
Continuous Verification of Machine Learning:
a Declarative Programming Approach

Ekaterina Komendantskaya
Heriot-Watt University
Edinburgh, Scotland
ek19@hw.ac.uk

Wen Kokke
Heriot-Watt University
Edinburgh, Scotland
wen.kokke@ed.ac.uk

Daniel Kienitz
Heriot-Watt University
Edinburgh, Scotland
dk50@hw.ac.uk

Abstract
In this invited talk, we discuss state of the art in neural network
verification. We propose the term continuous verification to char-
acterise the family of methods that explore continuous nature of
machine learning algorithms. We argue that methods of continuous
verification must rely on robust programming language infrastruc-
ture (refinement types, automated proving, type-driven program
synthesis), which provides a major opportunity for the declarative
programming language community.
Keywords: Neural Networks, Verification, AI.

CCS Concepts
• Software and its engineering → Software reliability; Soft-
ware safety; Functional languages; Constraint and logic lan-
guages;Data types and structures;Constraints; •Computing
methodologies → Artificial intelligence; Neural networks.

ACM Reference Format:
Ekaterina Komendantskaya, Wen Kokke, and Daniel Kienitz. 2020. Continu-
ous Verification of Machine Learning: a Declarative Programming Approach.
In 22nd International Symposium on Principles and Practice of Declarative
Programming (PPDP ’20), September 8–10, 2020, Bologna, Italy. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3414080.3414094

1 Motivation: Verification for AI
Programmers make, on average, 15–50 errors per 1,000 lines of
code [19]. Yet, the quality of software we use determines reliability,
safety and security of computer systems and applications we rely
on. This, or smilar, observations have been driving verification
research for the past two decades, ultimately leading to a range
of lightweight verification solutions [8], proposed by Industry and
Academia [4, 12].

Recent success and wide deployment of AI-driven applications
have brought a novel challenge for verification communities. Ma-
chine learning algorithms have always been valued for their ability
to generate classifiers (or functions) that recognise patterns in noisy
or incomplete data. Neural networks is an umbrella term for a range
of such classifiers. Yet only recently [22], it was discovered that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’20, September 8–10, 2020, Bologna, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8821-4/20/09. . . $15.00
https://doi.org/10.1145/3414080.3414094

neural networks are prone to adversarial attacks—specially crafted
inputs that lead to undesired outputs.

It is very tempting to make an analogy between a buggy piece
of software and an adversarially vulnerable neural network, and
launch the old trusted verification artillery on this new enemy.
There is a mounting evidence, however, that this approach will not
work so easily. Firstly, neural networks as verification objects are
very different from the usual programmed software. The latter may
be buggy, but have some semantic meaning and composable compo-
nents, enabling us to verify some parts of the code that matter and
make them bug-free. But there is no neural network in existence
that is robust against adversarial attacks, and we cannot mean-
ingfully de-compose neural networks, in order to systematically
identify the parts that matter, as we did with conventional software
verification projects. We can try to constrain their inputs, and give
some output guarantees based on those constraints. Most existing
neural net verification approaches take this path [11, 14, 20].

For example, a usual notion of neural network robustness for
some class 𝑦 would be to define an 𝜖-ball B(𝑥) around a sample
input 𝑥 of that class: B(𝑥, 𝜖) = {𝑥 ∈ R𝑛 : | |𝑥 − 𝑥 | | ≤ 𝜖}, and then
prove that any object in B(𝑥, 𝜖) will be classified as 𝑦.

