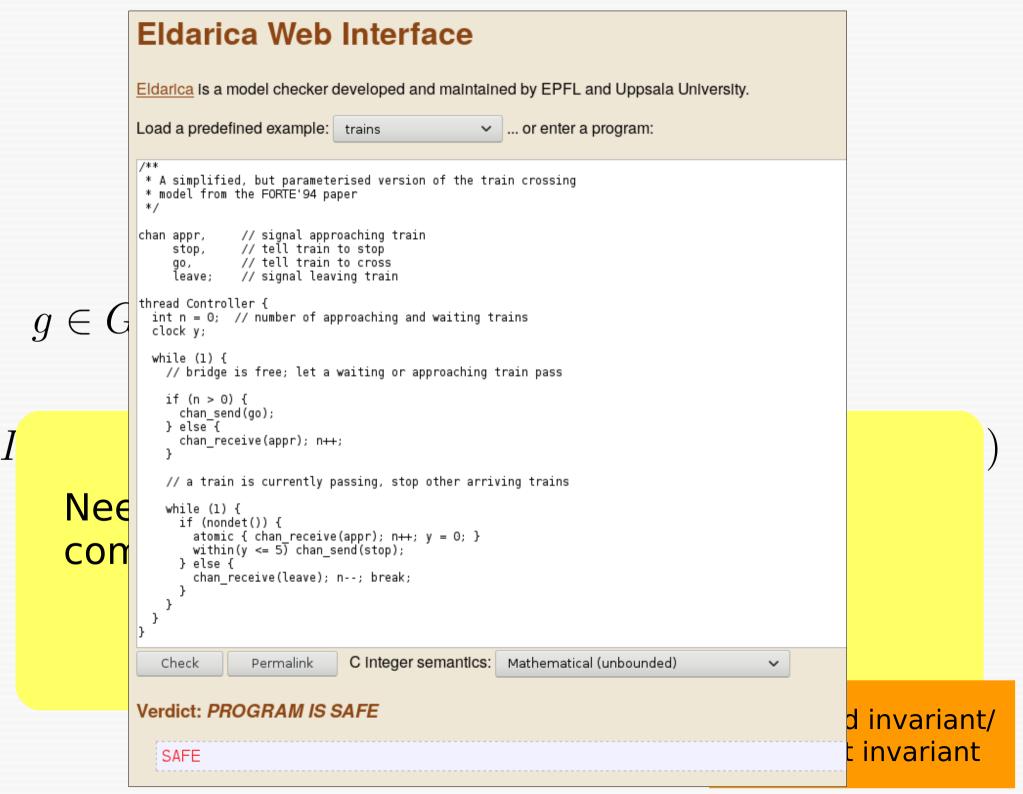
100/165



101/165



k-indexed invariant/ Ashcroft invariant



Program/ Safety System Property Horn Encoder (proof rules) Constrained Horn Clauses (CHC) **Linear Integers** Horn Solver Linear Rationals **Bit-vectors** (theory solvers) Algebraic data-types Arrays etc. UNSAT SAT = "UNSAFE" = "SAFE"

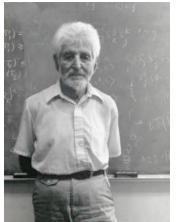
105/165

Bitvector Interpolation

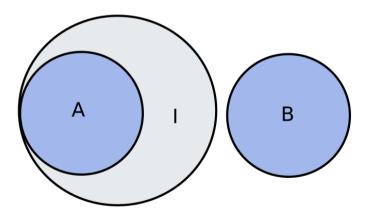
[3] Peter Backeman, PR, Aleksandar Zeljic. Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction. FMCAD 2018

106/165

Recap: Craig Interpolation



- Given an unsatisfiable formula A ∧ B
 a (reverse) Interpolant is a formula I s.t.:
 (a) A ⇒ I and B ⇒ ¬I
 - (b) I contains only non-logical symbols occuring both in A and B.



Interpolant sequences/trees can be reduced to this

Fixed-Length Bit-Vectors

- Formalisation of machine arithmetic
- Domains: $x \in \mathbb{B}^n$
- Operators:
 - Arithmetic: bvadd, bvmul, . . .
 - Bit-Vector: concat, extract, shift, ...
 - * Bit-wise: bvand, bvor, ...
- Efficient solvers (you-know-which)
 - But usually no interpolation

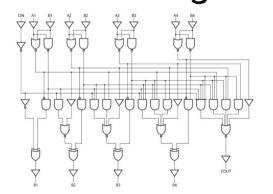
Interpolants for Bit-Vector Formulas?

