[LLF logo]

[intro and news]
[people]
[visitors]
[seminars]
[related links]

Agi Kurucz

The decision problem of modal product logics with a diagonal, and faulty counter machines

Joint work with Christopher Hampson and Stanislav Kikot.

In the propositional modal (and algebraic) treatment of two-variable first-order logic equality is modelled by a `diagonal' constant, interpreted in square products of universal frames as the identity (also known as the `diagonal') relation. Here we study the decision problem of products of two arbitrary modal logics equipped with such a diagonal. As the presence or absence of equality in two-variable first-order logic does not influence the complexity of its satisfiability problem, one might expect that adding a diagonal to product logics in general is similarly harmless. We show that this is far from being the case, and there can be quite a big jump in complexity, even from decidable to the highly undecidable. Our undecidable logics can also be viewed as new fragments of first-order logic where adding equality changes a decidable fragment to undecidable.

We prove our results by a novel application of counter machine problems. While our formalism apparently cannot force reliable counter machine computations directly, the presence of a unique diagonal in the models makes it possible to encode both lossy and insertion-error computations, for the same sequence of instructions. We show that, given such a pair of faulty computations, it is then possible to reconstruct a reliable run from them.