
Continuous Verification of Machine Learning
a Declarative Programming Approach

Ekaterina Komendantskaya,
joint work with Daniel Kienitz and Wen Kokke

Lab for AI and Verification, Heriot-Watt University, Scotland

Invited talk at PPDP 2020

Outline

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Outline

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Outline

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Outline

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Table of Contents

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Pervasive AI...

Autonomous cars

Robotics

Smart Homes

Chat Bots

...and many more ...
AI is in urgent need of verification: safety, security, robustness

to changing conditions and adversarial attacks, ...

Lab for AI and Verification

I LAIV launched in March 2019

I ...in order to accumulate local expertise in AI,
programming languages, verification

I ... and respond to demand in Edinburgh Robotarium and
Edinburgh Center for Robotics

LAIV members:

Perception and Reasoning

AI methods divide into:

Perception tasks:

Computer Vision

Natural language
understanding

Reasoning tasks:

Planning

(Logical) reasoning

A.Hill, E.K. and R.Petrick: Proof-Carrying Plans: a Resource Logic for AI
Planning. PPDP’20.

Perception and Reasoning

AI methods divide into:

Perception tasks:

Computer Vision

Natural language
understanding

Reasoning tasks:

Planning

(Logical) reasoning

A.Hill, E.K. and R.Petrick: Proof-Carrying Plans: a Resource Logic for AI
Planning. PPDP’20.

Perception and Reasoning

AI methods divide into:

Perception tasks:

Computer Vision

Natural language
understanding

Reasoning tasks:

Planning

(Logical) reasoning

A.Hill, E.K. and R.Petrick: Proof-Carrying Plans: a Resource Logic for AI
Planning. PPDP’20.

Neural Networks...

take care of
perception tasks:

computer vision

speech recognition

pattern recognition

...

In:

autonomous cars

robots

medical applications

chatbots

mobile phone apps

. . .

Neural Networks...

take care of
perception tasks:

computer vision

speech recognition

pattern recognition

...

In:

autonomous cars

robots

medical applications

chatbots

mobile phone apps

. . .

Table of Contents

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Neural network is

... a function

N : Rn → Rm

Neural network is

... a function that separate inputs (data points) into classes

Suppose we have four data points

x1 x2 y

1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 0

We may look for a linear function:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

Neural network is

... a function that separate inputs (data points) into classes

Suppose we have four data points

x1 x2 y

1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 0

We may look for a linear function:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

Neural network is

... a function that separate inputs (data points) into classes

Suppose we have four data points

x1 x2 y

1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 0

We may look for a linear function:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

Neural networks are

Plotting these four data points in 3-dimensional space:

0
1 0

1
0

1

x1
x2

y

Neural network is

... a separating linear function:

0
1 0

1
0

1

x1
x2

cl
as

s

Neural networks are

Taking

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

here is its neuron view:

x1 //wx1

&&
x2 //wx2

// +b // y

Neural networks are

Taking

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = b+ wx1 × x1 + wx2 × x2

here is its neuron view:

x1 //wx1

&&
x2 //wx2

// +b // y

Neural networks are

After running the training algorithm:

neuron : (x1 : R)→ (x2 : R)→ (y : R)
neuron x1 x2 = −0.9 + 0.5× x1 + 0.5× x2

x1 //0.5
''

x2 //0.5 // −0.9 // y

(This is one of infinitely many solutions)

Neural networks

Or may be we want to constrain the outputs:

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

where

S x =

{
1, if x ≥ 0

0, otherwise

Neural networks

Or may be we want to constrain the outputs:

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

where

S x =

{
1, if x ≥ 0

0, otherwise

Neural networks

Or may be we want to constrain the outputs:

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

where

S x =

{
1, if x ≥ 0

0, otherwise

Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting

Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting

Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting

Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting

Neural networks

... are ideal for “perception” tasks:

I approximate functions when exact solution is hard to get

I tolerant to noisy and incomplete data

BUT

I solutions not easily conceptualised (lack of explainability)