Solution 1: Bit-Blasting
 Encode into propositional logic

Solution 2: Integer Encoding
 Encode into integer arithmetic

Bit-Blasting

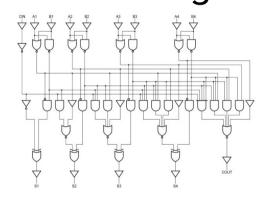
Blast every bit-vector to bits: If x ∈ ℝ⁸ then x → x₀, x₁,..., x₇ Model operations exactly



Interpolation in SAT is well understood

Bit-Blasting

Blast every bit-vector to bits: If x ∈ ℝ⁸ then x → x₀, x₁,..., x₇ Model operations exactly



Interpolation in SAT is well understood
But: this gives bit-level interpolants

Integer Encoding

If $x \in \mathbb{B}^8$ then $x \rightsquigarrow x'$ with $0 \le x' < 2^8$

Model overflows arithmetically, e.g.:

$$\begin{aligned} x &= \mathsf{bvadd}_8(y,1) \quad \leadsto \\ x' &= y' + 1 - 2^8 \sigma_1 \land 0 \le x' < 2^8 \land 0 \le \sigma_1 \le 1 \end{aligned}$$

[4] A. Griggio, "Effective word-level interpolation for software verification," FMCAD 2011

Integer Encoding

If $x \in \mathbb{B}^8$ then $x \rightsquigarrow x'$ with $0 \le x' < 2^8$

Model overflows arithmetically, e.g.:

$$\begin{aligned} x &= \mathsf{bvadd}_8(y,1) \quad \leadsto \\ x' &= y' + 1 - 2^8 \sigma_1 \land 0 \le x' < 2^8 \land 0 \le \sigma_1 \le 1 \end{aligned}$$

Hard LIA form., complicated interpolants

[4] A. Griggio, "Effective word-level interpolation for software verification," FMCAD 2011

Integer Encoding

If $x \in \mathbb{B}^8$ then $x \rightsquigarrow x'$ with $0 \le x' < 2^8$

Model overflows arithmetically, e.g.:

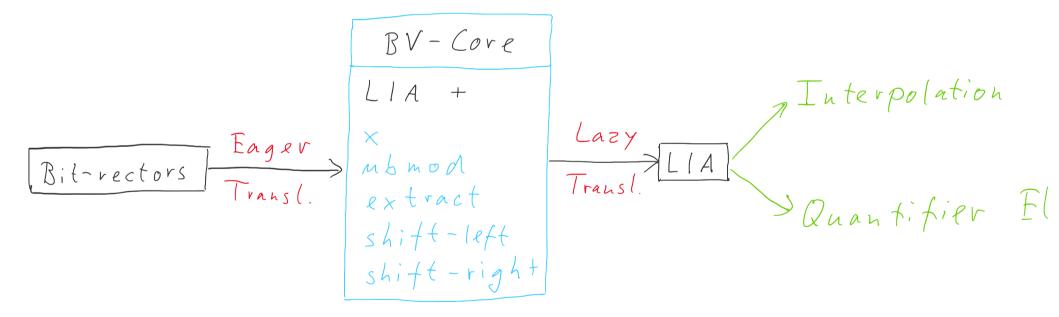
$$\begin{aligned} x &= \mathsf{bvadd}_8(y,1) \quad \leadsto \\ x' &= y' + 1 - 2^8 \sigma_1 \land 0 \le x' < 2^8 \land 0 \le \sigma_1 \le 1 \end{aligned}$$

Hard LIA form., complicated interpolants Many operations are difficult to encode

[4] A. Griggio, "Effective word-level interpolation for software verification," FMCAD 2011

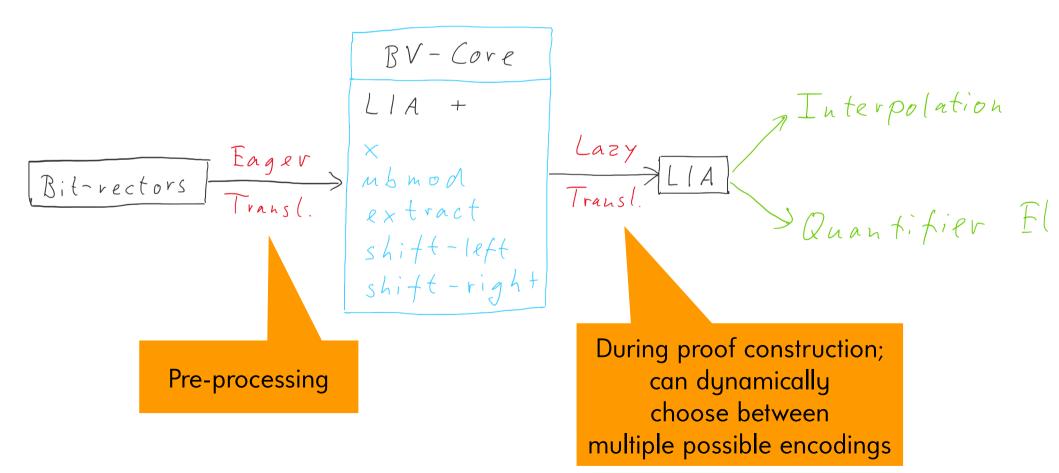
Lazy Reduction

Lazily convert from a core language to integer arithmetic:



