
Transformation from UML to C

K. Lano

December 14, 2016

1 Introduction

In this report we describe the requirements and specification of a code generator for mapping
UML-RSDS to ANSI C. The translator has the top-level functional requirement

F1: Translate UML-RSDS designs (class diagrams, OCL, activities and use cases) into
ANSI C code.

The identified stakeholders included: (i) the UML-RSDS development team; (ii) users of UML-
RSDS who require C code for embedded or limited resource systems; (iii) end-users of such systems.

Direct access was only possible to stakeholders (i). Access to other stakeholders was substituted
by research into the needs of such stakeholders.

An initial phase of requirements elicitation for this system used document mining (research
into the ANSI C language and existing UML to C translators) and a semi-structured interview
with the principal stakeholder. This produced an initial set of requirements, with priorities.

The functional requirement was decomposed into five high-priority subgoals, each of which is
the responsibility of a separate subtransformation (Figure 1):

• F1.1: Translation of types

• F1.2: Translation of class diagrams

• F1.3: Translation of OCL expressions

• F1.4: Translation of activities

• F1.5: Translation of use cases.

Each translation in this list depends upon all of the preceding translations. In addition, the
translation of operations of classes depends upon the translation of expressions and activities.

The development was therefore organised into five iterations, one for each translator part, and
each iteration was given a maximum duration of one month. The overall development bound was
6 months (process requirement NF10).

Other high-priority requirements identified for the translator were the following functional and
non-functional system (product) requirements:

• NF1: Termination, given correct input.

• F2: Syntactic correctness: given correct input, a valid C program will be produced.

• F3: Model-level semantic preservation: the semantics of the source and target models are
equivalent.

• F4: Traceability: a record should be maintained of the correspondence between source and
target elements.

Medium-level priority requirements were:

1

Figure 1: Functional requirements decomposition in SysML

• F5: Bidirectionality between source and target.

• NF2: Efficiency: input models with 100 classes and 100 attributes should be processed within
30 seconds.

• NF3: Modularity of the transformation.

Low-priority requirements were:

• F6: Confluence.

• NF4: Flexibility: ability to choose different C interpretations for UML elements.

The project attributes are as follows:

1. Size: medium

2. Complexity: high

3. Volatility: low

4. Customer relationship: low

5. Safety: low

6. Quality: high

7. Cost constraint: medium

8. Time constraint: medium

9. Domain knowledge: medium

It was identified that a suitable overall architecture for the transformation was a sequential
decomposition of a model-to-model transformation design2C , and a model-to-text transformation
genCtext . Decomposing the code generator into two sub-transformations improves its modularity,
and simplifies the constraints, which would otherwise need to combine language translation and

2

Figure 2: C code generator architecture

text production. Figure 2 shows the resulting transformation architecture. This is an example of
the architectural pattern Factor Code Generation into Model-to-model and Model-to-code.

This decomposition means that each of the high-level requirements need to be satisfied by
both design2C and genCtext . The requirements for bidirectionality and traceability are however
specific to design2C .

After a further interview, the application of model-based testing and bx to achieve F3 was
identified as an important area of work. Tests for the synthesised C code should, ideally, be
automatically generated based on the source UML model. The bx property can be utilised for
testing semantic equivalence by transforming UML to C, applying the reverse transformation, and
comparing to identify if the two UML models are isomorphic.

The following agile practices were used in the development: (i) short iterations; (ii) refactoring;
(iii) emphasis on simplicity; (iv) product and iteration backlogs; (v) Scrumboards; (vi) continuous
integration and testing.

The following MDD practices were used: (i) metamodelling; (ii) transformations; (iii) exe-
cutable modelling.

Within each iteration, the following process is generally followed:

1. Exploratory prototyping to assess feasibility of possible C programming constructs to express
UML and OCL elements.

2. Informal specification in concrete grammar of the mappings from UML to C. Discussion of
informal specification with stakeholders/team members.

3. Formalisation of the mappings as UML-RSDS rules and operations.

4. Specification review/refactoring.

5. Prototyping and testing of these specifications; integration with other software elements;
revision of specifications as necessary to pass tests and efficiency requirements.

6. Deployment/delivery as Java jar executables.

We grouped iterations 1 and 2 in one executable (uml2Ca.jar), and iterations 3, 4 and 5 in
another (uml2Cb.jar).

2 Iteration 1: Type mapping

This iteration was divided into three phases: detailed requirements analysis; specification; testing.
Detailed requirements elicitation used structured interviews to identify (i) the source language;

(ii) the mapping requirements; (iii) the target language; (iv) other functional and non-functional
requirements for this sub-transformation. Scenarios and test cases were prepared.

The source language was identified as the Type class and its subclasses in the standard UML-
RSDS class diagram metamodel (Figure 3).

3

The initial target language is a simplified version of the abstract syntax of C programs, sufficient
to represent UML types (Figure 4). This language is open to further elaboration and extension
during the development.

Figure 3: UML-RSDS class diagram metamodel

Using goal decomposition, the requirements were decomposed into specific mapping require-
ments, these are the local functional requirements F1.1.1 to F1.1.4 in Figure 1. Table 1 shows
the informal scenarios for these local mapping requirements, based on the concrete metaclasses of
Type and the different cases of instances of these metaclasses. The schematic concrete grammar
is shown for the C elements representing the UML concepts. As a result of requirements evalu-
ation and negotiation with the principal stakeholder, using exploratory prototyping and scenario
analysis, it was determined that all of these local requirements are of high priority except for the
mapping F1.1.5 of enumerations (medium priority). The justification for this is that enumerations
are not an essential UML language element. Bidirectionality was considered a high priority for
this subtransformation. It was identified that to meet this requirement, all source model Prop-
erty elements must have a defined type – and specifically that elements representing many-valued
association ends must have some CollectionType representing their actual type. A limitation of
the proposed mapping is that mapping collections of primitive values (integers, doubles, booleans)
to C is not possible, because there is no means to identify the end of the collection in C (NULL
is used as the terminator for collections of objects and collections of strings). This means that
expressions such as objs→collect(att)→sort() must be coded as objs→sortedBy(att)→collect(att).
Likewise, objs→collect(att)→count(val) should be expressed as objs→select(att = val)→size().

Requirements specification formalises these mappings as UML-RSDS rules, defining the post-
conditions of a transformation types2C . Scenario analysis and evolutionary prototyping were used
for this stage. The Auxiliary Correspondence Model pattern was used to achieve the bidirection-
ality requirement, and the traceability requirement. A new identity attribute typeId : String was
introduced into Type, and ctypeId into CType.

An example of a scenario expressed in the SBVRSE notation for SysML [3] is (for F1.1.1):

4

Figure 4: C language metamodel

Scenario UML element C representation e’
F1.1.1.1 String type char*

F1.1.1.2 int, long, double types same-named C types
F1.1.1.3 boolean type unsigned char

F1.1.2 Enumeration type C enum

F1.1.3 Entity type E struct E* type
F1.1.4.1 Set(E) type struct E** (array of E’, without duplicates)
F1.1.4.2 Sequence(E) type struct E** (array of E’, possibly with duplicates)

Table 1: Informal scenarios for types2C

5

It is necessary that each string type PrimitiveType instance s maps to a CPointerType
instance p such that p.ctypeId = s.typeId , and to a CPrimitiveType instance c such
that p.pointsTo = c and c.name = “char”.

Each PrimitiveType is considered to be a string type PrimitiveType if it has name
“String”.

Such representations can be directly mapped to UML-RSDS rule specifications, listed below.
Primitive types, entity types and collection types are successively mapped. typeId : String

and ctypeId : String are new identity attributes introduced for Auxiliary Correspondence Model.
These provide a correspondence between the occurrences of types in the source UML-RSDS design
and in the target C implementation. For model.txt files, typeId values are strings consisting of
digits. It is assumed that collection types can only have entity types or primitive types as their
element types:

CollectionType ::
elementType : Entity or elementType : PrimitiveType

This ensures that, in the final two rules, CType[elementType.typeId] does exist at the point where
it is looked-up: it has been created by earlier rules operating on the element type.

PrimitiveType::

name = "int" =>

CPrimitiveType->exists(p | p.ctypeId = typeId & p.name = "int")

PrimitiveType::

name = "long" =>

CPrimitiveType->exists(p | p.ctypeId = typeId & p.name = "long")

PrimitiveType::

name = "double" =>

CPrimitiveType->exists(p | p.ctypeId = typeId & p.name = "double")

PrimitiveType::

name = "boolean" =>

CPrimitiveType->exists(p | p.ctypeId = typeId & p.name = "unsigned char")

PrimitiveType::

name = "void" =>

CPrimitiveType->exists(p | p.ctypeId = typeId & p.name = "void")

PrimitiveType::

name = "String" =>

CPointerType->exists(t | t.ctypeId = typeId &

CPrimitiveType->exists(p | p.name = "char" & t.pointsTo = p))

Entity::

CPointerType->exists(p | p.ctypeId = typeId &

CStruct->exists(c | c.name = name & c.ctypeId = name & p.pointsTo = c))

CollectionType::

name = "Sequence" =>

CArrayType->exists(a | a.ctypeId = typeId & a.duplicates = true &

a.componentType = CType[elementType.typeId])

CollectionType::

name = "Set" =>

CArrayType->exists(c | c.ctypeId = typeId & c.duplicates = false &

c.componentType = CType[elementType.typeId])

6

During requirements validation and verification, model-level semantic preservation can be
shown based on the bx properties. The above constraints can be inverted to:

CPrimitiveType::

name = "int" =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "int")

CPrimitiveType::

name = "long" =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "long")

CPrimitiveType::

name = "double" =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "double")

CPrimitiveType::

name = "unsigned char" =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "boolean")

CPrimitiveType::

name = "void" =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "void")

CPointerType::

p : CPrimitiveType & p.name = "char" & pointsTo = p =>

PrimitiveType->exists(t | t.typeId = ctypeId & t.name = "String")

CPointerType::

c : CStruct & pointsTo = c =>

Entity->exists(e | e.typeId = ctypeId & e.name = c.name)

CArrayType::

duplicates = true =>

CollectionType->exists(t | t.typeId = ctypeId & t.name = "Sequence" &

t.elementType = Type[componentType.ctypeId])

CArrayType::

duplicates = false =>

CollectionType->exists(t | t.typeId = ctypeId & t.name = "Set" &

t.elementType = Type[componentType.ctypeId])

This establishes the bx property for types2C .
In addition, reasoning by cases shows that the C code resulting from a valid input UML model

does conform to C syntax. The corresponding part of genCtext was developed alongside types2C .
Various toString() : String operations in the different C language classes carry out the basic actions
of genCtext .