I prone to a new range of safety and security problems:

adversarial attacks
data poisoning
catastrophic forgetting

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

Adversarial Attacks

the perturbations are imperceptible to human eye

attacks transfer from one neural network to another

affect any domain where neural networks are applied

A few words on the context

1943 Perceptron by McCullogh and Pitts

90s – Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

“ The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can generalize
well, how can it be confused by these adversarial negatives,
which are indistinguishable from the regular examples? “

A few words on the context

1943 Perceptron by McCullogh and Pitts

90s – Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

“ The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can generalize
well, how can it be confused by these adversarial negatives,
which are indistinguishable from the regular examples? “

A few words on the context

1943 Perceptron by McCullogh and Pitts

90s – Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

“ The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can generalize
well, how can it be confused by these adversarial negatives,
which are indistinguishable from the regular examples? “

A few words on the context

1943 Perceptron by McCullogh and Pitts

90-2000 Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

2013-.. Thousands of papers on adversarial training
(in the attack-defence style)

A. C. Serban, E. Poll, J. Visser. Adversarial Examples - A Complete
Characterisation of the Phenomenon. 2019.

2017 First Neural network verification attempts

G. Katz, C.W. Barrett, D.L. Dill, K. Julian, M.J. Kochenderfer:
Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. CAV (1) 2017: 97-117.

X. Huang, M. Kwiatkowska, S. Wang, M. Wu. Safety Verification of
Deep Neural Networks. CAV (1) 2017: 3-29.

2017-.. Hundreds of papers on neural network verification

A few words on the context

1943 Perceptron by McCullogh and Pitts

90-2000 Rise of machine learning applications

2013 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural networks.
2013. (5000+ citations)

2013-.. Thousands of papers on adversarial training
(in the attack-defence style)

A. C. Serban, E. Poll, J. Visser. Adversarial Examples - A Complete
Characterisation of the Phenomenon. 2019.

2017 First Neural network verification attempts

G. Katz, C.W. Barrett, D.L. Dill, K. Julian, M.J. Kochenderfer:
Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. CAV (1) 2017: 97-117.

X. Huang, M. Kwiatkowska, S. Wang, M. Wu. Safety Verification of
Deep Neural Networks. CAV (1) 2017: 3-29.

2017-.. Hundreds of papers on neural network verification

Table of Contents

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Programs are functions...

Program : A → B

and so are neural networks:

NeuralNet : Rn → Rm

Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

... could be like any other verification task

if not for the following four problems:

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

But normally, programs

have semantically meaningful parts

which allows us to verify components that matter

I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

For neural nets:

//////have////////////////semantically///////////////meaningful///////parts

///////which/////////allows///us////to////////verify////////////////components//////that/////////matter

I. The problem of opaque semantics

Program : A → B

NeuralNet : Rn → Rm

For neural nets:

input and output are the only semantically meaningful
parts (and even that is somewhat blurry)

The “ε-ball verification”

ε

An ε-ball B(x̂, ε) = {x ∈ Rn : ||x̂− x|| ≤ ε}
Classify all points in B(x̂, ε) in the “same class” as x̂.

The “ε-ball verification”

ε

An ε-ball B(x̂, ε) = {x ∈ Rn : ||x̂− x|| ≤ ε}
Classify all points in B(x̂, ε) in the “same class” as x̂.

For example,

Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

x1 //wx1

&&
x2 //wx2

// +b // y

For example,

Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Define

truthy x = |1− x| ≤ ε
falsey x = |0− x| ≤ ε

For example,

Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Verify

test : (x1 : R {truthy x1})→ (x2 : R {truthy x2})→ (y : R {y = 1})
test = neuron

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

For example,

Take

neuron : (x1 : R)→ (x2 : R)→ (y : R {y = 0 ∨ y = 1})
neuron x1 x2 = S (−0.9 + 0.5x1 + 0.5x2)

Verify

test : (x1 : R {truthy x1})→ (x2 : R {truthy x2})→ (y : R {y = 1})
test = neuron

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

Refinement type library for Neural Net Verification

data

Python
(Keras)

a neural
network

F ∗

NN as
function;
verification
conditions
as types

Z3

Refinement type library for Neural Net Verification

data

Python
(Keras)

a neural
network

F ∗

NN as
function;
verification
conditions
as types

Z3

Refinement type library for Neural Net Verification

data

Python
(Keras)

a neural
network

F ∗

NN as
function;
verification
conditions
as types

Z3

Refinement type library for Neural Net Verification

data

Python
(Keras)

a neural
network

F ∗

NN as
function;
verification
conditions
as types

Z3

Except you only see:

data

F ∗

NN as
function;
verification
conditions
as types

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1
(*layer*)
let model = NLast // ← makes single-layer network

{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

NB

Uniform syntax for all networks we obtain from Python code!