Lazy Reduction

Lazily convert from a core language to integer arithmetic:



LIA, extended with further predicates:

LIA, extended with further predicates:

 $\mathsf{ubmod}_w(s,r) \iff 0 \le r < 2^w \land (r \equiv s \mod w)$

LIA, extended with further predicates:

 $\mathsf{ubmod}_w(s,r) \iff 0 \le r < 2^w \land (r \equiv s \mod w)$

$\mathsf{ubmod}_8(17, 17), \mathsf{ubmod}_8(256, 0), \mathsf{ubmod}_8(4039, 214)$

LIA, extended with further predicates:

 $\begin{array}{rll} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

LIA, extended with further predicates:

 $\begin{array}{rcl} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

Eager translation rules (applied on flat NNF):

LIA, extended with further predicates:

 $\begin{array}{rcl} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

Eager translation rules (applied on flat NNF):

$$\mathsf{bvule}_w(s,t) \iff s \le t$$

LIA, extended with further predicates:

 $\begin{array}{rll} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

Eager translation rules (applied on flat NNF):

 $\begin{aligned} \mathsf{bvule}_w(s,t) &\rightsquigarrow s \leq t \\ \mathsf{bvadd}_w(s,t) = r &\rightsquigarrow \mathsf{ubmod}_w(s+t,r) \end{aligned}$

LIA, extended with further predicates:

 $\begin{array}{rll} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

Eager translation rules (applied on flat NNF):

 $\begin{aligned} & \mathsf{bvule}_w(s,t) \iff s \leq t \\ & \mathsf{bvadd}_w(s,t) = r \iff \mathsf{ubmod}_w(s+t,r) \\ & \mathsf{bvmul}_w(s,t) = r \iff \exists x. (\times(s,t,x) \land \mathsf{ubmod}_w(x,r)) \end{aligned}$

LIA, extended with further predicates:

 $\begin{array}{rcl} \mathsf{ubmod}_w(s,r) & \Leftrightarrow & 0 \leq r < 2^w \land \left(r \equiv s \mod w\right) \\ \times(s,t,r) & \Leftrightarrow & s \cdot t = r \end{array}$

Eager translation rules (applied on flat NNF):

Example (taken from [4])

BV-Formula:

- $A = \neg \mathsf{bvule}_8(\mathsf{bvadd}_8(y_4, 1), y_3) \land y_2 = \mathsf{bvadd}_8(y_4, 1)$
- $B = \mathsf{bvule}_8(\mathsf{bvadd}_8(y_2, 1), y_3) \land y_7 = 3 \land y_7 = \mathsf{bvadd}_8(y_2, 1)$

Infix notation:

$$A = y_4 + 1 > y_3 \land y_2 = y_4 + 1$$

$$B = y_2 + 1 \le y_3 \land y_7 = 3 \land y_7 = y_2 + 1$$

Example (taken from [4])

BV-Formula:

- $A = \neg \mathsf{bvule}_8(\mathsf{bvadd}_8(y_4, 1), y_3) \land y_2 = \mathsf{bvadd}_8(y_4, 1)$
- $B = \mathsf{bvule}_8(\mathsf{bvadd}_8(y_2, 1), y_3) \land y_7 = 3 \land y_7 = \mathsf{bvadd}_8(y_2, 1)$

BV-Core representation:

$$A_{\text{core}} = \mathsf{ubmod}_8(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$

 $B_{\text{core}} = \mathsf{ubmod}_8(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$

Example (taken from [4])

BV-Formula:

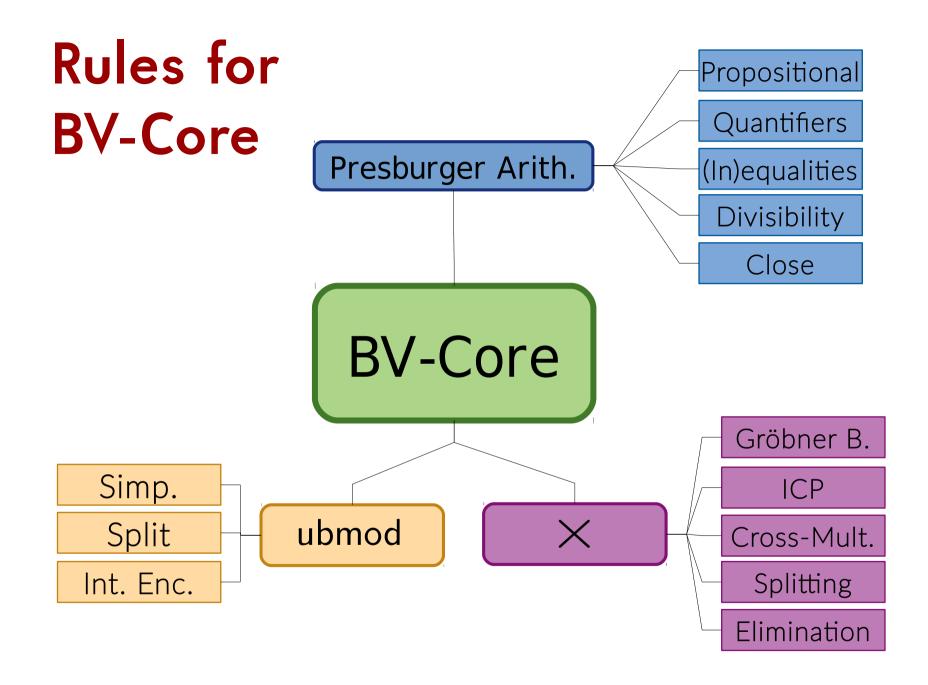
- $A = \neg \mathsf{bvule}_8(\mathsf{bvadd}_8(y_4, 1), y_3) \land y_2 = \mathsf{bvadd}_8(y_4, 1)$
- $B = \mathsf{bvule}_8(\mathsf{bvadd}_8(y_2, 1), y_3) \land y_7 = 3 \land y_7 = \mathsf{bvadd}_8(y_2, 1)$