Testing was also used for validation, in addition to inspection and formal arguments for the
satisfaction of the requirements.

The iteration took 1 month, with several cycles of specification and testing needed until all
functional and non-functional requirements were met. The bx requirement F5 was the main source
of difficulties. In this iteration, the specification effort included construction of the C metamodels
for use in subsequent iterations. The transformation size was 9 rules and 7 operations.

The estimated effort for this iteration is shown in Table 2.

7

Stage Effort (person days)
Req. Elicitation 2
Eval./Negotiation 1
Specification 7
Review/Validation 8
Implementation/ 10
Testing

Total 28

Table 2: Development effort for Iteration 1

3 Iteration 2: Class diagram mapping

This iteration also used a three-phase approach, to define a subtransformation classdiagram2C .
The class diagram elements Property , Operation, Entity , Generalization from Figure 3 were iden-
tified as the input language. Exploratory prototyping was used for requirements elicitation and
evaluation. During requirements evaluation and negotiation it was agreed that the metafeatures
isStatic, isReadOnly , isDerived , isCached would not be represented in C, nor would addOnly ,
aggregation, constraint or linkedClass. This means that aggregations, association classes and
static/constant features are not specifically represented in C. Interfaces are not represented. Only
single inheritance is represented. Maintaining the mutual consistency of opposite association ends
is not included, but is placed as a high priority for future work.

The C representation in Figure 4 is sufficient as a target language for this subtransforma-
tion, with the addition of isKey : boolean and isQuery : boolean attributes to CMember and
COperation, respectively. A scope : String attribute is added to COperation to distinguish opera-
tions representing entity methods (scope = “entity”) from those representing use cases (scope =
“application”).

The scenarios of the local mapping requirements for class diagram elements are shown in Table
3.

Associations are represented by the memberEnd[2] Property, which is a feature of the entity at
end 1 of the association. In the case of a bidirectional association, the memberEnd[1] Property is
also defined in the design, and is also represented in C. The maintenance of the mutual consistency
of the opposite ends is not included in this translation scheme. Global variables are elements of the
variables list of the CProgram instance representing the class diagram. All of these local mapping
requirements F1.2.1 to F1.2.5 are of high priority. As with iteration 1, bx properties are of high
priority for this subtransformation.

The scenarios for this transformation are more complex, and were considered during evaluation
and negotiation, and during requirements specification. The scenarios included:

• F1.2.2, F1.2.3.1, F1.2.3.2: simple and primary key attributes of a single class; access and
update to these, and creation of class instances. Consideration of this scenario led to sim-
plification of the representation of primary keys. It was noted that for future improvement,
a hash-based or BST-based key lookup should be used.

• F1.2.4: operations with the same name and parameters but in different classes. It was con-
firmed that the proposed mapping produced a valid C program. However, some C compilers
do not permit such operations, so it was decided to use distinct names opE , opF , etc, if an
operation op appears in several classes E , F .

• F1.2.5: a typical situation where client class A has a many-many association with ordered
role br at an (abstract) superclass B of concrete classes C and D. Navigations of the form
br[i].x for a property x of B must be possible. This was confirmed: the navigation would be
getB x (br [i − 1]). However, C and D elements can only be stored in br by ‘upcasting’ them:
br = appendB(br , cx→super), and likewise for D. This means that C and D instances are
treated as B instances when in br, and operation polymorphism cannot be used.

8

Scenario UML element e C representation e’
F1.2.1 Class diagram D C program with D ’s name
F1.2.2 Class E struct E { ... };

Global variable struct E** e instances;

Global variable int e size;

struct E* createE() operation
struct E** appendE(struct E**, struct E*) operation
struct E** newEList() operation

F1.2.3.1 Property p : T Member T’ p; of the struct for p’s owner,
(not principal identity where T’ represents T
attribute) Operations T ′ getE p(E ′ self)

and setE p(E ′ self ,T ′ px)
F1.2.3.2 Principal identity attribute Operations getE p, setE p,

p : String of struct E* getEByPK(char* v)
class E Key member char* p; of the struct for E

F1.2.4 Operation op(p : P) : T of E C operation
T’ op(E’ self, P’ p)

with scope = “entity”
F1.2.5 Inheritance of A by B Member struct A* super;

of struct B
Operations getB att(x) for inherited att
invoke getA att(x→super), etc.

Table 3: Informal scenarios for the mapping of UML class diagrams to C

The detailed form of the createE operation was determined: for classes without primary keys, this
operation has no parameter and has the form:

struct E* createE()

{ struct E* result = (struct E*) malloc(sizeof(struct E));

// initialisations of E members

e_instances = appendE(e_instances, result);

e_size++;

return result;

}

The initialisations are the standard defaults: 0 for numerics, the empty string for char*, NULL
for roles, FALSE for booleans. If a super member is present, this is initialised by calling createF()
for its class F:

CMember::

query initialiser() : String

post:

(isKey = true => result = "") &

(name = "super" =>

result = " result->super = create" + type.pointsTo.name + "();\n") &

(type : CPointerType or type : CArrayType =>

result = " result->" + name + " = NULL;\n") &

(type : CPrimitiveType =>

result = " result->" + name + " = 0;\n")

If a primary key attribute pk exists, then its value is provided as a parameter:

struct E* createE(char* v)

{ struct E* result = NULL;

9

result = getEByPK(v);

if (result != NULL) { return result; }

result = (struct E*) malloc(sizeof(struct E));

setE_pk(result, v);

// initialisations of E members

e_instances = appendE(e_instances, result);

e_size++;

return result;

}

getEByPK (str) does a linear search of e instances for an instance struct E ∗ e with e→pk
equal to str :

struct E* getEByPK(char* ex)

{ int n = length((void**) e_instances);

int i = 0;

for (; i < n; i++)

{ char* attv = e_instances[i]->key;

if (attv != NULL && strcmp(attv,ex) == 0)

{ return e_instances[i]; }

}

return NULL;

}

struct E** getEByPKs(char* col[])

{ int n = length((void**) col);

struct E** result = (struct E**) calloc(n+1, sizeof(struct E*));

int i = 0;

int j = 0;

for (; i < n; i++)

{ char* attv = col[i];

struct E* ex = getEByPK(attv);

if (ex != NULL)

{ result[j] = ex; j++; }

}

result[j] = NULL;

return result;

}

The mappings were formalised as UML-RSDS rules. The corresponding part of genCtext was
also written, enabling complete C programs to be produced: operations printProgramHeader(),
printDeclarations(), printOperations() and printMainOperation() of CProgram display the text of
these C program parts.

For F1.2.2, the definition of structs for entities is carried out by types2C. The global variables
are created by the following constraint of printDeclarations():

CStruct::

("struct " + name + "** " + name.toLowerCase() + "_instances = NULL;")->display() &

("int " + name.toLowerCase() + "_size = 0;")->display()

Getters and setters are created by getterOp, setterOp, getAllOp:

CMember::

query getterOp(ent : String) : String

post:

result =

type + " get" + ent + "_" + name +

10

"(struct " + ent + "* self) { return self->" + name + "; }\n"

CMember::

query inheritedGetterOp(ent : String, sup : String) : String

post:

(name /= "super" =>

result =

type + " get" + ent + "_" + name +

"(struct " + ent + "* self) { return get" +

sup + "_" + name + "(self->super); }\n") &

(name = "super" =>

result = self.ancestorGetterOps(ent,sup))

CMember::

query inheritedGetterOps(ent : String) : String

pre: type : CPointerType &

type.pointsTo : CStruct

post:

sup = type.pointsTo &

result = sup.members->collect(m | m.inheritedGetterOp(ent, sup.name))->sum()

CMember::

query ancestorGetterOps(ent : String, sup : String) : String

pre: type : CPointerType &

type.pointsTo : CStruct

post:

anc = type.pointsTo &

result = anc.members->collect(m | m.inheritedGetterOp(ent, sup))->sum()

CMember::

query setterOp(ent : String) : String

post:

result =

"void set" + ent + "_" + name +

"(struct " + ent + "* self, " + type + " _value) { self->" + name + " = _value; }\n"

CMember::

query inheritedSetterOp(ent : String, sup : String) : String

post:

(name /= "super" =>

result =

"void set" + ent + "_" + name +

"(struct " + ent + "* self, " + type + "_value) { set" +

sup + "_" + name + "(self->super, _value); }\n") &

(name = "super" =>

result = self.ancestorSetterOps(ent,sup))

CMember::

query inheritedSetterOps(ent : String) : String

pre: type : CPointerType &

type.pointsTo : CStruct

post:

sup = type.pointsTo &

result = sup.members->collect(m | m.inheritedSetterOp(ent, sup.name))->sum()

CMember::

query ancestorSetterOps(ent : String, sup : String) : String

11

pre: type : CPointerType &

type.pointsTo : CStruct

post:

anc = type.pointsTo &

result = anc.members->collect(m | m.inheritedSetterOp(ent, sup))->sum()

CMember::

query getAllOp(ent : String) : String

pre: type : CPrimitiveType

post:

result = type + "* getAll" + ent + "_" + name + "(struct " + ent + "* col[])\n" +