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1
(*layer*)
let model = NLast // ← makes single-layer network
{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

NB

Uniform syntax for all networks we obtain from Python code!

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1
(*layer*)
let model = NLast // ← makes single-layer network
{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

NB

Uniform syntax for all networks we obtain from Python code!

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

val model : network (*with*) 2 (*inputs*) 1 (*output*)
1 (*layer*)
let model = NLast // ← makes single-layer network
{ weights = [[0.5R]; [0.5R]]
; biases = [−0.9R]
; activation = Threshold }

NB

Uniform syntax for all networks we obtain from Python code!

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let verify x1 x2 = run model [x1; x2]

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R {truthy x1})
→ (x2 : R { truthy x2})
→ (y : vector R 1 {y == [1.0R]})

let verify x1 x2 = run model [x1; x2]

Note: it is a universal property.

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R {truthy x1})
→ (x2 : R { truthy x2})
→ (y : vector R 1 {y == [1.0R]})

let verify x1 x2 = run model [x1; x2]

Note: it is a universal property.

Refinement type library for Neural Net Verification

1 Let Python process the data and find a suitable network

2 Export Python neural net to F* automatically:

3 Define your verification conditions:

let eps = 0.1R
let truthy x = 1.0R - eps ≤ x && x ≤ 1.0R + eps
let falsey x = 0.0R - eps ≤ x && x ≤ 0.0R + eps

val verify : (x1 : R{truthy x1}) → (x2 : R{truthy x2})
→ (y : vector R 1 {y ≡ [1.0R]})

let verify x1 x2 = run model [x1; x2]

4 Type check and relax!

Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.

Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.

Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.

Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.

Neural net robustness as refinement type

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

I Builds on the real number library in F*;

I Concise Linear Algebra module;

I Straightforward definitions of neural nets as composed
functions;

I with linear or “non-linear” activation functions

I A Python wrapper.

Neural Network Verification

Recall the 4 problems:

I Semantics of function components is opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks is difficult

Neural Network Verification

Recall the 4 problems:

I Semantics of function components is opaque

Use refinement types (for [functional] elegance),

... or SMT solvers directly.

Wen Kokke. 2020. Sapphire: a Neural Net Verification Library for Z3
in Python. https://github.com/wenkokke/sapphire

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks

https://github.com/wenkokke/sapphire

We get

Semantic Opacity

ε-ball verification
overwhelming No

of parameters

We get

Semantic Opacity ε-ball verification

overwhelming No
of parameters

We get

Semantic Opacity ε-ball verification
overwhelming No

of parameters

Neural Network Verification

Recall

I Semantics of function components is opaque

Use refinement types (for [functional] elegance)

... or SMT solvers directly.

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

The “ε-ball verification”

ε

Scale in Neural network verification

MNIST data set

2828 images of the handwritten digits “0” to “9”
784 pixels each

The smallest network

input layer of 784 weights

hidden layer of (say) 128
ReLU nodes

output layer of 10 softmax
neurons

Scale in Neural network verification

MNIST data set

2828 images of the handwritten digits “0” to “9”
784 pixels each

The smallest network

input layer of 784 weights

hidden layer of (say) 128
ReLU nodes

output layer of 10 softmax
neurons

Scale in Neural network verification

MNIST data set

2828 images of the handwritten digits “0” to “9”
784 pixels each

The smallest network

input layer of 784 weights

hidden layer of (say) 128
ReLU nodes

output layer of 10 softmax
neurons

Scale in Neural network verification

MNIST data set

2828 images of the handwritten digits “0” to “9”
784 pixels each

The smallest network

input layer of 784 weights

hidden layer of (say) 128
ReLU nodes

output layer of 10 softmax
neurons

Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample_in - x| < 0.01R)
=⇒ (|sample_out - (run network x)| < 0.1R))

Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample_in - x| < 0.01R)
=⇒ (|sample_out - (run network x)| < 0.1R))

Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample_in - x| < 0.01R)
=⇒ (|sample_out - (run network x)| < 0.1R))

Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample in - x| < 0.01R
=⇒ (|sample_out - (run network x)| < 0.1R))

Scaling Neural network verification

We want to say:

val sample_in : vector R 784
let sample_in = let v = [7.394R; −0.451R; ...; 0.199R]

val sample_out: vector R 10
let sample_out = let v = [0.998R; 0.000R; ...; 0.000R]

And prove the ε-ball property:

let _ = ∀ (x:vector R 784). (|sample_in - x| < 0.01R)
=⇒ (|sample_out - (run network x) | < 1.0R))

Scaling Neural network verification

The smallest reasonable neural network

input layer of 784 weights

hidden layer of (say) 128 ReLU nodes

output layer of 10 softmax neurons

total 784× 128 + 128 + 128× 10 + 10 = 101770 parameters

Scaling Neural network verification

The smallest reasonable neural network

input layer of 784 weights

hidden layer of (say) 128 ReLU nodes

output layer of 10 softmax neurons

total 784× 128 + 128 + 128× 10 + 10 = 101770 parameters

Neural Network Verification

Recall

I Semantics of function components is opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

Reduce the number of parameters (to scale)

either reduce network size and re-train
or reduce the network to a provably equivalent
or use over-approximation (in the style of abstract interpretation)

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

Reduce the number of parameters (to scale)

either reduce network size and re-train

W.Kokke, E.K., D.Kienitz, R.Atkey and D.Aspinall. 2020. Neural
Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

or reduce the network to a provably equivalent
or use over-approximation (in the style of abstract interpretation)

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

Reduce the number of parameters (to scale)

either reduce network size and re-train
or reduce the network to a provably equivalent

S.Gokulanathan, A.Feldsher, A.Malca, C.W. Barrett, G. Katz:
Simplifying Neural Networks Using Formal Verification. NFM 2020:
85-93

or use over-approximation (in the style of abstract interpretation)

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

Reduce the number of parameters (to scale)

either reduce network size and re-train
or reduce the network to a provably equivalent
or use over-approximation (in the style of abstract interpretation)

G.Singh, T.Gehr, M.Püschel, M.Vechev: An abstract domain for
certifying neural networks. Proc. ACM Program. Lang. 3(POPL):
41:1-41:30 (2019)

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

So far...

Semantic Opacity

ε-ball verification

can verify a
different object!

overwhelming No
of parameters

verify a smaller
network

So far...

Semantic Opacity
ε-ball verification

can verify a
different object!

overwhelming No
of parameters

verify a smaller
network

So far...

Semantic Opacity
ε-ball verification

can verify a
different object!

overwhelming No
of parameters

verify a smaller
network

So far...

Semantic Opacity
ε-ball verification

can verify a
different object!

overwhelming No
of parameters

verify a smaller
network

So far...

Semantic Opacity
ε-ball verification

can verify a
different object!

overwhelming No
of parameters

verify a smaller
network

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

II Number of verification parameters is huge

III Undecidable verification for non-linear functions

IV Finding verifiable neural networks may be difficult

Activation functions

On the solvers side...

The SMT solver Z3:

I uses Dual Simplex to
solve linear real
arithmetic;

I and a fragment of
non-linear real
arithmetic –
multiplications

I uses conflict
resolution procedure

I based on cylindrical
algebraic
decomposition

We need:

I exponents

I logarithms

I trigonometric
functions

Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM
Communications in Computer Algebra 46(3/4), 104 (Jan 2013).

On the solvers side...

The SMT solver Z3:

I uses Dual Simplex to
solve linear real
arithmetic;

I and a fragment of
non-linear real
arithmetic –
multiplications

I uses conflict
resolution procedure

I based on cylindrical
algebraic
decomposition

We need:

I exponents

I logarithms

I trigonometric
functions

Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM
Communications in Computer Algebra 46(3/4), 104 (Jan 2013).

On the solvers side...