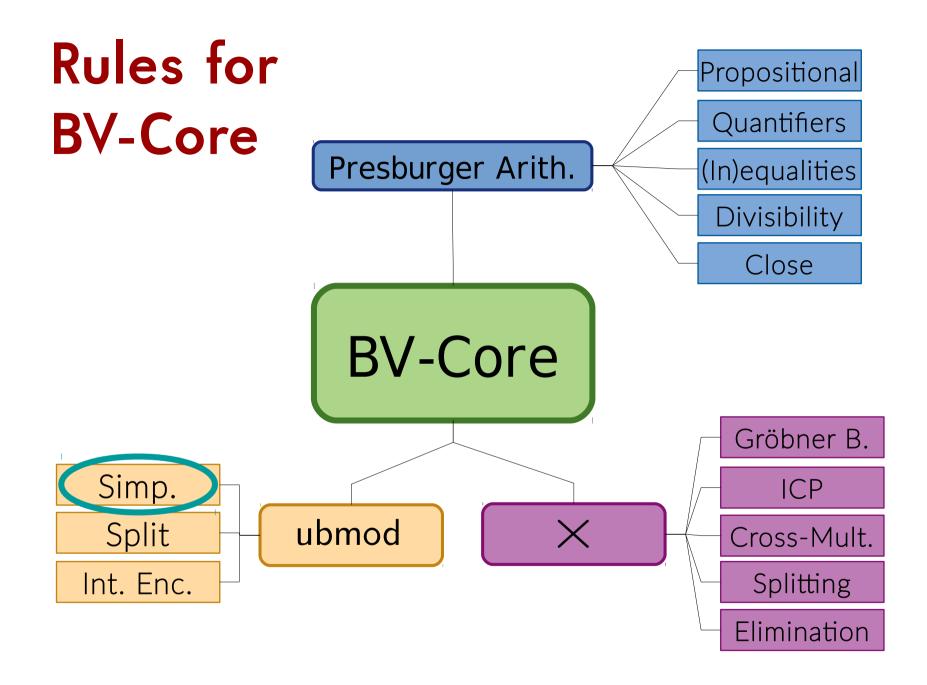
BV-Core representation:

$$A_{\text{core}} = \mathsf{ubmod}_8(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$

 $B_{\text{core}} = \mathsf{ubmod}_8(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$

+ domain constraints (omitted)