The second problem is the scale of the verification task. For
example, the famous “textbook” dataset MNIST [18] contains 28×28
images of the handwritten digits “0” to “9”. A neural network able
to classify these images will receive an input of 748 pixels, and
will have an output that gives a probability distribution over the
10 classes or simply a predicted class. This leaves us to determine
the number of hidden layers of the neural network, their sizes, and
their activation functions. For instance, we could opt for a 128-node
hidden layer using a simplest (and linear) activation function ReLU.
Let us pass this neural network as a function to an SMT solver,
and verify whether certain constraints on its input can guarantee
certain constraints on its outputs. Unfortunately, this model has
784 × 128 + 128 + 128 × 10 + 10 = 101770 constant parameters
and 784 input parameters. Worse, it has 3 fully-connected layers,
meaning that each input parameter occurs at least 128 × 10 = 1280
times in the SMT query, and constant parameters occur several
times in accordance to the layer they are in. This is a huge query
from an SMT solving perspective, and it would overwhelm any SMT
solver. However, this is not a large network from amachine learning
perspective. Autonomous cars, for example, need to process images
of much higher complexity and resolution.

Finally, there is a problem of verification with non-linear arith-
metic. Mathematically, a neural network is a non-linear function
that separates data points in an 𝑛 dimensional real space into𝑚
classes. State-of-the-art neural networks rely heavily on non-linear
activation functions, such as sigmoid, tanh, softmax, to establish

https://doi.org/10.1145/3414080.3414094
https://doi.org/10.1145/3414080.3414094

PPDP ’20, September 8–10, 2020, Bologna, Italy Ekaterina Komendantskaya, Wen Kokke, and Daniel Kienitz

more sophisticated and more precise decision boundaries between
classes. Unfortunately, SMT solvers do not generally support non-
linear arithmetic, and where they do, the solvers are slower and
less reliable. For example, the Z3 solver [5] uses Dual Simplex [6]
to solve linear real arithmetic. It also supports a fragment of non-
linear real arithmetic—specifically, multiplications—and solves this
using a conflict resolution procedure based on cylindrical algebraic
decomposition [13]. However, the addition of multiplication is not
enough to cover the non-linear activation functions used in deep
learning, which often use exponents, logarithms, and trigonometric
functions. The only solver we are aware of that supports these
functions out of the box is MetiTarski [1]. However, the MetiTarski
documentation reads “Beyond 4 or 5 continuous variables, there is
very little hope for MetiTarski in finding a proof.”

In short, neural networks will not yeild the good trusted verifi-
cation artillery. What are the options?

2 Continuous Verification
Most of the challenges we encounter in neural network verification
are due to the conflict between continuous methods (that enable
data classification in multi-dimensional real space) and the discrete
methods (used by solvers and provers). But perhaps disadvantages
can be turned into capabilities. Conventionally, we assume that
the object we verify is uniquely defined, often hand-written, and
therefore needs to be verified as-is. Neural networks are different—
often there is a continuum of models that can serve as suitable
classifiers, and we usually do not have much preference for any of
them, as long as they give reasonable prediction accuracy. Given
the task of verifying a neural network, we are no longer required
to think of the object as immutable, i.e. we are allowed to verify
and deploy a different neural network instead.

This opens up new possibilities for verification and justifies
several methods of neural network transformation, e.g.:

• neural network size reduction (e.g. by pruning or weight
quantisation), as already explored in [9];

• piece-wise linearisation of activation functions either during
or after training, see [17];

• use of constraint-aware loss functions during training [2,
7], or interleave verification with adversarial training [3],
which improves safety of neural networks, and hence ease
verification tasks.

Thus verification becomes part of the object construction. More-
over, we assume that the training-verification cycle may repeat
potentially indefinitely, especially if neural networks are retrained
using new data:

Verifier Neural NetworkContinuous Verification:
the training-verification cycle

constraints on training

verification-driven mutation

We call such approach to verification continuous verification.
However, to be truly successful, this methodology needs proper
programming language support. Ideally, the programmer should

only need to specify basic neural network parameters and the de-
sired verification constraints, leaving the work of fine-tuning of
the training-verification cycle to the integrated tools.

