
Symbolic Computation in Maude: Some Tapas

José Meseguer

University of Illinois at Urbana-Champaign

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:

(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.

R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.

Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude?

Q: What is Maude?

A: A high-performance declarative language whose modules
are theories in rewriting logic.

Q: What is rewriting logic?

A: A simple, yet expressive, computational logic to specify and
program concurrent systems as rewrite theories.

Q: What is a rewrite theory?

A: A triple R = (Σ,EUB,R) where:
(Σ,EUB) is an equational theory specifying the concurrent
system’s states as an algebraic data type.
R are rewrite rules specifying the system’s atomic
transitions.
Concurrent Computation = Deduction in R

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory,

Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:

B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.

The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:

The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.

The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

What is Maude? (II)

Since when R = ∅, R = (Σ,EUB,R) becomes an equational
theory, Maude has a functional sublanguage whose modules:

fmod (Σ,EUB) endfm

called functional modules are such that:
B ⊆ {A,C,U} is any combination of associativity (A)
and/or commutativity (C) and/or identity (U) axioms.
The equations E are convergent modulo the axioms B.

When R 6= ∅ we have general system modules of the form:

mod (Σ,EUB,R) endm

specifying concurrent systems, where:
The equations E are convergent modulo the axioms B.
The rules R are coherent with E modulo B.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But

Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables,

including:
1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})

2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization

3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which
is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)

4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is
finitary iff (Σ,E ∪ B) is FVP

5 Domain-Specific SMT-Solving, thanks to CVC4 and
Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B),

which
is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)

4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is
finitary iff (Σ,E ∪ B) is FVP

5 Domain-Specific SMT-Solving, thanks to CVC4 and
Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)

4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is
finitary iff (Σ,E ∪ B) is FVP

5 Domain-Specific SMT-Solving, thanks to CVC4 and
Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B),

which is
finitary iff (Σ,E ∪ B) is FVP

5 Domain-Specific SMT-Solving, thanks to CVC4 and
Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP

5 Domain-Specific SMT-Solving, thanks to CVC4 and
Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces

6 Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)

7 Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude

Standard computation is performed by rewriting with equations
E and rules R modulo B.

But Maude also supports a variety of symbolic reasoning taks
with terms and formulas involving logical variables, including:

1 B-Unification (for any B ⊆ {A,C,U})
2 B-Generalization
3 E ,B-Variants of a term t in a convergent (Σ,E ∪ B), which

is finitary iff (Σ,E ∪ B) has the finite variant property (FVP)
4 E ∪ B-Unification for any convergent (Σ,E ∪ B), which is

finitary iff (Σ,E ∪ B) is FVP
5 Domain-Specific SMT-Solving, thanks to CVC4 and

Yices interfaces
6 Theory-Generic SMT-Solving for any OS-compact FVP

theory (Σ,E ∪ B)
7 Symbolic Reachabilty Analysis of any system module

mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).

Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus?

Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and

user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods

such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite,

I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples:

some tapas.

Meseguer Symbolic Computation in Maude

Symbolic Computation in Maude (II)

In this talk I will focus on four Maude-supported methods:

E ,B-Variants of a term t in a convergent (Σ,E ∪ B)

E ∪ B-Unification for any convergent (Σ,E ∪ B)

Theory-Generic SMT-Solving for any OS-compact FVP
theory (Σ,E ∪ B).
Symbolic Reachabilty Analysis of any system module
mod (Σ,EUB,R) endm with (Σ,E ∪ B) FVP.

Why this focus? Because these methods are both
theory-generic (apply to an infinite class of theories), and
user-definable.

These methods make symbolic reasoning user-extensible way
beyond the fixed bag of tricks of domain-specific methods such
as B-unification or domain-specific SMT solving.

To wet you appetite, I will illustrate these methods with
examples: some tapas.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B),

with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression

to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t

describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by

narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E

modulo axioms B.

Meseguer Symbolic Computation in Maude

Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with E convergent
applied modulo B.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different normalized symbolic results to which t can be
symbolically evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′

is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);

a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and

a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ

such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t

can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing

is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP)

iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants.

FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t σ
;E ,B t ′ is

defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r]p).

A complete set of variants of t can be computed as those t ′

such that t
θ

;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants using variant subsumption.

(Σ,E ∪ B) has the finite variant property (FVP) iff folding variant
narrowing terminates for any term t with a finite set of most
general variants. FVP is semi-decidable and easily checkable
in Maude when it holds.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP.

For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y ,

but
it never terminates.

Meseguer Symbolic Computation in Maude

A non-FVP Example: Peano Naturals

Consider the problem of narrowing (i.e., symbolically executing)
the term x + y with the equations E defining addition of
naturals in Peano notation (and no axioms: B = ∅)

0 + y = y
s(x) + y = s(x + y)

This example is not FVP. For example, the term x + y has an
infinite set of incomparable variants, including:

y , s(x ′ + y), s(y), s(s(x ′′ + y)), s(s(y), . . .

Maude can incrementally compute all the variants of x + y , but
it never terminates.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},

E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and

ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution

>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},

⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

An FVP Example: Presburger Arithmetic

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification (Nat and Bool) with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and

the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,>

are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v ,

computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,

i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

In general, the E ∪ B-variant unifiers of two terms u, v modulo
N+,> are precisely the substitutions θ associated to the variants
of the form > of the term u ≡ v , computed by folding variant

narrowing sequences u ≡ v
θ

;∗E ,B >.

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥.

Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant

is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term.

For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y ,

but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v

has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that is a constructor term. For
example, > and ⊥ are constructor variants of x > y , but x > y
is not.