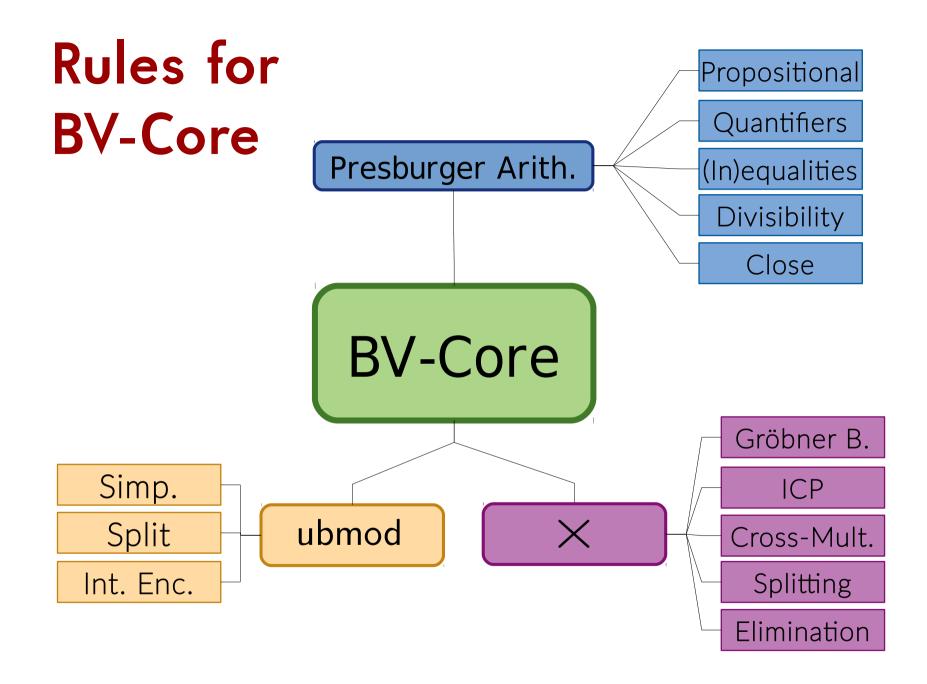
BV-Core Simplification Rules

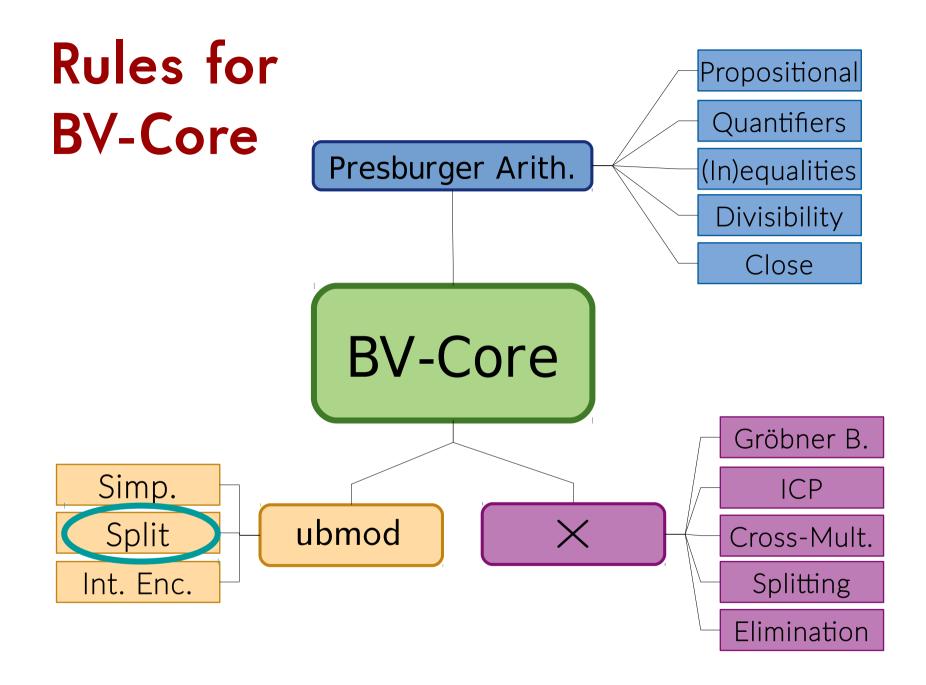
Eliminate ubmod if only one branch possible: $ubmod_w(s,r) \quad \rightsquigarrow \quad s = r + 2^w k$ for $\lfloor \frac{lbound(s)}{2^w} \rfloor = k = \lfloor \frac{ubound(s)}{2^w} \rfloor$

Eliminate nested ubmod

BV-Core Simplification Rules

- Eliminate ubmod if only one branch possible: $ubmod_w(s,r) \quad \rightsquigarrow \quad s = r + 2^w k$ for $\lfloor \frac{lbound(s)}{2^w} \rfloor = k = \lfloor \frac{ubound(s)}{2^w} \rfloor$
- Eliminate nested ubmod
- Applied aggressively during proving





Rule: BMOD-SPLIT

Given tight bounds in ubmod_w consider cases explicitly:

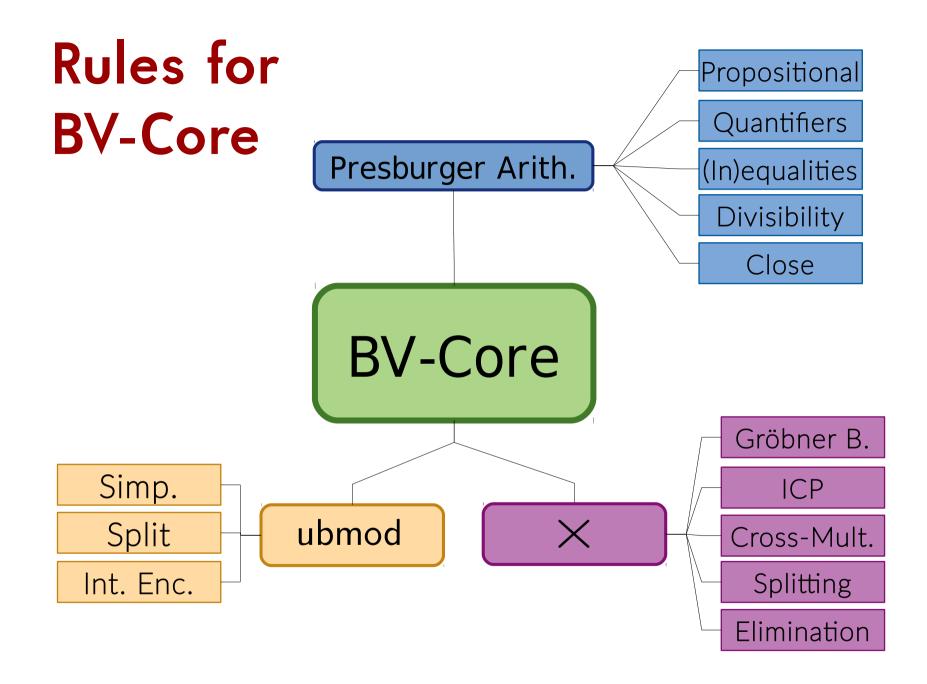
$$\mathsf{ubmod}_w(s,r) \quad \leadsto \\ 0 \leq r < 2^w \land \bigvee_{i=l}^u s = r + 2^w i$$