"{ int n = length((void**) col);\n" +

" " + type + "* result = (" + type + "*) calloc(n, sizeof(" + type + "));\n" +

" int i = 0;\n" +

" for (; i < n; i++)\n" +

" { result[i] = get" + ent + "_" + name + "(col[i]); }\n" +

" return result;\n" +

"}\n"

CMember::

query getAllOp1(ent : String) : String

pre: type : CPointerType

post:

result = type + "* getAll" + ent + "_" + name + "(struct " + ent + "* col[])\n" +

"{ int n = length((void**) col);\n" +

" " + type + "* result = (" + type + "*) calloc(n+1, sizeof(" + type + "));\n" +

" int i = 0;\n" +

" for (; i < n; i++)\n" +

" { result[i] = get" + ent + "_" + name + "(col[i]); }\n" +

" result[n] = NULL;\n" +

" return result;\n" +

"}\n"

CMember::

query inheritedAllOp(ent : String, sup : String) : String

post:

(name /= "super" & type : CPrimitiveType =>

result = getAllOp(ent)) &

(name /= "super" & type : CPointerType =>

result = getAllOp1(ent)) &

(name = "super" =>

result = self.ancestorAllOps(ent,sup))

CMember::

query ancestorAllOps(ent : String, sup : String) : String

pre: type : CPointerType &

type.pointsTo : CStruct

post:

anc = type.pointsTo &

result = anc.members->collect(m | m.inheritedAllOp(ent, sup))->sum()

CMember::

query inheritedAllOps(ent : String) : String

pre: type : CPointerType &

type.pointsTo : CStruct

post:

12

sup = type.pointsTo &

result = sup.members->collect(m | m.inheritedAllOp(ent, sup.name))->sum()

CMember::

query getPKOp(ent : String) : String

post:

e = ent.toLowerCase &

result =

"struct " + ent + "* get" + ent + "ByPK(char* ex)\n" +

"{ int n = length((void**) " + e + "_instances);\n" +

" int i = 0;\n" +

" for (; i < n; i++)\n" +

" { char* attv = get" + ent + "_" + name + "(" + e + "_instances[i]);\n" +

" if (attv != NULL && strcmp(attv,ex) == 0)\n" +

" { return " + e + "_instances[i]; }\n" +

" }\n" +

" return NULL;\n" +

"}\n"

CStruct::

query getPKsOp() : String

post:

result = "struct " + name + "** get" + name + "ByPKs(char* col[])\n" +

"{ int n = length((void**) col);\n" +

" struct " + name + "** result = (struct " + name +

"**) calloc(n+1, sizeof(struct " + name + "*));\n" +

" int i = 0; \n" +

" int j = 0; \n" +

" for (; i < n; i++)\n" +

" { char* attv = col[i];\n" +

" struct " + name + "* ex = get" + name + "ByPK(attv);\n" +

" if (ex != NULL) \n" +

" { result[j] = ex; j++; }\n" +

" }\n" +

" result[j] = NULL; \n" +

" return result;\n" +

"}\n"

These are then used in the printcode use case:

CStruct::

f : members & f.name /= "super" => f.getterOp(name)->display()

CStruct::

f : members & f.name = "super" => f.inheritedGetterOps(name)->display()

CStruct::

members->exists(k | k.isKey) & key = members->select(isKey)->any() =>

key.getPKOp(name)->display() & self.getPKsOp()->display()

CStruct::

f : members & f.name /= "super" => f.setterOp(name)->display()

CStruct::

f : members & f.name = "super" => f.inheritedSetterOps(name)->display()

CStruct::

13

f : members & f.type : CPrimitiveType => f.getAllOp(name)->display()

CStruct::

f : members & f.name /= "super" & f.type : CPointerType => f.getAllOp1(name)->display()

CStruct::

f : members & f.name = "super" & f.type : CPointerType => f.inheritedAllOps(name)->display()

CStruct::

members->exists(k | k.isKey) & key = members->select(isKey)->any() =>

self.createPKOp(name, key.name)->display()

CStruct::

true =>

self.createOp(name)->display()

This use case also generates the createE and newEList operations, and other operations specific
to E, such as collectE, selectE, rejectE, intersectionE, unionE, reverseE, frontE, tailE, asSetE,
concatenateE, removeE, removeAllE, subrangeE, isUniqueE, insertAtE, etc:

CStruct::

query createOp(ent : String) : String

post:

einst = ent.toLowerCase + "_instances" &

result = "struct " + ent + "* create" + ent + "()\n" +

"{ struct " + ent + "* result = (struct " + ent +

"*) malloc(sizeof(struct " + ent + "));\n" +

members->collect(m | m.initialiser())->sum() +

" " + einst + " = append" + ent + "(" + einst + ", result);\n" +

" " + ent.toLowerCase + "_size++;\n" +

" return result;\n" +

"}\n"

CStruct::

query createPKOp(ent : String, key : String) : String

post:

einst = ent.toLowerCase + "_instances" &

result = "struct " + ent + "* create" + ent + "(char* _value)\n" +

"{ struct " + ent + "* result = NULL;\n" +

" result = get" + ent + "ByPK(_value);\n" +

" if (result != NULL) { return result; }\n" +

" result = (struct " + ent + "*) malloc(sizeof(struct " + ent + "));\n" +

members->collect(m | m.initialiser())->sum() +

" set" + ent + "_" + key + "(result, _value);\n" +

" " + einst + " = append" + ent + "(" + einst + ", result);\n" +

" " + ent.toLowerCase + "_size++;\n" +

" return result;\n" +

"}\n"

Selective generation of OCL operators will be introduced in a further refinement, so that operations
opE are only generated if there is an occurrence of →op applied to a collection of E elements in
the source model.

The attributes (and association ends) owned by a class are mapped to members of its corre-
sponding struct (F1.2.3, F1.2.4):

Entity::

p : ownedAttribute & p.name.size > 0 =>

14

CStruct->exists(c | c.name = name &

CMember->exists(m | m.name = p.name & m.isKey = p.isUnique &

m.type = CType[p.type.typeId] & m : c.members))

This could alternatively be written as:

Entity::

CStruct->exists(c | c.name = name &

ownedAttribute->forAll(p | p.name.size > 0 =>

CMember->exists(m | m.name = p.name & m.isKey = p.isUnique &

m.type = CType[p.type.typeId] & m : c.members)))

F1.2.4 is specified by:

Operation::

COperation->exists(op | op.name = name & op.opId = name + "_" + owner.name &

CVariable->exists(p | p.name = "self" &

p : op.parameters & p.kind = "parameter" & p.type = CType[owner.typeId]) &

parameters->forAll(x | CVariable->exists(y | y.name = x.name &

y.kind = "parameter" &

y.type = CType[x.type.typeId] &

y : op.parameters)) &

op.isQuery = isQuery &

op.scope = "entity" &

op.returnType = CType[type.typeId])

Update operations are given a void result type in the UML model data file model.txt (if they
do not have a specific result type). To support bx properties, a new attribute isQuery needs to
be introduced to the C meta model class COperation and set as above. To support lookup of
COperations in the mapping of activities to C, a new identity attribute opId is introduced.

If an inheritance exists from entity E to entity F , then an additional member of type struct
F* is inserted into the struct for E (F1.2.5):

Generalization::

CMember->exists(m | m.name = "super" &

CStruct->exists(sub | sub.ctypeId = specific.name &

m : sub.members & m.type = CPointerType[general.typeId]))

Care has been taken to ensure that the constraints for members, operations and generalisations
are invertible. They have the following inverses:

CStruct::

m : CMember & m : members =>

Entity->exists(e | e.name = ctypeId &

Property->exists(p |

p.name = m.name & p.isUnique = m.isKey &

p.type = Type[m.type.ctypeId]))

and:

COperation::

scope = "entity" =>

Operation->exists(op | op.name = name &

parameters->forAll(x | x.name /= "self" =>

Property->exists(y | y.name = x.name &

y.type = Type[x.type.ctypeId] &

y : op.parameters)) &

op.isQuery = isQuery &

op.type = Type[returnType.ctypeId])

and:

15

CMember::

sub : CStruct & name = "super" & self : sub.members =>

Generalization->exists(g | g.specific.name = sub.ctypeId &

g.general = Entity[type.ctypeId])

With the alternate form of property to member constraint, the inverse mapping for properties
is:

CStruct::

Entity->exists(e | e.name = name &

members->forAll(m |

Property->exists(p | p.name = m.name & p.isUnique = m.isKey &

p.type = Type[m.type.ctypeId] & p : e.ownedAttribute)))

In total there are 14 rules and 33 operations.
Testing, inspection and formal arguments were used for validation and verification. The esti-

mated effort for this iteration is shown in Table 4.

Stage Effort (person days)
Req. Elicitation 2
Eval./Negotiation 1
Specification 12
Review/Validation 12
Implementation/ 10
Testing

Total 37

Table 4: Development effort for Iteration 2

The result of iterations 1 and 2 is a transformation that operates on the 3 UML-RSDS meta-
models (Figure 3, Figure 5 and Figure 7) as inputs, and on the C general metamodel (Figure ??)
as output. Statement and OCL data is implicitly copied from the source to the target model by
the model loading/model saving mechanisms, an example of the Implicit Copy pattern.

The completed prototype after iterations 1 and 2 has been implemented as a jar file uml2Ca.jar
at www.dcs.kcl.ac.uk/staff/kcl/uml2Ca/. This reads an input file model.txt, produced by the Save
As Model option of UML-RSDS. The C code is written to standard output:

java -jar uml2Ca/uml2Ca.jar

The specification metamodel for uml2Ca is in the file mmUML2Ca, this is 35KB in size. The
generated code is over 500KB in size.