The SMT solver Z3:

I uses Dual Simplex to
solve linear real
arithmetic;

I and a fragment of
non-linear real
arithmetic –
multiplications

I uses conflict
resolution procedure

I based on cylindrical
algebraic
decomposition

We need:

I exponents

I logarithms

I trigonometric
functions

Jovanović, D., de Moura, L.: Solving non-linear arithmetic. ACM
Communications in Computer Algebra 46(3/4), 104 (Jan 2013).

On the solvers side...

The solver MetiTarski:

Supports:

I exponents

I logarithms

I trigonometric
functions

for 4-5 variables

We need:

hundreds of variables

Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for
real- valued special functions. Journal of Automated Reasoning 44(3),
175–205 (Aug 2009).

On the solvers side...

The solver MetiTarski:

Supports:

I exponents

I logarithms

I trigonometric
functions

for 4-5 variables

We need:

hundreds of variables

Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for
real- valued special functions. Journal of Automated Reasoning 44(3),
175–205 (Aug 2009).

Solutions?!

Linearise effectively!

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. Neural
Networks, Secure by Construction: An Exploration of Refinement Types.
APLAS’20.

Solutions?!

Linearise effectively!

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. Neural
Networks, Secure by Construction: An Exploration of Refinement Types.
APLAS’20.

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

“Opaque Verification”

overwhelming No
of parameters

Non-linearity

can verify a
different object!

verify a smaller
network

verify a linearised
network

“Opaque Verification”

overwhelming No
of parameters

Non-linearity
can verify a

different object!

verify a smaller
network

verify a linearised
network

“Opaque Verification”

overwhelming No
of parameters

Non-linearity
can verify a

different object!

verify a smaller
network

verify a linearised
network

“Opaque Verification”

overwhelming No
of parameters

Non-linearity
can verify a

different object!

verify a smaller
network

verify a linearised
network

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

(Re-)Train your network correct

Neural Network Verification

Recall

I Semantics of function components is mostly opaque

Use refinement types for functional elegance

II Number of verification parameters is huge

Reduce the number of parameters for scale

III Undecidable verification for non-linear functions

Linearise effectively for automation

IV Finding verifiable neural networks may be difficult

(Re-)Train your network correct

Constraint-driven training

Train your network correct!

I augment loss functions with logical constraints

M.Fischer, M.Balunovic, D.Drachsler-Cohen, T.Gehr, C.Zhang, and
M.Vechev. 2019. DL2: Training and Querying Neural Networks with
Logic. ICML 2019, Vol. 97. PMLR, 1931–1941.

I augment loss functions with abstract interpretation
constraints

E.Ayers, F.Eiras, M.Hawasly, I.Whiteside: PaRoT: A Practical
Framework for Robust Deep Neural Network Training. NFM 2020:
63-84

M.Balunovic and M.Vechev. 2020. Adversarial Training and Provable
Defenses: Bridging the Gap. ICLR 2020.

A word of caution

Marco Casadio. Generative versus logical training against adversarial
attacks. MSc Thesis at HWU. 2020.

Constraint-driven training

Train your network correct!

I augment loss functions with logical constraints

M.Fischer, M.Balunovic, D.Drachsler-Cohen, T.Gehr, C.Zhang, and
M.Vechev. 2019. DL2: Training and Querying Neural Networks with
Logic. ICML 2019, Vol. 97. PMLR, 1931–1941.

I augment loss functions with abstract interpretation
constraints

E.Ayers, F.Eiras, M.Hawasly, I.Whiteside: PaRoT: A Practical
Framework for Robust Deep Neural Network Training. NFM 2020:
63-84

M.Balunovic and M.Vechev. 2020. Adversarial Training and Provable
Defenses: Bridging the Gap. ICLR 2020.

A word of caution

Marco Casadio. Generative versus logical training against adversarial
attacks. MSc Thesis at HWU. 2020.

Constraint-driven training

Train your network correct!

I augment loss functions with logical constraints

M.Fischer, M.Balunovic, D.Drachsler-Cohen, T.Gehr, C.Zhang, and
M.Vechev. 2019. DL2: Training and Querying Neural Networks with
Logic. ICML 2019, Vol. 97. PMLR, 1931–1941.