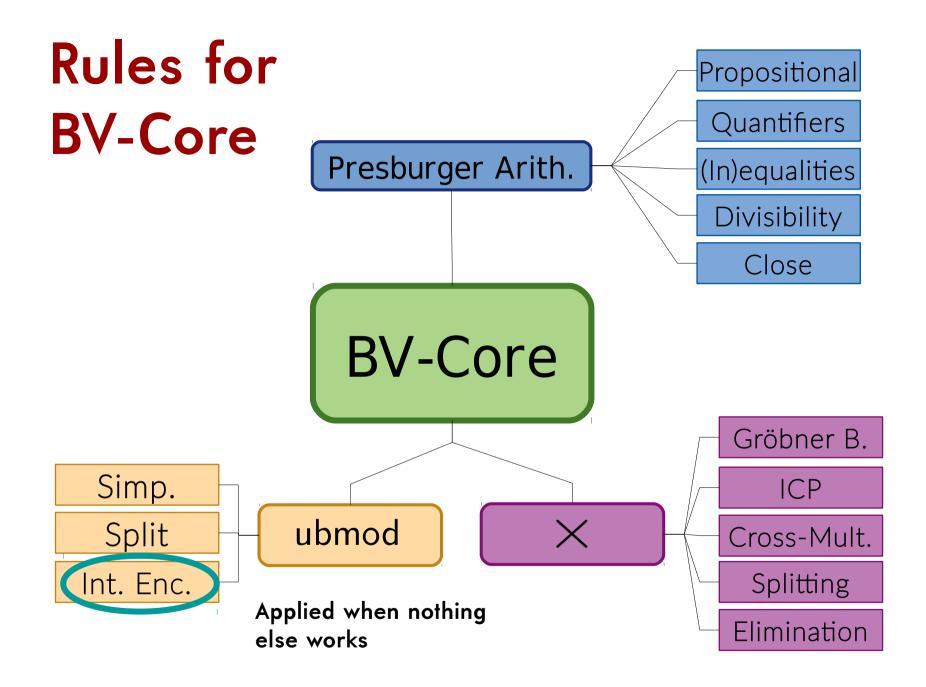
Rule: BMOD-SPLIT

Given tight bounds in ubmod_w consider cases explicitly:

$$\mathsf{ubmod}_w(s,r) \quad \leadsto \\ 0 \leq r < 2^w \land \bigvee_{i=l}^u s = r + 2^w i$$

Applied when literal with small number of cases is found





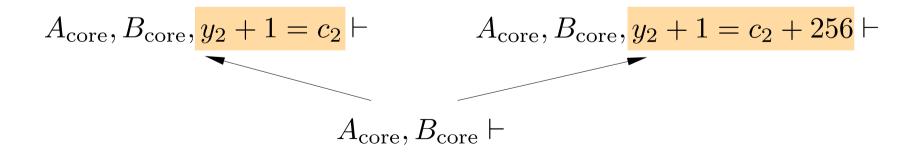
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$

$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$

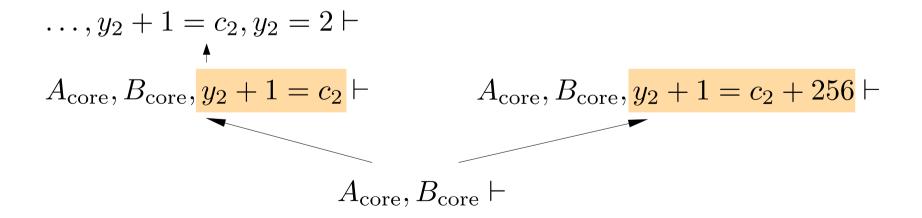
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$