4 Iteration 3: Expression mapping

In this iteration, the detailed requirements for mapping OCL expressions to C are identified,
then this subtransformation, expressions2C , is specified and tested. Due to the large size of this
transformation, it was not possible to complete it within 1 month.

Figure 5 shows the OCL metamodel, which is the source language for the subtransformation.
Figure 6 shows the corresponding C expression language abstract syntax. The OCL and C ex-
pression languages are quite similar, however C lacks many operations on collections, and these
need to be provided as new library functions. A C library file ocl.h is defined to contain general-
purpose C functions for OCL. An important semantic issue is that the NULL pointer must be
treated as equal to an empty collection in the generated code. New identity attributes expId and
cexpId are added to Expression and CExpression, respectively, to support the bx and traceability
requirements. An additional attribute variable : String is included in the BinaryExpression class
to represent iterator expression variables x for the cases of s→forAll(x | P), etc. It has the value

16

”self” for iterator expressions without an explicit variable. A ∗ − − − 1 association context from
Expression to Entity is needed to record the context of use of the expression. Downcast expres-
sions (where an object is used as if it is an instance of a subclass of the context) are not supported
by this translator.

Figure 5: UML-RSDS OCL metamodel

Figure 6: C expression metamodel

There are many cases to consider in the mapping requirements, so we divided these into four
subgroups: (i) mapping of basic expressions; (ii) mapping of logical expressions; (iii) mapping
of comparitor, numeric and string expressions; (iv) mapping of collection expressions. These
were considered the natural groupings of operations and operators, and these follow in part the
metaclass organisation of UML expressions in Figure 5.

17

4.1 Basic expressions

The basic expressions of OCL generally map directly to corresponding C basic expressions. Table
5 shows the mapping for these. These mapping requirements are grouped together as requirement
F1.3.1.

OCL expression e C representation e ′

self self as an operation parameter
Variable v v
or v [ind] v [ind ′ − 1]
Data feature f of context E self→f (E is root)
with no objectRef getE f (self) (otherwise)
E data feature f ex ′→f (E is root)
of instance ex getE f (ex ′) (otherwise)
Operation call op(e1, ..., en) op(self, e1’, ..., en’)
or obj .op(e1, ..., en) op(obj’, e1’, ..., en’)
E attribute f getAllE f (exs ′)
of collection exs (duplicate values preserved)
Single-valued role r : F getAllE r(exs ′) defined by
of E collection exs (struct F ∗ ∗) collectE (exs ′, getE r)
col [ind] (col’)[ind’ - 1]
ordered collection col
E [v] getEByPK(v’)
v single-valued
E [vs] getEByPKs(vs’)
vs collection-valued
E .allInstances e instances
value of enumerated type, value
numeric or string value
boolean true, false TRUE, FALSE

Table 5: Mapping scenarios for basic expressions

x .oclAsType(T) needs to be considered separately. For T as long, int or double, a C cast can
be used. For String, a cast to char∗ can be used. For an entity type, navigation using the super
member will be necessary. The decision was made to omit this operator from the first version of
the deliverable.

4.2 Logical expressions

Table 6 shows the mapping of logical expressions and operators to C. These mappings are grouped
together as requirement F1.3.2.

The generation of the fP functions is carried out by:

CProgram::

defineCOp(b : CExpression, par : String, pt : CType) : COperation

post:

COperation->exists(op | op.name = "op_" + operations@pre.size &

op.returnType = b.type & op.isQuery = true & op.scope = "auxiliary" &

CReturnStatement->exists(rs | rs.cstatId = b.cexpId + "_return" & rs.returnValue = b & op.code = rs) &

CVariable->exists(v | v.name = par & v.type = pt &

v : op.parameters) &

op : operations & result = op)

CExpression::

18

OCL expression e C expression e ′

A => B !A’ || B’

A & B A’ && B’

A or B A’ || B’

not(A) !A’

E->exists(P) existsE(e instances,fP) fP evaluates P
e->exists(P) existsE(e’,fP)

E->exists1(P) exists1E(e instances,fP) fP evaluates P
e->exists1(P) exists1E(e’,fP)

E->forAll(P) forAllE(e instances,fP) fP evaluates P
e->forAll(P) forAllE(e’,fP)

Table 6: Mapping scenarios for logical expressions

static defineCOpRef(op : COperation) : CExpression

post:

CBasicExpression->exists(be | be.cexpId = op.name + "_ref" &

be.data = op.name &

be.type = op.returnType &

be.elementType = op.elementType & result = be)

CExpression::

static defineCOpRefCast(op : COperation, cst : String) : CExpression

post:

CBasicExpression->exists(be | be.cexpId = op.name + "_ref" &

be.data = op.name &

be.type = op.returnType &

be.elementType = op.elementType & result = Expression.cast(cst, be))

CExpression::

static defineCOpReference(op : String, typ : String) : CExpression

post:

CBasicExpression->exists(be | be.cexpId = op.name + "_ref" &

be.data = op.name &

CPrimitiveType->exists(t | t.name = typ & t.ctypeId = op.name + "_" + typ &

be.type = t & be.elementType = t & result = be))

The auxiliary operations created for iterator expressions are not mapped back to UML via the
inverse transformation.

4.3 Comparitor, numeric and string expressions

Table 7 lists the comparitor operators and their mappings to C. These mappings are grouped as
requirement 1.3.3.

The introduced functions isIn, equalsSet , etc, are all defined in ocl.h, since they are not specific
to particular element types. The cast operator (T) e is considered as a unary operator in C, with
argument e and type T .

Numeric operators for integers and real numbers are shown in Table 8. The types int, double
and long are not guaranteed to have particular sizes in C. All operators take double values as
arguments except mod and Integer.subrange, which have int parameters. Three OCL operators:
ceil, round, floor, take a double value and return an int, in contrast to the corresponding C
functions. The interpretations use standard C mathematical functions from <math.h>, except for
round and Integer.subrange. The mappings are grouped as requirement F1.3.4.

19

OCL expression e C representation e ′

x : E isIn((void∗) x ′, (void ∗ ∗) e instances)
E entity type
x : s isIn((void∗) x ′, (void ∗ ∗) s ′)
s collection
s->includes(x) Same as x : s
s collection
x / : E !isIn((void∗) x ′, (void ∗ ∗) e instances)
E entity type
x / : s !isIn((void∗) x ′, (void ∗ ∗) s ′)
s collection
s->excludes(x) Same as x / : s
s collection
x = y x ′ == y ′

Numerics, booleans
Strings strcmp(x ′, y ′) == 0
objects x ′ == y ′

Sets equalsSet((void ∗ ∗) x ′, (void ∗ ∗) y ′)
Sequences equalsSequence((void ∗ ∗) x ′, (void ∗ ∗) y ′)
x < y x ′ < y ′

numerics
Strings strcmp(x ′, y ′) < 0
Similarly for >, <=, >=, >, <=, >=,
/ = ! =
s <: t containsAll((void ∗ ∗) t ′, (void ∗ ∗) s ′)
s, t collections
s/ <: t !containsAll((void ∗ ∗) t ′, (void ∗ ∗) s ′)
s, t collections
t->includesAll(s) Same as s <: t
t->excludesAll(s) disjoint((void**) t’, (void**) s’)

Table 7: Mapping scenarios for comparitor expressions

OCL expression e Representation in C
-x -x’
x + y x’ + y’
numbers
x - y x’ - y’
x * y x’ * y’
x / y x’ / y’
x mod y x’ % y’
x.sqr (x’ * x’)
x.sqrt sqrt(x’)
x.floor oclFloor(x’) defined as: ((int) floor(x’))
x.round oclRound(x’)
x.ceil oclCeil(x’) defined as: ((int) ceil(x’))
x.abs fabs(x’)
x.exp exp(x’)
x.log log(x’)
x.pow(y) pow(x’,y’)
x.sin, x.cos, x.tan sin(x’), cos(x’), tan(x’)
Integer.subrange(st,en) intSubrange(st’,en’)

Table 8: Mapping scenarios for numeric expressions

20

Other math operators directly available in C are: log10, tanh, cosh, sinh, asin, acos, atan.
These are double-valued functions of double-valued arguments. cbrt is missing and needs to be
implemented as pow(x’, 1.0/3). The math operators may also be written as unary expressions in
the style e→op(). The translation to C is the same for this format.

String operators are shown in Table 9. Strings are \0-terminated sequences of characters in
C. New functions subString, firstString, lastString, tailString, frontString, toLowerCase, toUpper-
Case, insertAtString, reverseString, subtractString, countString, startsWith, endsWith on strings
need to be introduced. They are defined in ocl.h. The mapping requirements for string expressions
are grouped as requirement F1.3.5.

Expression e C translation e ′

x + y concatenateStrings(x’, y’)
x->size() strlen(x’)
x->first() firstString(x’) defined as subString(x’,1,1)
x->front() frontString(x’) defined as subString(x’, 1, strlen(x’)-1)
x->last() lastString(x’) defined as subString(x’, strlen(x’), strlen(x’))
x->tail() tailString(x’) defined as subString(x’, 2, strlen(x’))
x.subrange(i,j) subString(x’, i’, j’)
x->toLowerCase() toLowerCase(x’)
x->toUpperCase() toUpperCase(x’)
s->indexOf(x) indexOfString(s’,x’)
s->hasPrefix(x) startsWith(s’,x’)
s->hasSuffix(x) endsWith(s’,x’)
s->characters() characters(s’)
s.insertAt(i,s1) insertAtString(s’,i’,s1’)
s->count(s1) countString(s1’, s’)
single character s1
s->reverse() reverseString(s’)
e->display() displayString(e’) defined as printf(”%s”,e’)

for String-valued e,
displayNumeric(e’) defined as printf(”%d”,e’)
for numeric e

s1 - s2 subtractString(s1’, s2’)
e->isInteger() –
e->isReal() –
e->toInteger() atoi(e’)

e->toReal() atof(e’)

Table 9: Mapping scenarios for string expressions

4.4 Collection expressions

Table 10 shows the values and operators that apply to sets and sequences, and their C translations.
Some operators (unionAll, intersectAll, symmetricDifference, subcollections) were considered a
low priority, because these are infrequently used, and were not translated. The requirements are
grouped as F1.3.6.

