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Consider a molecule consisting of N parts. We are interested in the calculation of its binding (formation) energy:
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(1)

where the upper index (superscript) by the energy symbol corresponds to the basis set, while the lower one (subscript) to the
system: j means the part j in the geometry of the whole molecule, j0 - the same in the geometry at infinity (the relaxed isolated
fragment). The superscript ∞ means that the complete basis set is to be used in order to compare these energies and calculate
the binding energy.

This is in theory. In practice, we do not have luxury of using complete basis sets, no do we have identical basis sets in
calculating different parts in the energy difference (1), and this is the source of a large error if the basis set is far from being
complete, which is usually the case in the local basis set calculations.

We cannot calculate the energies E
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j0

, but we can do E
(j)
j0

which are obtained using the basis set of the fragment alone:
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Here
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is what is usually calculated as the first approximation to the binding energy: take the energy of the whole system consisting of
all parts and with the combined basis set, ∪j = ∪N

j=1, subtract from it the energy of each individual system, E(j)
j0

, in its own
local basis set and fully relaxed geometry. The problem is that each of these energies is calculated using different basis and since
the latter is far from complete the energies are not very well compatible. That is why there is the 2nd term in (2):
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(3)

is the BSSE correction associated with the part j. Note that if the molecule is split into N fragments, N such corrections must
be calculated! So, the correction is the energy difference for each fragment between it being calculated in the complete and
actual bases. Since the complete basis is not accessible to us, and also the whole system also is not calculated in the complete
basis (but its basis is better than for any individual system as it combined many orbitals from all fragments), a practical way of
calcualting the correction is needed.

It is the following, it is called counterpose correction and is due to Boys and Bernardy I think. By the ’infinite’ basis set we
assume the basis set of the whole molecule. Then, let us modify ∆EBSSE

j as follows:
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The expression in the square brackets can be rewritten as
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(5)

In both round brackets we have the relaxation energies for species j between the configuration in the molecule and that at
infinity, both quantities are positive (since the geometry of j in the molecule does not correspond to the energy minimum of
an isolated fragment, j0, and hence the energy of an isolated fragment in the geometry j must be higher (less negative) than
in the geometry j0). The difference in the first bracket in (5) is calculated using the basis set of the whole molecule, while the
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second one - using the basis set of the fragment j only. However, both terms mean the same: these are relaxation energies of the
fragment j from its geometry in the molecule and when isolated. But these are calculated using different bases. Inspite of this,
differences of energies behave much better than the enegries themselves with the increase of the basis set. That is why one may
think that both relaxation energies must be very close to each other. But since in (5) these are subtracted from each other, the
result can approximately be thought to be zero. Therefore, the term in the square brackets in Eq. (4) can be neglected and thus

∆EBSSE
j ≃ E

(j)
j − E

(all)
j (6)

This is the final result. Note that the correction is positive as an increase of the basis set should reduce the energy (make it
more negative).

Thus, in order to calculate the BSSE correction to the binding energy of a molecule consisting of N fragments, one has to
use Eq. (2):

∆E = ∆E0 +
∑
j

∆EBSSE
j

where

∆E0 = E
(all)
all −

N∑
j=1

E
(j)
j0

is the uncorrected binding energy and ∆EBSSE
j is the correcetion for the fragment j that is given by Eq. (6). Altogether, for

each fragment, 3 energies need to be calculated: E(j)
j , E(all)

j and E
(j)
j0

; also, one need to have the fully relaxed energy E
(all)
all of the

whole molecule. For instance, if the molecule consists of 4 fragments, apart from the single total energy of the whole molecule,
one has to calculate in addition (single point calculations only) 4x3=12 energies.
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