Abstract for Iwasawa 2015 Poster Session

Yannick Van Huele (University of Washington, Adviser: Ralph Greenberg)

Semisimplicity of Classical Iwasawa Modules

Let p be an odd prime and K a number field. Let K_{∞}/K be a \mathbb{Z}_p -extension of K, let $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ and let $\Lambda = \mathbb{Z}_p[[\Gamma]]$. Finally, let L_{∞} denote the pro-pHilbert class field of K_{∞} and $X = \operatorname{Gal}(L_{\infty}/K_{\infty})$, which was shown by Iwasawa to be a finitely generated torsion Λ -module.

Given a finitely generated torsion Λ -module Y, one can show that the submodule Y^{Γ} is pseudo-isomorphic to the quotient Y_{Γ} . Furthermore, there is an obvious Λ -module homomorphism $Y^{\Gamma} \to Y_{\Gamma}$, namely the composition of the inclusion $\iota: Y^{\Gamma} \to Y$ with the projection $\pi: Y \to Y_{\Gamma}$. However, for an arbitrary Y, this composition need not be a pseudo-isomorphism.

We say that a torsion Λ -module Y is T-semisimple if the map $\pi \circ \iota : Y^{\Gamma} \to Y_{\Gamma}$ is a pseudo-isomorphism and we say that a \mathbb{Z}_p -extension K_{∞}/K is T-semisimple if the associated Λ -module $X = \operatorname{Gal}(L_{\infty}/K_{\infty})$ is T-semisimple.

In [2], Greenberg proved that if K/\mathbb{Q} is abelian and K_{∞}/K is the cyclotomic \mathbb{Z}_p -extension, then K_{∞} is *T*-semisimple. In [1], Carroll and Kisilevsky extended Greenberg's result to show that certain other \mathbb{Z}_p -extensions of an abelian number field which are Galois over \mathbb{Q} are *T*-semisimple. However, Kisilevsky and Jaulent independently showed that a \mathbb{Z}_p -extension K_{∞} of an abelian number field *K* need not be *T*-semisimple, even if K_{∞}/\mathbb{Q} is Galois (in [4] and [3], respectively).

I will review these results and show how Greenberg's result can be used to prove that T-semisimplicity is in some sense a generic condition when K/\mathbb{Q} is abelian. More precisely, suppose that K/\mathbb{Q} is a complex abelian extension. Let \tilde{K}_{∞} denote the compositum of all \mathbb{Z}_p -extensions of K and $\tilde{\Gamma} = \operatorname{Gal}(\tilde{K}_{\infty}/K)$. From Leopoldt's conjecture, we know that $\tilde{\Gamma} \simeq \mathbb{Z}_p^{[K:\mathbb{Q}]/2+1}$ and $\tilde{\Gamma}^+ \simeq \mathbb{Z}_p$. Let us call a \mathbb{Z}_p -extension K_{∞}/K anti-cyclotomic if complex conjugation (in $\operatorname{Gal}(K/\mathbb{Q})$) acts on $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ nontrivially (i.e., if $K_{\infty} \subseteq \tilde{K}_{\infty}^{\tilde{\Gamma}^+}$). By studying decomposition subgroups, I will show that T-semisimplicity for the cyclotomic \mathbb{Z}_p -extension of K implies that every other \mathbb{Z}_p extension of K in which all primes above p ramify and which is not anti-cyclotomic is also T-semisimple.

References

- [1] J. Carroll and H. Kisilevsky. On the Iwasawa invariants of certain \mathbb{Z}_{p} -extensions. *Compositio Mathematica*, 49(2):217–229, 1983.
- [2] Ralph Greenberg. On a certain l-adic representation. Inventiones mathematicae, 21(1-2):117-124, 1973.
- [3] Jean-François Jaulent. Sur la théorie des genres dans les tours métabéliennes. Seminaire de Théorie des Nombres de Bordeaux, 11:1–18, 1981-1982.
- [4] H. Kisilevsky. Some non-semi-simple Iwasawa modules. Compositio Mathematica, 49(3):399–404, 1983.