For all operations such as appendE(col,x) involving a collection and an object, x will need
to be upcast to the element type of col, if it belongs to a subclass of this element type. A
collection x of strings can be sorted by supplying strcmp as the comparison function: qsort((void**)
x’, length((void**) x’), sizeof(char*), (int (*)(const void*, const void*)) strcmp). Otherwise, a
specifier must include a suitable compareToE (other : E) : int operation in E . For sortedBy , if e is
of a numeric or boolean type, compare(struct E ∗ self , struct E ∗ other) returns e evaluated for
other - e evaluated for self . For String-valued e, strcmp is used, and for objects, the appropriate

21

Expression e C translation e’

Set{} newEList()
Sequence{} newEList()
Set{x1, x2, ..., xn} insertE(... insertE(newEList(), x1’), ..., xn’)
Sequence{x1, x2, ..., xn} appendE(... appendE(newEList(), x1’), ..., xn’)
s->size() length((void**) s’)
s->including(x) insertE(s’,x’) or appendE(s’,x’)
s->excluding(x) removeE(s’,x’)
s - t removeAllE(s’,t’)
s->prepend(x) –
s->append(x) appendE(s’,x’)
s->count(x) count((void*) x’, (void**) s’)
s->indexOf(x) indexOf((void*) x’, (void**) s’)
x\/y unionE(x’,y’)
x/\y intersectionE(x’,y’)

x a y concatenateE(x’,y)
x->union(y) unionE(x’,y’)
x->intersection(y) intersectionE(x’, y’)
x->unionAll(e) –
x->intersectAll(e) –
x->symmetricDifference(y) –
x->any() x’[0]
x->subcollections() –
x->reverse() reverseE(x’)
x->front() frontE(x’) defined as subrangeE(x’,1,length((void**) x’)-1)
x->tail() tailE(x’) defined as subrangeE(x’,2,length((void**) x’))
x->first() firstE(x’) defined as x’[0]
x->last() lastE(x’) defined as x’[length((void**) x’)-1]
x->sort() (struct E**) treesort((void**) x’, compareToE)

x of entity element type E
(char**) treesort((void**) x’, strcmp)
x of String element type

x->sortedBy(e) (struct E**) treesort((void**) x’, comparee)
comparee defines e-order

x->sum() sumString(x’,n), sumint(x’,n), sumlong(x’,n), sumdouble(x’,n)
n is length of x

x->prd() prdint(x’,n), prdlong(x’,n), prddouble(x’,n)
n is length of x

Integer.Sum(a,b,x,e) sumInt(a’,b’,fe), sumDouble(a’,b’,fe) fe computes e’(x’)
Integer.Prd(a,b,x,e) prdInt(a’,b’,fe), prdDouble(a’,b’,fe)
x->max() maxint(x’,n), maxlong(x’,n),

maxdouble(x’,n), maxString(x’,n)
n is length of x.

x->min() minint(x’,n), minlong(x’,n),
mindouble(x’,n), minString(x’,n)
n is length of x.

x->asSet() asSetE(x’)
x->asSequence() x’
s->isUnique(e) isUniqueE(s’,fe)
x->isDeleted() killE(x’)

Table 10: Scenarios for the translation of collection operators

22

compareToF operation.
A common form of OCL expression is evaluation of a reduce operation (min, max, sum, prd)

applied to the result of a collect, eg.:

s→collect(e)→sum()

where e is double-valued. This is mapped to:

sumdouble((double∗) collectE (s ′, fe), length((void ∗ ∗) s ′))

because it is not possible to find the length of a collection of primitive values. Likewise, s.att .sum
is mapped to sumdouble(getAllE att(s ′), length(void ∗ ∗) s ′)).

After evaluation and negotiation, it was decided that full implementation of delete should be
deferred, because of the complex semantics of data deletion in C. Integer .Sum and Integer .Prd
were also deferred. In addition, prototyping on different platforms revealed that compiler differ-
ences made the use of qsort impractical, and instead a custom sorting algorithm, treesort , was
implemented. This has signature

void** treesort(void* col[], int (*comp)(void*, void*))

and the translation of x→sort() is then: (rt) treesort((void**) x’, comp) for the appropriate result
type rt and comparitor function comp.

For max, min, sort, the entity type E must have a compareTo(other : E) : int operation defined,
this will become a function int compareToE(struct E* self, struct E* other) in C.

Table 11 shows the translation of select and collect operators. These mappings are grouped as
requirement F1.3.7.

UML expression e C translation e’

s->select(P) selectE(s’, fP)
where E is entity element type of s, fP evaluates P:
int fP(struct E* self) { return P’; }

s->select(x | P) as above, fP is:
int fP(struct E* x) { return P’; }

s->reject(P) rejectE(s’, fP), fP as for select
s->reject(x | P) as above

s->collect(e) (et’*) collectE(s’, fe)
e of type et fe evaluates e’
s->collect(x | e) as above

s->selectMaximals(e) –
s->selectMinimals(e) –

Table 11: Scenarios for the mapping of selection and collection expressions

Unlike the types and class diagram mappings, a recursive descent style of specification is
needed for the expressions mapping (and for activities). This is because the subordinate parts
of an expression are themselves expressions. Thus it is not possible in general to map all the
subordinate parts of an expression by prior rules: even for basic expressions, the parameters may
be general expressions. In contrast, the element types of collection types cannot themselves be
collection types or involve subparts that are collection types, so it is possible to map all element
types before considering collection types. A recursive descent style of mapping specification uses
operations of each source entity type to map instances of that type, invoking mapping operations
recursively to map subparts of the instances.

An operation

mapExpression() : CExpression

is defined in each Expression subclass.
For each category of expression, the subparts of the expression are mapped to C first, and then

composed by a separate operation. For example:

23

BinaryExpression::

mapExpression() : CExpression

post:

result = mapBinaryExpression(

left.mapExpression(),

right.mapExpression())

UnaryExpression::

mapExpression() : CExpression

post:

result = mapUnaryExpression(

argument.mapExpression())

BasicExpression::

mapExpression() : CExpression

post:

result = mapBasicExpression(

objectRef.mapExpression(),

arrayIndex.mapExpression(),

parameters.mapExpression())

CollectionExpression::

mapExpression() : CExpression

post:

result = mapCollectionExpression(expId,

elements.mapExpression())

For each category of expression, the mapping is further decomposed into cases:

BinaryExpression::

mapBinaryExpression(lexp : CExpression,

rexp : CExpression) : CBinaryExpression

pre:

lexp = CExpression[left.expId] &

rexp = CExpression[right.expId]

post:

CBinaryExpression->exists(c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.left = lexp & c.right = rexp &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c)

UnaryExpression::

mapUnaryExpression(arg : CExpression) : CExpression

pre:

arg = CExpression[argument.expId]

post:

CUnaryExpression->exists(c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.argument = arg &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c)

BasicExpression::

query mapBasicExpression(ob : Set(CExpression),

24

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

pre:

ob = CExpression[objectRef.expId] &

aind = CExpression[arrayIndex.expId] &

pars = CExpression[parameters.expId]

post:

(umlKind = value =>

result = mapValueExpression(ob,aind,pars)) &

(umlKind = variable =>

result = mapVariableExpression(ob,aind,pars)) &

(umlKind = attribute =>

result = mapAttributeExpression(ob,aind,pars)) &

(umlKind = role =>

result = mapRoleExpression(ob,aind,pars)) &

(umlKind = operation =>

result = mapOperationExpression(ob,aind,pars)) &

(umlKind = classid =>

result = mapClassExpression(ob,aind,pars)) &

(umlKind = function =>

result = mapFunctionExpression(ob,aind,pars))

CollectionExpression::

query mapCollectionExpression(id : String, elems : Sequence(CExpression)) : CExpression

post:

(elems.size = 0 =>

result = createCOpCall(id, "new" + elementType.name + "List")) &

(elems.size > 0 & type.name = "Set" =>

result = createCBinOpCall(id, "insert" + elementType.name,

mapCollectionExpression(id + "_f", elems.front), elems.last)) &

(elems.size > 0 & type.name = "Sequence" =>

result = createCBinOpCall(id, "append" + elementType.name,

mapCollectionExpression(id + "_f", elems.front), elems.last))

This style of specification involves the use of update operations that also return results (or query
operations that create objects and have side-effects), which is considered undesirable. Such op-
erations cannot be translated into the B formalism for verification. The operation precondition
asserts that the parameters correspond to the sub-parts of the basic expression. The kind attribute
records the origin of the C expression. This enables an inverse operation to be defined, eg.:

CBinaryExpression::

mapCBinaryExpression(lexp : Expression,

rexp : Expression) : BinaryExpression

pre:

lexp = Expression[left.cexpId] &

rexp = Expression[right.cexpId]

post:

BinaryExpression->exists(c | c.expId = cexpId &

c.operator = CExpression.uop(operator) &

c.left = lexp & c.right = rexp &

c.type = Type[type.ctypeId] &

c.elementType = Type[elementType.ctypeId] &

result = c)

CUnaryExpression::

mapCUnaryExpression(arg : Expression) : Expression

25

pre:

arg = Expression[argument.cexpId]

post:

UnaryExpression->exists(c | c.expId = cexpId &

c.operator = CExpression.uop(operator) &

c.argument = arg &

c.type = Type[type.ctypeId] &

c.elementType = Type[elementType.ctypeId] &

result = c)

CBasicExpression::

query mapCBasicExpression(ob : Set(Expression),

aind : Set(Expression),

pars : Sequence(Expression)) : BasicExpression

pre:

ob = Expression[reference.cexpId] &

aind = Expression[arrayIndex.cexpId] &

pars = Expression[parameters.cexpId]

post:

(kind = "value" =>

result = mapCValueExpression(ob,aind,pars)) &

(kind = "variable" =>

result = mapCVariableExpression(ob,aind,pars)) &

(kind = "attribute" =>

result = mapCAttributeExpression(ob,aind,pars)) &

(kind = "role" =>

result = mapCRoleExpression(ob,aind,pars)) &

(kind = "operation" =>

result = mapCOperationExpression(ob,aind,pars)) &

(kind = "classid" =>

result = mapCClassExpression(ob,aind,pars)) &

(kind = "function" =>

result = mapCFunctionExpression(ob,aind,pars))

An alternative style of specification would be to use the Map Objects Before Links pattern [1],
however this would involve separation of the mapping of expression instances and the mapping of
relation instances: attribute values of target objects would be set in separate rules to the setting
of their associations.

