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Lab for AI and Verification

I LAIV launched in March 2019

I ...in order to accumulate local expertise in AI,
programming languages, verification

I ... and respond to demand in Edinburgh Robotarium and
Edinburgh Center for Robotics



LAIV members:



Perception and Reasoning

AI methods divide into:

Perception tasks:

Computer Vision

Natural language
understanding

Reasoning tasks:

Planning

(Logical) reasoning

A.Hill, E.K. and R.Petrick: Proof-Carrying Plans: a Resource Logic for AI
Planning. PPDP’20.
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Neural network is

... a function

N : Rn → Rm
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... a function that separate inputs (data points) into classes

Suppose we have four data points

x1 x2 y

1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 0

We may look for a linear function:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2
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Neural networks are

Plotting these four data points in 3-dimensional space:
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Neural networks are

Taking

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

here is its neuron view:

x1 //wx1

&&
x2 //wx2

// +b // y
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Neural networks are

After running the training algorithm:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = −0.9 + 0.5× x1 + 0.5× x2

x1 //0.5
''

x2 //0.5 // −0.9 // y

(This is one of infinitely many solutions)



Neural networks

Or may be we want to constrain the outputs:

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

where

S x =

{
1, if x ≥ 0

0, otherwise
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Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting
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attacks transfer from one neural network to another

affect any domain where neural networks are applied
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A few words on the context

1943 Perceptron by McCullogh and Pitts

90s – Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

“ The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can generalize
well, how can it be confused by these adversarial negatives,
which are indistinguishable from the regular examples? “
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2013-.. Thousands of papers on adversarial training
(in the attack-defence style)
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Characterisation of the Phenomenon. 2019.

2017 First Neural network verification attempts
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Reluplex: An Efficient SMT Solver for Verifying Deep Neural
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Deep Neural Networks. CAV (1) 2017: 3-29.
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Programs are functions...

Program : A → B

and so are neural networks:

NeuralNet : Rn → Rm



Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult
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I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

But normally, programs

have semantically meaningful parts

which allows us to verify components that matter



I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

For neural nets:

//////have////////////////semantically///////////////meaningful///////parts

///////which/////////allows///us////to////////verify////////////////components//////that/////////matter



I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

For neural nets:

input and output are the only semantically meaningful
parts (and even that is somewhat blurry)



The “ε-ball verification”

ε

An ε-ball B(x̂, ε) = {x ∈ Rn : ||x̂− x|| ≤ ε}
Classify all points in B(x̂, ε) in the “same class” as x̂.
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Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)
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Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Verify

test : (x1 : R {truthy x1})→ (x2 : R {truthy x2})→ (y : R {y = 1})
test = neuron

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.
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Except you only see:

data

F ∗

NN as
function;
verification
conditions
as types



Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1
(*layer*)
let model = NLast // ← makes single-layer network

{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

NB

Uniform syntax for all networks we obtain from Python code!
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Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let verify x1 x2 = run model [x1; x2]
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Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let verify x1 x2 = run model [x1; x2]

4 Type check and relax!



Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.
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Neural Network Verification

Recall the 4 problems:

I Semantics of function components is opaque

Use refinement types (for [functional] elegance),

... or SMT solvers directly.

Wen Kokke. 2020. Sapphire: a Neural Net Verification Library for Z3
in Python. https://github.com/wenkokke/sapphire

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks

https://github.com/wenkokke/sapphire
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Scale in Neural network verification

MNIST data set

2828 images of the handwritten digits “0” to “9”
784 pixels each

The smallest network

input layer of 784 weights

hidden layer of (say) 128
ReLU nodes

output layer of 10 softmax
neurons
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Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample_in - x| < 0.01R)
=⇒ (|sample_out - (run network x)| < 0.1R))
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