I augment loss functions with abstract interpretation
constraints

E.Ayers, F.Eiras, M.Hawasly, I.Whiteside: PaRoT: A Practical
Framework for Robust Deep Neural Network Training. NFM 2020:
63-84

M.Balunovic and M.Vechev. 2020. Adversarial Training and Provable
Defenses: Bridging the Gap. ICLR 2020.

A word of caution

Marco Casadio. Generative versus logical training against adversarial
attacks. MSc Thesis at HWU. 2020.

“Opaque Verification”

overwhelming No
of parameters

Non-linearity

Non-verifiable
network

can verify a
different object!

verify a smaller
network

verify a linearised
network

re-train your
network correct

“Opaque Verification”

overwhelming No
of parameters

Non-linearity

Non-verifiable
network

can verify a
different object!

verify a smaller
network

verify a linearised
network

re-train your
network correct

“Opaque Verification”

overwhelming No
of parameters

Non-linearity

Non-verifiable
network

can verify a
different object!

verify a smaller
network

verify a linearised
network

re-train your
network correct

“Opaque Verification”

overwhelming No
of parameters

Non-linearity

Non-verifiable
network

can verify a
different object!

verify a smaller
network

verify a linearised
network

re-train your
network correct

Table of Contents

Verification of AI: Overview and Motivation

Why Verifying Neural Networks?

Challenges of Neural Network Verification

Continuous Verification

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

We have seen “continuous verification”

as a trend that arises everywhere in neural network verification

for a variety of different reasons!

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

We have seen “continuous verification”

as a trend that arises everywhere in neural network verification

for a variety of different reasons!

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming:

ε-ball verification is an instance of refinement type checking

verify x : x : Rn{|sample in− x| < ε} =⇒ y : Rm{|sample out− y| < ε′}
verify x = run network x

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming:

ε-ball verification is an instance of refinement type checking

verify x : x : Rn{|sample in− x| < ε} =⇒ y : Rm{|sample out− y| < ε′}
verify x = run network x

Wen Kokke, E.K., Daniel Kienitz, Robert Atkey and David Aspinall. 2020.
Neural Networks, Secure by Construction: An Exploration of Refinement
Types. APLAS’20.

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming:

Solvers are increasingly important for automation

Rise of domain-specific solvers for neural networks:

Katz, G., et al.: The Marabou framework for verification and analysis of
deep neural networks. In: CAV 2019, Part I. LNCS, vol. 11561, pp. 443–452.
Springer (2019)

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming:

Solvers are increasingly important for automation

Rise of domain-specific solvers for neural networks:

Katz, G., et al.: The Marabou framework for verification and analysis of
deep neural networks. In: CAV 2019, Part I. LNCS, vol. 11561, pp. 443–452.
Springer (2019)

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I provide a sound and elegant PL infrastructure

I that bootstraps solvers and machine learning algorithms

I to ensure transparency, modularity,

I invariant and safety checks

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I provide a sound and elegant PL infrastructure

I that bootstraps solvers and machine learning algorithms

I to ensure transparency, modularity,

I invariant and safety checks

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I provide a sound and elegant PL infrastructure

I that bootstraps solvers and machine learning algorithms

I to ensure transparency, modularity,

I invariant and safety checks

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I provide a sound and elegant PL infrastructure

I that bootstraps solvers and machine learning algorithms

I to ensure transparency, modularity,

I invariant and safety checks

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I Verification as refinement type checking

I Training as program synthesis

verify x : x : Rn{|sample in− x| < ε} =⇒ y : Rm{|sample out− y| < ε′}
verify x = run network x

?NETWORK? x

Continuous Verification

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

verify or modify constraints

reduce, reshape, re-train

Role of declarative programming in continuous verification?

I Verification as refinement type checking

I Training as program synthesis

verify x : x : Rn{|sample in− x| < ε} =⇒ y : Rm{|sample out− y| < ε′}
verify x = run

network x

?NETWORK? x

.

.

Thanks for your attention!

Open PhD position at LAIV

on verification of recurrent neural networks

.

.

Thanks for your attention!

Open PhD position at LAIV

on verification of recurrent neural networks

	Verification of AI: Overview and Motivation
	Why Verifying Neural Networks?
	Challenges of Neural Network Verification
	Continuous Verification