 $A_{\text{core}}, B_{\text{core}} \vdash$

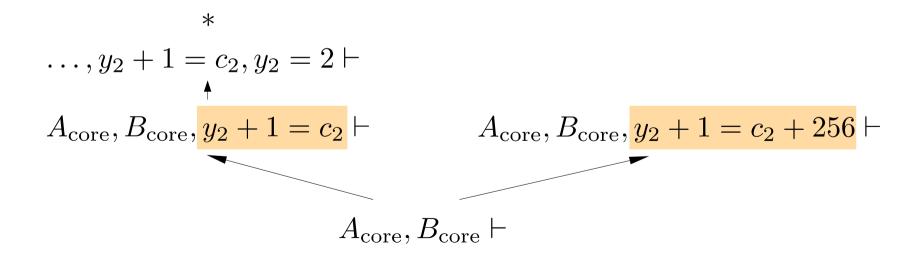
$$A_{\text{core}} = ubmod_{w}(y_{4} + 1, c_{1}) \land c_{1} > y_{3} \land y_{2} = c_{1}$$
$$B_{\text{core}} = ubmod_{w}(y_{2} + 1, c_{2}) \land c_{2} \leq y_{3} \land y_{7} = 3 \land y_{7} = c_{2}$$



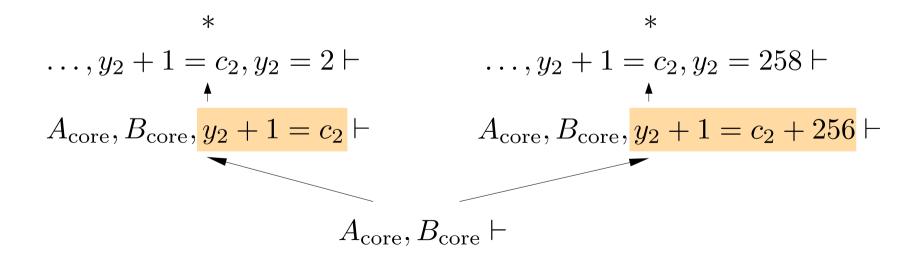
$$A_{\text{core}} = ubmod_{w}(y_{4} + 1, c_{1}) \land c_{1} > y_{3} \land y_{2} = c_{1}$$
$$B_{\text{core}} = ubmod_{w}(y_{2} + 1, c_{2}) \land c_{2} \le y_{3} \land y_{7} = 3 \land y_{7} = c_{2}$$



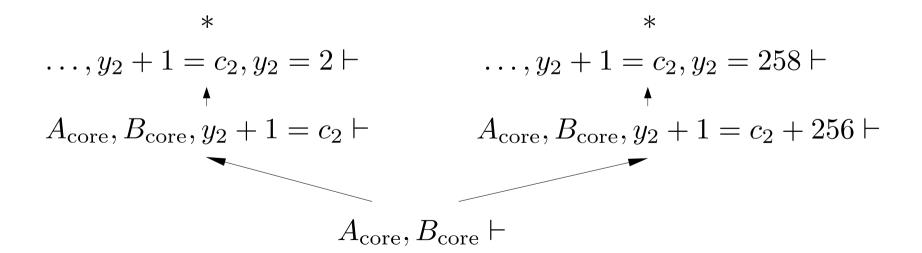
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$



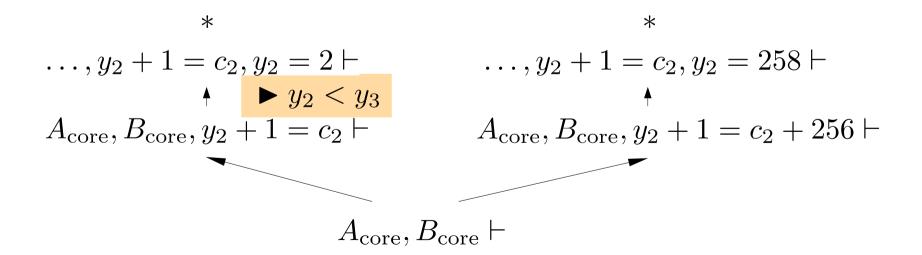
$$A_{\text{core}} = ubmod_{w}(y_{4} + 1, c_{1}) \land c_{1} > y_{3} \land y_{2} = c_{1}$$
$$B_{\text{core}} = ubmod_{w}(y_{2} + 1, c_{2}) \land c_{2} \le y_{3} \land y_{7} = 3 \land y_{7} = c_{2}$$



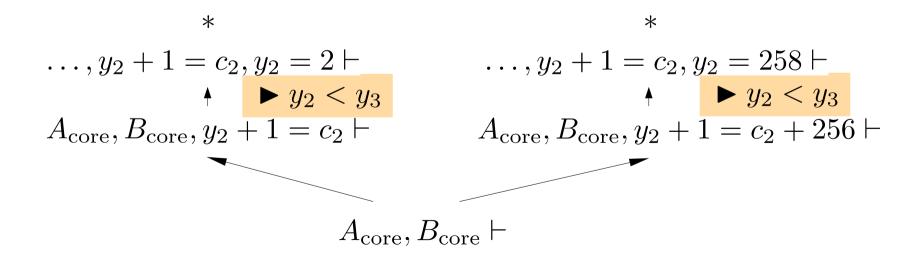
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$