A constructor E ∪ B-unifier of u ≡ v has the form γβ where
(u′ ≡ v ′, γ) is a variant of u ≡ v with u′, v ′ constructor terms
and β is a B-unifier of u′ ≡ v ′.

For example, {x 7→ y} is not a constructor unifier of
x > z ≡ y > z.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

OS-Compact Theories

An equational order-sorted theory (Ω,EΩ) is OS-compact iff:

1 EΩ-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/EΩ

iff
ui 6=EΩ

vi , 1 ≤ i ≤ n.

Theorem. If (Ω,EΩ) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/EΩ

is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm,

and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B

(i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

)

and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D,

with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of constructors of TΣ/E∪B (i.e.,
TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor variant E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of:

(i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii)

the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and

and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y].

These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability.

To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X], and and (iii) the
parameterized theory of hereditarily finite sets H[Y]. These
three theories and their composition are FVP and have
decidable satisfiability. To decide satisfiability we:

1 first solve the sytem of equations
head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page,

yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed;

here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories:

no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:

(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact;

(ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types;

(iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and

(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; and
(iv) various numeric functions on the naturals and integers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system

specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by:

(i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and

(ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B,

where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′

is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and

a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ

such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff

t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Symbolic Reachability Analysis in a Nutshell

We can symbolically analyze the reachability properties of a
concurrent system specified by a topmost rewrite theory
R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i) representing sets of
states as terms with variables, and (ii) performing narrowing
with rules R modulo E ∪ B, where the narrowing relation
t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with E modulo B to compute E ∪ B-unifiers.

Meseguer Symbolic Computation in Maude

Maude and the Maude-NPA Crypto Protocol Analyzer

Maude can performs symbolic reachability analysis as just
described.

The Maude-NPA tool of Escobar, Meadows and
Meseguer, analyzes crypto protocols modeled as rewrite
theories P = (Σ,E ∪ B,R) by narrowing with rules R modulo
FVP equations E ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Both tool are available at http://maude.cs.illinois.edu

Meseguer Symbolic Computation in Maude

http://maude.cs.illinois.edu

Maude and the Maude-NPA Crypto Protocol Analyzer

Maude can performs symbolic reachability analysis as just
described. The Maude-NPA tool of Escobar, Meadows and
Meseguer, analyzes crypto protocols modeled as rewrite
theories P = (Σ,E ∪ B,R) by narrowing with rules R modulo
FVP equations E ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Both tool are available at http://maude.cs.illinois.edu

Meseguer Symbolic Computation in Maude

http://maude.cs.illinois.edu

Maude and the Maude-NPA Crypto Protocol Analyzer

Maude can performs symbolic reachability analysis as just
described. The Maude-NPA tool of Escobar, Meadows and
Meseguer, analyzes crypto protocols modeled as rewrite
theories P = (Σ,E ∪ B,R) by narrowing with rules R modulo
FVP equations E ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Both tool are available at http://maude.cs.illinois.edu

Meseguer Symbolic Computation in Maude

http://maude.cs.illinois.edu

Maude and the Maude-NPA Crypto Protocol Analyzer

Maude can performs symbolic reachability analysis as just
described. The Maude-NPA tool of Escobar, Meadows and
Meseguer, analyzes crypto protocols modeled as rewrite
theories P = (Σ,E ∪ B,R) by narrowing with rules R modulo
FVP equations E ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Both tool are available at http://maude.cs.illinois.edu

Meseguer Symbolic Computation in Maude

http://maude.cs.illinois.edu

Maude and the Maude-NPA Crypto Protocol Analyzer

Maude can performs symbolic reachability analysis as just
described. The Maude-NPA tool of Escobar, Meadows and
Meseguer, analyzes crypto protocols modeled as rewrite
theories P = (Σ,E ∪ B,R) by narrowing with rules R modulo
FVP equations E ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Both tool are available at http://maude.cs.illinois.edu

Meseguer Symbolic Computation in Maude

http://maude.cs.illinois.edu

The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X)s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Symbolic Computation in Maude

The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X)s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Symbolic Computation in Maude

The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X)s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants,

Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,

Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and

Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.

Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible.

For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.

2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH

3 The Reachability Logic Theorem Prover of S. Skeirik, A.
Stefanescu, and J. Meseguer, and

4 The Partial Evaluation Framework for Maude functional
modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and

4 The Partial Evaluation Framework for Maude functional
modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude.

In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language,

but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as: Variants, Variant Unification,
Variant-Based Satisfiability, and Narrowing-based Symbolic
Reachability Analysis.Theory-generic methods can make
formal methods much more extensible. For example, other
formal tools like:

1 Maude’s Symbolic LTL Model Checker of Bae et al.
2 The Tamarin security prover at ETH
3 The Reachability Logic Theorem Prover of S. Skeirik, A.

Stefanescu, and J. Meseguer, and
4 The Partial Evaluation Framework for Maude functional

modules of Alpuente et al. at TU of Valencia.

All these tools use the above-mentioned theory-generic
symbolic methods provided by Maude. In these and other
ways, Maude becomes not just a declarative language, but a
formal framework for programming and verification.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Acknowledgements

The work on:

1 Symbolic Methods in Maude is joint work of the Maude
Team, and owes much to Steven Eker’s high-performance
implementations.

2 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

3 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

4 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Illinois, Valencia, and Oslo;

5 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

6 Maude’s Partial Evaluation Framework is joint with M.
Alpuente, A. Cuenca-Ortega, and S. Escobar at TU
Valencia.

Meseguer Symbolic Computation in Maude

Thank you!

Meseguer Symbolic Computation in Maude