The detailed cases for mapping different forms of basic expression are as follows:

query mapValueExpression(ob : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

pre: umlKind = value

post:

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "value" &

(data = "true" => c.data = "TRUE") &

(data = "false" => c.data = "FALSE") &

(data /= "true" & data /= "false" => c.data = data) &

c.arrayIndex = aind &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)

query mapVariableExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "variable" &

c.data = data &

26

c.arrayIndex = aind &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)

query mapAttributeExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(objectRef.size = 0 =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "attribute" &

c.data = "get" + context.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.arrayIndex = aind &

CBasicExpression->exists(s | s.data = "self" &

s.kind = "variable" & s : c.parameters &

s.cexpId = expId + "_self" &

s.type = CType[context.typeId] &

s.elementType = s.type) &

result = c)) &

(objectRef.size > 0 & objectRef.any.type : CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "attribute" &

c.data = "getAll" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

obs <: c.parameters &

c.arrayIndex = aind &

result = c)) &

(objectRef.size > 0 & objectRef.any.type /: CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "attribute" &

c.data = "get" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

obs <: c.parameters &

c.arrayIndex = aind &

result = c))

Note that context must be set for attributes and roles, so that the context entity using the feature can be
accessed (this may be a subclass of the owner of the feature).

query mapRoleExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(objectRef.size = 0 =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "role" &

c.data = "get" + context.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.arrayIndex = aind &

CBasicExpression->exists(s | s.data = "self" & s.kind = "variable" &

s : c.parameters & s.cexpId = expId + "_self" &

s.type = CType[context.typeId] &

s.elementType = s.type) & result = c)) &

(objectRef.size > 0 & objectRef.any.type : CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "role" &

c.data = "getAll" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

27

obs <: c.parameters &

c.arrayIndex = aind &

result = c)) &

(objectRef.size > 0 & objectRef.any.type /: CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "role" &

c.data = "get" + objectRef.any.elementType.name + "_" + data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

obs <: c.parameters &

c.arrayIndex = aind &

result = c))

query mapOperationExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(objectRef.size = 0 =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "operation" &

c.data = data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.arrayIndex = aind &

CBasicExpression->exists(s | s.data = "self" & s.kind = "variable" &

s : c.parameters & s.cexpId = expId + "_self" &

s.type = CType[context.typeId] &

s.elementType = s.type) &

pars <: c.parameters & result = c)) &

(objectRef.size > 0 =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "operation" &

c.data = data &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

c.parameters = obs^pars &

c.arrayIndex = aind &

result = c))

query mapClassExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(arrayIndex.size > 0 & arrayIndex.any.type : CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "classid" &

c.data = "get" + elementType.name + "ByPKs" &

aind <: c.parameters &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)) &

(arrayIndex.size > 0 & arrayIndex.any.type /: CollectionType =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "classid" &

c.data = "get" + elementType.name + "ByPK" &

aind <: c.parameters &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)) &

(arrayIndex.size = 0 =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "classid" &

c.data = data.toLowerCase() + "_instances" &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c))

28

query mapFunctionExpression(obs : Set(CExpression),

aind : Set(CExpression),

pars : Sequence(CExpression)) : CBasicExpression

post:

(Expression.isCfunction1(data) =>

CBasicExpression->exists(c | c.cexpId = expId & c.data = data &

c.kind = "function" &

c.parameters = obs^pars &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)) &

(data = "allInstances" =>

CBasicExpression->exists(c | c.cexpId = expId & c.kind = "function" &

c.data = data.toLowerCase() + "_instances" &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)) &

(true =>

CBasicExpression->exists(c | c.cexpId = expId & c.data = Expression.cfunctionName(data) &

c.kind = "function" &

c.parameters = obs^pars &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c))

Testing of these operations revealed some errors regarding the metamodels, eg., that elementType
should be of 1 multiplicity, not 0..1, and that any is needed with referredProperty because this
is of 0..1 multiplicity. name is needed for the copies of Type and CType in the OCL metamodel.
The generation of model.txt needed to be adjusted in several cases to ensure that appropriate
information was available for the code generator.

isCFunction1 is true if the function name is one of: sqrt, exp, log, sin, cos, tan, pow, log10,
cbrt, tanh, cosh, sinh, asin, acos, atan.

The correspondence of OCL and C operators is given in Table 12.

UML operator C operator Condition

+, - (unary) +, - (unary)
not !

+, - (binary) +, - numeric arguments
∗, /, mod ∗, /, %
and, or &&, ∥
= == numeric arguments
<>, / = != numeric arguments
<, ≤ <, ≤ numeric arguments
≥, > ≥, > numeric arguments

Table 12: Operator correspondence between UML and C

These mappings are defined in an operation

Expression::

static query cop(aop : String) : String

post:

(aop = "&" => result = "&&") &

(aop = "or" => result = "||") &

(aop = "not" => result = "!") &

(aop = "mod" => result = "%") &

(aop = "=" => result = "==") &

(aop = "/=" => result = "!=") &

(true => result = aop)

29

Expression::

static query cfunctionName(f : String) : String

post:

(f = "round" => result = "oclRound") &

(f = "floor" => result = "oclFloor") &

(f = "ceil" => result = "oclCeil") &

(f = "abs" => result = "fabs") &

(f = "->toLowerCase" => result = "toLowerCase") &

(f = "->toUpperCase" => result = "toUpperCase") &

(f = "->hasPrefix" or f = "hasPrefix" => result = "startsWith") &

(f = "->hasSuffix" or f = "hasSuffix" => result = "endsWith") &

(f = "->characters" => result = "characters") &

(f = "->toInteger" => result = "atoi") &

(f = "->toReal" => result = "atof") &

(f = "->display" => result = "displayNumber") &

(true => result = f)

The final clause here is an ’else’ case.
Various convenience operations were introduced during design:

Expression::

createCBinOpCall(id : String, name : String, le : CExpression,

re: CExpression) : CBasicExpression

post:

CBasicExpression->exists(cbe |

cbe.cexpId = id & cbe.data = name &

le : cbe.parameters & re : cbe.parameters &

cbe.type = CType[type.typeId] &

cbe.elementType = CType[elementType.typeId] & result = cbe)

Expression::

createCUnaryOpCall(id : String, name : String, arg : CExpression) : CBasicExpression

post:

CBasicExpression->exists(cbe |

cbe.cexpId = id &

cbe.data = name &

arg : cbe.parameters &

cbe.type = CType[type.typeId] &

cbe.elementType = CType[elementType.typeId] & result = cbe)

Expression::

createCOpCall(id : String, name : String) : CBasicExpression

post:

CBasicExpression->exists(cbe |

cbe.cexpId = id &

cbe.data = name &

cbe.type = CType[type.typeId] &

cbe.elementType = CType[elementType.typeId] & result = cbe)

Expression::

static cast(typ : String, e : CExpression) : CExpression

post:

CUnaryExpression->exists(ce | ce.cexpId = e.cexpId + "_cast" &

ce.operator = "(" + typ + ") " &

ce.argument = e &

ce.type = e.type &

30

ce.elementType = e.elementType &

result = ce)

These are used to create C representations of binary and unary expressions as operation calls.
They are an application of the pattern Factor out Duplicated Expression Evaluations.

For certain kinds of binary expression (+, -, =, /=, comparitors), the type of the arguments
determines the representation:

BinaryExpression::

query mapAddExpression(le : CExpression, re : CExpression) : CExpression

post:

(left.type.name = "String" & right.type.name = "String" =>

result = createCBinOpCall(expId, "concatenateStrings", le, re)) &

(true =>

CBinaryExpression->exists(ce | ce.cexpId = expId & ce.operator = "+" &

ce.left = le & ce.right = re &

ce.type = CType[type.typeId] &

ce.elementType = CType[elementType.typeId] &

result = ce))

BinaryExpression::

query mapSubtractExpression(le : CExpression, re : CExpression) : CExpression

post:

(left.type.name = "String" & right.type.name = "String" =>

result = createCBinOpCall(expId, "subtractString", le, re)) &

(left.type.name = "Set" or left.type.name = "Sequence" =>

result = createCBinOpCall(expId, "removeAll" + left.elementType.name, le, re)) &

(true =>

CBinaryExpression->exists(ce | ce.operator = "-" &

ce.cexpId = expId &

ce.left = le & ce.right = re &

ce.type = CType[type.typeId] &

ce.elementType = CType[elementType.typeId] &

result = ce))

BinaryExpression::

query mapComparitorExpression(le : CExpression, re : CExpression) : CExpression

post:

(left.type.name = "String" & right.type.name = "String" =>

CBinaryExpression->exists(be | be.cexpId = expId &

be.operator = Expression.cop(operator) &

be.left = createCBinOpCall(expId + "_strcmp", "strcmp", le, re) &

CBasicExpression->exists(zero | zero.data = "0" &

zero.cexpId = expId + "_0" &

be.right = zero) &

be.needsBracket = true &

result = be)) &

(true =>

CBinaryExpression->exists(ce | ce.cexpId = expId & ce.operator = operator &

ce.left = le & ce.right = re &

ce.type = CType[type.typeId] &

ce.elementType = CType[elementType.typeId] &

result = ce))