3 Types
It may be fruitful to cast a type-theoretic view on these problems. A
conventional verification project aims to establish a proof Γ ⊢ 𝑓 : 𝐴,
where 𝑓 is a function or code we verify, 𝐴 is a verification property,
and Γ is the given theory. In [17] we show that the existing neural
network verification projects in fact amount to working with a
special sort of types, that are refined with SMT-constraints. Simplest
examples of refinement types are positive reals (𝑥 : R{𝑥 > 0}),
or booleans which are true (𝑏 : Bool{𝑏 = 𝑡𝑟𝑢𝑒}). It is easy to see
that the idea of verifying neural networks for all objects “within
the 𝜖-ball”, fits exactly with the syntax of refinement types! I.e.,
we verify a neural network 𝑓𝑁 : R𝑛 → R, by imposing a type
𝑓𝑁 : (𝑥 : R𝑛{| |𝑥 − 𝑥 | |2 ≤ 𝜖}) → (𝑦 : R{𝑦 = 𝑦}).

F* [21] and Liquid Haskell [23] are functional languages with re-
finement types. Unlike, e.g. Python, they are referentially transpar-
ent, whichmeans the semantics of pure programs in these languages
can be directly encoded in the SMT logic. This tight integration
allows us to specify neural network models and their properties in
the same language [16], while leveraging the powerful automated
verification offered by SMT solvers!

But there is more to it. Assuming that continuous verification
is a solution to the problems that have been haunting the neu-
ral network verification, what is the place of types in this pic-
ture? Let us assume once again that we are interested in proving
𝑓𝑁 : (𝑥 : R𝑛{| |𝑥 − 𝑥 | |2 ≤ 𝜖}) → (𝑦 : R{𝑦 = 𝑦}), except for, the
automated proof (i.e. type checking) is out of reach. Instead we are
allowed to generate another function, 𝑓 ′

𝑁
of this type, and prove

it correct. This kind of problem is well-known in the declarative
programming community under the name of type-driven program
synthesis. Just recently, we have seen successes of type-driven syn-
thesis for refinement types [10, 15]. From the point of view of neural
network verification, the missing part is to enrich the existing type-
ful languages with program synthesis algorithms that resemble the
training-verification cycle depicted in Section 2.

Our early experiments [17] show that types give an easy and
intuitive language to specify sets of admissible or desired neural net-
works, while keeping the training, size reduction, and linearisation
completely flexible and modular. In fact, all machine learning tasks
can be fully delegated to an external language, suchas Python [16].

However, a lot more could and should be done in order to estab-
lish proper declarative programming methodology for continuous
verification of neural networks.

4 Acknowledgements
We acknowledge support of the UK Nationaly Cyber Security Cen-
ter grant SecCon-NN: Neural Networks with Security Contracts -
towards lightweight, modular security for neural networks and the
UK Research Institute in Verified Trustworthy Software Systems
(VETSS)-funded research project CONVENER: Continuous Verifica-
tion of Neural Networks.

Continuous Verification of Machine Learning:
a Declarative Programming Approach PPDP ’20, September 8–10, 2020, Bologna, Italy

References
[1] Behzad Akbarpour and Lawrence Charles Paulson. 2009. MetiTarski: An Auto-

matic Theorem Prover for Real-Valued Special Functions. Journal of Automated
Reasoning 44, 3 (Aug. 2009), 175–205. https://doi.org/10.1007/s10817-009-9149-2

[2] Edward Ayers, Francisco Eiras, Majd Hawasly, and Iain Whiteside. 2020. PaRoT:
A Practical Framework for Robust Deep Neural Network Training. In NASA
Formal Methods. http://arxiv.org/abs/2001.02152

[3] Mislav Balunovic and Martin T. Vechev. 2020. Adversarial Training and Provable
Defenses: Bridging the Gap. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[4] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification, In
NASA Formal Methods.

[5] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS’08 (LNCS), Vol. 4963. 337–340.