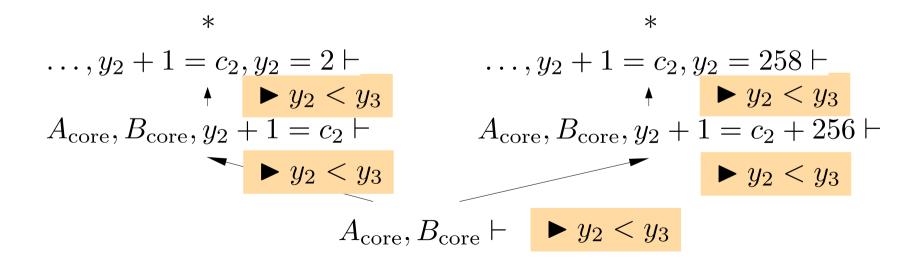
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$



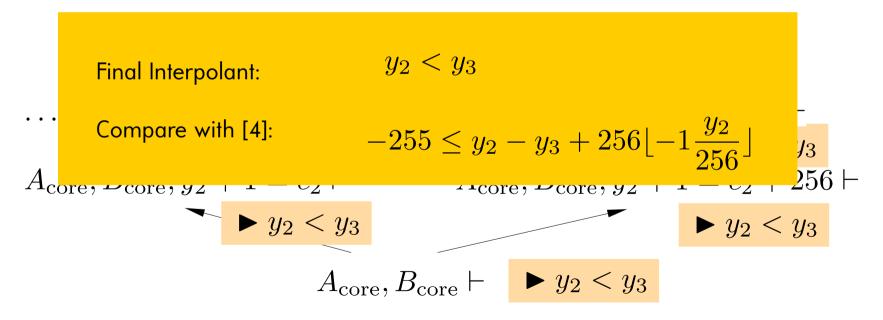
$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$



$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 \le y_3 \land y_7 = 3 \land y_7 = c_2$$



$$A_{\text{core}} = ubmod_w(y_4 + 1, c_1) \land c_1 > y_3 \land y_2 = c_1$$
$$B_{\text{core}} = ubmod_w(y_2 + 1, c_2) \land c_2 < y_3 \land y_7 = 3 \land y_7 = c_2$$



What is left?

С lava Ada Rust Networks of TA **BIP** models etc.

Program/ Safety System Property Floyd-Hoare Horn Encoder Design by contract **Owicki-Gries** (proof rules) **Rely Guarantee** etc. Constrained Horn Duality Eldarica(-abs) Clauses (CHC) Hoice **HSF** IC3IA V **PCSat** PECOS Horn Solver ProphIC3 (theory solvers) Sally Spacer TransfHORNer Ultimate TreeAutomizer **Ultimate Unihorn** etc. UNSAT SA = "UNSAFE"

160/165

Linear Integers Linear Rationals Bit-vectors Algebraic data-types Arrays etc.

= "SAFE"

Proposed Extensions of CHCs

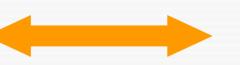
- Well-foundedness predicates
- Existential quantifiers in clause heads
- Universal quantifiers in clause bodies
- General fixed-point operators
- Optimisation with Horn clauses
- Non-Horn constraints
- etc.

Other Horn Encodings

- Owicki-Gries
- Rely-guarantee
- Various forms of thread communication
- Parameterised systems
- Timed systems
- Synchronous programs
- Equivalence/Regression verification
- Games
- Networks, SDN
- etc.



Local reasoning

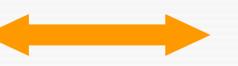


Global reasoning

IC3: one counterexample at a time

CEGAR: one path at a time Syntax-guided synthesis: all constraints at once

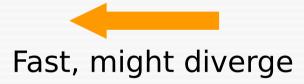
Local reasoning



Global reasoning

IC3: one counterexample at a time CEGAR: one path at a time Syntax-guided synthesis: all constraints at once

165/165

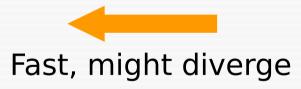


Guarantees convergence, less scalable

Local reasoning

Global reasoning

IC3: one counterexample at a time CEGAR: one path at a time Syntax-guided synthesis: all constraints at once



Guarantees convergence, less scalable

[5] Jérôme Leroux, PR, Pavle Subotic. Guiding Craig Interpolation with Domain-specific Abstractions. Acta Informatica 2016
[6] Hari Govind V.K., YuTing Chen, Sharon Shoham, Arie Gurfinkel: Global Guidance for Local Generalization in Model Checking. CAV 2020

166/165

Conclusions

Horn solvers and CHC ...

- provide highly optimised model checking engines
- enable experimentation with program logics and proof rules
- simplify implementation of verifiers

Questions?