BinaryExpression::

query mapEqualityExpression(le : CExpression, re : CExpression) : CExpression

post:

(left.type.name = "String" & right.type.name = "String" =>

result = mapComparitorExpression(le, re)) &

31

(left.type.name = "Set" =>

result = createCBinOpCall(expId, "equalsSet",

Expression.cast("void**", le),

Expression.cast("void**", re))) &

(left.type.name = "Sequence" =>

result = createCBinOpCall(expId, "equalsSequence",

Expression.cast("void**", le),

Expression.cast("void**", re))) &

(true =>

CBinaryExpression->exists(ce | ce.cexpId = expId & ce.operator = "==" &

ce.left = le & ce.right = re &

ce.type = CType[type.typeId] &

ce.elementType = CType[elementType.typeId] &

result = ce))

BinaryExpression::

query mapInclusionExpression(le : CExpression, re : CExpression) : CExpression

post:

(operator = ":" =>

result = createCBinOpCall(expId, "isIn",

Expression.cast("void*", le),

Expression.cast("void**", re))) &

(operator = "->includes" =>

result = createCBinOpCall(expId, "isIn",

Expression.cast("void*", re),

Expression.cast("void**", le))) &

(operator = "->includesAll" =>

result = createCBinOpCall(expId, "containsAll",

Expression.cast("void**",le),

Expression.cast("void**",re))) &

(operator = "<:" =>

result = createCBinOpCall(expId, "containsAll",

Expression.cast("void**", re),

Expression.cast("void**", le)))

BinaryExpression::

query mapExclusionExpression(le : CExpression, re : CExpression) : CExpression

post:

(operator = "/:" =>

CUnaryExpression->exists(nin | nin.cexpId = expId & nin.operator = "!" &

nin.argument = createCBinOpCall(expId + "_isIn", "isIn",

Expression.cast("void*", le),

Expression.cast("void**", re)) &

nin.type = CType[type.typeId] &

nin.elementType = CType[elementType.typeId] &

result = nin)) &

(operator = "->excludes" =>

CUnaryExpression->exists(nin | nin.cexpId = expId & nin.operator = "!" &

nin.argument = createCBinOpCall(expId + "_isIn", "isIn",

Expression.cast("void*", re),

Expression.cast("void**", le)) &

nin.type = CType[type.typeId] &

nin.elementType = CType[elementType.typeId] &

result = nin)) &

(operator = "->excludesAll" =>

result = createCBinOpCall(expId, "disjoint",

Expression.cast("void**", le),

Expression.cast("void**", re))) &

32

(operator = "/<:" =>

CUnaryExpression->exists(nin | nin.cexpId = expId & nin.operator = "!" &

nin.argument = createCBinOpCall(expId + "_containsAll", "containsAll",

Expression.cast("void**", re),

Expression.cast("void**", le)) &

nin.type = CType[type.typeId] &

nin.elementType = CType[elementType.typeId] &

result = nin))

Binary String expressions are mapped by:

query mapStringExpression(le : CExpression, re : CExpression) : CExpression

post:

(operator = "->count" =>

result = createCBinOpCall(expId, "countString", le, re)) &

(operator = "->indexOf" =>

result = createCBinOpCall(expId, "indexOfString", le, re)) &

(true =>

CBasicExpression->exists(be | be.cexpId = expId &

be.data = Expression.cfunctionName(operator) &

be.parameters = Sequence{ le, re } &

result = be))

Quantifier, select/reject and collect expressions are mapped by:

query mapIteratorExpression(op : String, le : CExpression, re : CExpression) : CExpression

post:

result = createCBinOpCall(expId, op + left.elementType.name, le,

CExpression.defineCOpRef(CProgram.allInstances.any.defineCOp(re,

variable, le.elementType)))

query mapCollectExpression(le : CExpression, re : CExpression) : CExpression

post:

result = createCBinOpCall(expId, op + left.elementType.name, le,

CExpression.defineCOpRefCast(CProgram.allInstances.any.defineCOp(re,

variable, le.elementType), "void* (*)(" + le.elementType + ")"))

These create new operations that evaluate the predicate of the iterator/collect (the RHS argu-
ment), add it to the program, and create a reference to this operation as an argument for the C
operation that evaluates the iterator/collect. For collect, the function reference must be cast to
the function pointer type void* (*)(struct E*) where the LHS has element type E.

Sorted-by expressions are mapped by:

BinaryExpression::

query mapSortByExpression(arg : CExpression) : CExpression

post:

result = Expression.cast("struct " + elementType.name + "**",

createCBinOpCall(expId, "treesort", Expression.cast("void**", arg), CExpression.defineCOpReference("compareTo" + right.type.name, "int")))

Comparitors compareToint , compareTolong , etc are already defined in ocl.h.
The definition of binary expression mapping is updated to:

BinaryExpression::

query mapBinaryExpression(lexp : CExpression,

rexp : CExpression) : CBinaryExpression

pre:

lexp = CExpression[left.expId] &

rexp = CExpression[right.expId]

post:

(operator = "+" =>

33

result = mapAddExpression(lexp, rexp)) &

(operator = "-" =>

result = mapSubtractExpression(lexp, rexp)) &

(operator = "=" =>

result = mapEqualityExpression(lexp,rexp)) &

(Expression.isComparitor(operator) =>

result = mapComparitorExpression(lexp,rexp)) &

(Expression.isInclusion(operator) =>

result = mapInclusionExpression(lexp,rexp)) &

(Expression.isExclusion(operator) =>

result = mapExclusionExpression(lexp,rexp)) &

(Expression.isIteratorOp(operator) =>

result = mapIteratorExpression(operator.tail.tail, lexp, rexp)) &

(operator = "->collect" =>

result = Expression.cast(rexp.type + "*", mapCollectExpression(lexp, rexp))) &

(operator = "->sortedBy" =>

result = mapSortByExpression(lexp)) &

(left.type.name = "String" & Expression.isStringOp(operator) =>

result = mapStringExpression(lexp,rexp)) &

((left.type.name = "Set" or left.type.name = "Sequence") &

Expression.isCollectionOp(operator) =>

result = mapCollectionExpression(lexp,rexp)) &

(true =>

CBinaryExpression->exists(c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.left = lexp & c.right = rexp &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c))

A string binary op is one of→indexOf , →count , →hasPrefix , →hasSuffix . An iterator operator
is one of →forAll , →exists, →exists1, →select , →reject .

A collection binary op is one of: →including , →excluding , →append , →indexOf , →count ,

→union, →intersection, ∪, ∩, a, →isUnique, →sortedBy . These are mapped as follows:

BinaryExpression::

query mapCollectionExpression(le : CExpression, re : CExpression) : CExpression

post:

(operator = "->including" & left.type.name = "Set" =>

result = createCBinOpCall(expId, "insert" + left.elementType.name, le, re)) &

(operator = "->including" & left.type.name = "Sequence" =>

result = createCBinOpCall(expId, "append" + left.elementType.name, le, re)) &

(operator = "->excluding" =>

result = createCBinOpCall(expId, "remove" + left.elementType.name, le, re)) &

(operator = "->append" =>

result = createCBinOpCall(expId, "append" + left.elementType.name, le, re)) &

(operator = "->count" =>

result = createCBinOpCall(expId, "count",

Expression.cast("void*", re),

Expression.cast("void**", le))) &

(operator = "->indexOf" =>

result = createCBinOpCall(expId, "indexOf",

Expression.cast("void*", re),

Expression.cast("void**", le))) &

(operator = "->union" or operator = "\\/" =>

result = createCBinOpCall(expId, "union" + left.elementType.name, le, re)) &

(operator = "^" =>

result = createCBinOpCall(expId, "concatenate" + left.elementType.name, le, re)) &

(operator = "->intersection" or operator = "/\\" =>

34

result = createCBinOpCall(expId, "intersection" + left.elementType.name, le, re)) &

(operator = "->isUnique" =>

result = createCBinOpCall(expId,

"isUnique" + left.elementType.name, le, re))

Unary expressions are mapped as follows:

UnaryExpression::

query mapUnaryExpression(arg : CExpression) : CExpression

pre:

arg = CExpression[argument.expId]

post:

(operator.size > 2 & Expression.isCfunction1(operator.tail.tail) =>

CBasicExpression->exists(c | c.cexpId = expId &

c.data = Expression.cfunctionName(operator.tail.tail) &

c.kind = "function" &

c.parameters = Sequence{ arg } &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] & result = c)) &

(operator = "->sort" => result = mapSortExpression(arg)) &

(Expression.isReduceOp(operator) =>

result = mapReduceExpression(arg)) &

(argument.type.name = "String" & Expression.isUnaryStringOp(operator) =>

result = mapStringExpression(arg)) &

(operator = "->display" =>

result = createCUnaryOpCall(expId, "display" + argument.type, arg)) &

((argument.type.name = "Set" or argument.type.name = "Sequence") &

Expression.isUnaryCollectionOp(operator) =>

result = mapCollectionExpression(arg)) &

(true =>

CUnaryExpression->exists(c | c.cexpId = expId &

c.operator = Expression.cop(operator) &

c.argument = arg &

c.type = CType[type.typeId] &

c.elementType = CType[elementType.typeId] &

result = c))

A reduce operator is one of →min, →max , →sum, →prd . These expressions are mapped by:

UnaryExpression::

query mapReduceExpression(arg : CExpression) : CExpression

post:

(operator[1] = "-" & operator[2] = ">" =>

result = createCBinOpCall(expId,

operator.tail.tail + argument.elementType.name, arg, argument.clength(arg))) &

(true =>

result = createCBinOpCall(expId, operator + argument.elementType.name, arg, argument.clength(arg)))

clength by default returns length((void ∗∗) arg), but for s→collect on a collection, and for attribute
applications s.att to a collection, it returns the size of s ′.