[6] Bruno Dutertre and Leonardo de Moura. 2006. A Fast Linear-Arithmetic Solver
for DPLL(T). In Computer Aided Verification. Springer Berlin Heidelberg, 81–94.
https://doi.org/10.1007/11817963_11

[7] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang,
and Martin T. Vechev. 2019. DL2: Training and Querying Neural Networks with
Logic. In Proc. of the 36th Int. Conf. Machine Learning, ICML 2019, Vol. 97. PMLR,
1931–1941.

[8] Kathleen Fisher, John Launchbury, and Raymond Richards. 2017. Using Formal
Methods to Eliminate Exploitable Bugs. Phil. Trans. R. Soc. (2017).

[9] Ben Goldberger, Guy Katz, Yossi Adi, and Joseph Keshet. 2020. Minimal Modifica-
tions of Deep Neural Networks using Verification. In LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Ali-
cante, Spain, May 22-27, 2020 (EPiC Series in Computing), Elvira Albert and Laura
Kovács (Eds.), Vol. 73. EasyChair, 260–278.

[10] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala,
and Nadia Polikarpova. 2020. Program synthesis by type-guided abstraction
refinement. Proc. ACM Program. Lang. 4, POPL (2020), 12:1–12:28.

[11] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety
Verification of Deep Neural Networks. In CAV 2017, Vol. LNCS 10426. Springer,
3–29. https://doi.org/10.1007/978-3-319-63387-9

[12] Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg, and Dimitrios
Vytiniotis. 2016. A Reflection on Types — A List of Successes That Can Change
the World. (2016).

[13] Dejan Jovanović and Leonardo de Moura. 2013. Solving non-linear arithmetic.
ACM Communications in Computer Algebra 46, 3/4 (Jan. 2013), 104. https://doi.
org/10.1145/2429135.2429155

[14] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljic, David L.
Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou Framework
for Verification and Analysis of Deep Neural Networks. In CAV 2019, Part I (LNCS),
Vol. 11561. Springer, 443–452.

[15] Tristan Knoth, Di Wang, Adam Reynolds, Jan Hoffmann, and Nadia Polikarpova.
2020. Liquid resource types. Proc. ACM Program. Lang. 4, ICFP (2020), 106:1–
106:29.

[16] Wen Kokke, Ekaterina Komendantskaya, and Daniel Kienitz. 2020. StarChild,
a library for leveraging the refinement types and SMT solving of F* to verify
properties of neural networks. https://github.com/wenkokke/starchild

[17] Wen Kokke, Ekaterina Komendantskaya, Daniel Kienitz, Robert Atkey, , and
David Aspinall. 2020. Neural Networks, Secure by Construction: An Exploration
of Refinement Types. Draft.

[18] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[19] Steve McConnell. 2015. Code Complete. A Practical Handbook of Software Con-
struction, Second Edition.

[20] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.
An abstract domain for certifying neural networks. PACMPL 3, POPL (2019),
41:1–41:30. https://doi.org/10.1145/3290354

[21] Nikhil Swamy, Markulf Kohlweiss, Jean-Karim Zinzindohoue, Santiago Zanella-
Béguelin, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, and Pierre-Yves
Strub. 2016. Dependent types and multi-monadic effects in F*. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL 2016. ACM Press. https://doi.org/10.1145/2837614.2837655

[22] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2014). https://arxiv.org/abs/1312.6199

[23] Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph.D. Dissertation.
University of California, San Diego, USA.

https://doi.org/10.1007/s10817-009-9149-2
http://arxiv.org/abs/2001.02152
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-319-63387-9
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.1145/2429135.2429155
https://github.com/wenkokke/starchild
https://doi.org/10.1145/3290354
https://doi.org/10.1145/2837614.2837655
https://arxiv.org/abs/1312.6199

	Abstract
	1 Motivation: Verification for AI
	2 Continuous Verification
	3 Types
	4 Acknowledgements
	References