Sort expressions are mapped by:

UnaryExpression::

query mapSortExpression(arg : CExpression) : CExpression

post:

(elementType.name = "String" =>

result = Expression.cast("char**", createCBinOpCall(expId, "treesort",

Expression.cast("void**", arg), CExpression.defineCOpReference("strcmp", "int")))) &

(true =>

35

result = Expression.cast("struct " + elementType.name + "**",

createCBinOpCall(expId, "treesort", Expression.cast("void**", arg), CExpression.defineCOpReference("compareTo" + elementType.name, "int"))))

Unary String expressions are mapped by:

UnaryExpression::

query mapStringExpression(arg : CExpression) : CExpression

post:

(operator = "->size" =>

result = createCUnaryOpCall(expId, "strlen", arg)) &

(operator = "->first" =>

result = createCUnaryOpCall(expId, "firstString", arg)) &

(operator = "->last" =>

result = createCUnaryOpCall(expId, "lastString", arg)) &

(operator = "->front" =>

result = createCUnaryOpCall(expId, "frontString", arg)) &

(operator = "->tail" =>

result = createCUnaryOpCall(expId, "tailString", arg)) &

(operator = "->reverse" =>

result = createCUnaryOpCall(expId, "reverseString", arg)) &

(operator = "->display" =>

result = createCUnaryOpCall(expId, "displayString", arg)) &

(true =>

result = createCUnaryOpCall(expId, Expression.cfunctionName(operator), arg))

A (unary) collection operator is one of →size, →any , →reverse, →front , →last , →tail , →first ,
→sort , →asSet , →asSequence. These are mapped by:

UnaryExpression::

query mapCollectionExpression(arg : CExpression) : CExpression

post:

(operator = "->size" =>

result = createCUnaryOpCall(expId, "length", Expression.cast("void**", arg))) &

(operator = "->any" =>

result = createCUnaryOpCall(expId, "any", Expression.cast("void**", arg))) &

(operator = "->first" =>

result = createCUnaryOpCall(expId, "first", Expression.cast("void**", arg))) &

(operator = "->last" =>

result = createCUnaryOpCall(expId, "last", Expression.cast("void**", arg))) &

(operator = "->front" =>

result = createCUnaryOpCall(expId, "front" + elementType.name, arg)) &

(operator = "->tail" =>

result = createCUnaryOpCall(expId, "tail" + elementType.name, arg)) &

(operator = "->reverse" =>

result = createCUnaryOpCall(expId, "reverse" + elementType.name, arg)) &

(operator = "->asSet" =>

result = createCUnaryOpCall(expId, "asSet" + elementType.name, arg)) &

(operator = "->asSequence" =>

result = arg) &

(true =>

result = createCUnaryOpCall(expId, Expression.cfunctionName(operator), arg))

For any, first, last, the result also needs to be cast to arg.elementType.
There are 44 operations and 3 transformation rules for this use case. Testing and inspection

were used for validation and verification. The estimated effort for this iteration is shown in Table
13.

36

Stage Effort (person days)
Req. Elicitation 10
Eval./Negotiation 2
Specification 30
Review/Validation 30
Implementation/ 20
Testing

Total 92

Table 13: Development effort for Iteration 3

5 Iteration 4: Activities mapping

In this iteration, UML-RSDS activities are mapped to C statements by a subtransformation
statements2C . Figure 7 shows the input activity language. UML-RSDS statements correspond
closely to those of C. Figure 8 shows the metamodel for C statements. Table 14 shows the main
cases of the mapping of UML activities to C statements.

Figure 7: UML-RSDS activity metamodel

New identity attributes statId and cstatId are added to Statement and CStatement , respec-
tively, to support the bx and traceability requirements. A similar recursive descent style as for
expressions2C is used for the statement mapping specification. An operation

mapStatement() : CStatement

is defined in each Statement subclass.
For basic statements, this is defined as follows:

AssignStatement::

mapStatement() : CStatement

post:

CAssignment->exists(ca | ca.cstatId = statId &

ca.left = left.mapExpression() &

ca.right = right.mapExpression() &

result = ca)

37

Figure 8: C statement metamodel

Requirement UML activity st C statement st’

F1.4.1 Creation statement x : T T’ x = defaultT’;
defaultT’ is default value of T’

F1.4.2 Assign statement v := e v’ = e’;

F1.4.3 Sequence statement st1 ; ... ; stn st1’ ... stn’

F1.4.4 Conditional statement if e then st1 else st2 if e’ { st1’ } else { st2’ }
F1.4.5 Return statement return e return e’;
F1.4.6 Break statement break break;

F1.4.7 Bounded loop for (x : e) do st int i = 0;
on object collection e of entity for (; i < length((void**) e’); i++)
element type E { struct E* x = e’[i]; st’ }

New index variable i

F1.4.8 Unbounded loop while e do st while (e’) { st’ }
F1.4.9 Operation call ex.op(pars) op(ex’,pars’)

Table 14: Scenarios for mapping of statements to C

38

BreakStatement::

mapStatement() : CStatement

post:

CBreakStatement->exists(ca | ca.cstatId = statId & result = ca)

OperationCallStatement::

mapStatement() : CStatement

post:

OpCallStatement->exists(ca | ca.cstatId = statId &

ca.callExp = callExp.mapExpression() &

ca.assignsTo = assignsTo & result = ca)

ImplicitCallStatement::

mapStatement() : CStatement

post:

OpCallStatement->exists(ca | ca.cstatId = statId &

ca.callExp = callExp.mapExpression() &

ca.assignsTo = assignsTo & result = ca)

CreationStatement::

mapStatement() : CStatement

post:

DeclarationStatement->exists(ds | ds.cstatId = statId &

ds.createsInstanceOf = createsInstanceOf &

ds.assignsTo = assignsTo &

ds.type = CType[type.typeId] &

ds.elementType = CType[elementType.typeId] & result = ds)

For each category of composite statement, the subparts of the statement are mapped to C first,
and then composed by a separate operation. For example:

SequenceStatement::

mapStatement() : CStatement

post:

result = mapSequenceStatement(

statements.mapStatement())

mapSequenceStatement(css : Sequence(CStatement)) : CStatement

pre:

css = CStatement[statements.statId]

post:

CSequenceStatement->exists(cs | cs.cstatId = statId &

cs.kind = kind & cs.statements = css &

result = cs)

ConditionalStatement::

mapStatement() : CStatement

post:

result = mapConditionalStatement(

ifPart.mapStatement(), elsePart.mapStatement())

mapConditionalStatement(ifP : CStatement, elseP : Sequence(CStatement)) : CStatement

pre:

ifP = CStatement[ifPart.statId] &

elseP = CStatement[elsePart.statId]

post:

39

IfStatement->exists(istat | istat.cstatId = statId &

istat.ifPart = ifP &

istat.elsePart = elseP &

istat.test = test.mapExpression() &

result = istat)

UnboundedLoopStatement::

mapStatement() : CStatement

post:

result = mapUnboundedLoopStatement(

body.mapStatement())

mapUnboundedLoopStatement(bdy : CStatement) : CStatement

pre:

bdy = CStatement[body.statId]

post:

WhileLoop->exists(lp | lp.cstatId = statId &

lp.body = bdy & lp.test = test.mapExpression() &

result = lp)

BoundedLoopStatement::

mapStatement() : CStatement

post:

result = mapBoundedLoopStatement(

body.mapStatement())

mapBoundedLoopStatement(bdy : CStatement) : CStatement

pre:

bdy = CStatement[body.statId]

post:

ForLoop->exists(lp | lp.cstatId = statId &

lp.body = bdy & lp.test = test.mapExpression() &

lp.loopVar = loopVar.mapExpression() &

lp.loopRange = loopRange.mapExpression() &

result = lp)

The definitions of these mappings were revised and simplified during the specification stage, prior
to implementation.

The mappings have inverses:

CSequenceStatement::

mapCStatement() : Statement

post:

result = mapCSequenceStatement(

statements.mapCStatement())

mapCSequenceStatement(css : Sequence(Statement)) : Statement

pre:

css = Statement[statements.cstatId]

post:

SequenceStatement->exists(cs | cs.statId = cstatId &

cs.kind = kind & cs.statements = css &

result = cs)

IfStatement::

mapCStatement() : Statement

post:

result = mapIfStatement(

ifPart.mapCStatement(), elsePart.mapCStatement())

40

mapIfStatement(ifP : Statement, elseP : Sequence(Statement)) : Statement

pre:

ifP = Statement[ifPart.cstatId] &

elseP = Statement[elsePart.cstatId]

post:

ConditionalStatement->exists(istat | istat.statId = cstatId &

istat.ifPart = ifP &

istat.elsePart = elseP &

istat.test = test.mapCExpression() &

result = istat)

WhileStatement::

mapCStatement() : Statement

post:

result = mapWhileStatement(

body.mapCStatement())

mapWhileStatement(bdy : Statement) : Statement

pre:

bdy = Statement[body.cstatId]

post:

UnboundedLoopStatement->exists(lp | lp.statId = cstatId &

lp.body = bdy & lp.test = test.mapCExpression() &

result = lp)

and likewise for other composite statement cases.
The operation mapExpression is invoked from mapStatement in the cases of basic and com-

posite statements which involve expressions. For example:

ReturnStatement::

mapStatement() : CStatement

post:

CReturnStatement->exists(r |

r.cstatId = statId &

r.returnValue = returnValue.mapExpression() &

result = r)

This can be inverted using mapCExpression to convert the value expressions from C to UML.
Statements are printed by the genCtext use case, eg.:

DeclarationStatement::

query toString() : String

post:

(createsInstanceOf = "String" =>

result = type + " " + assignsTo + " = \"\"") &

(type : CPrimitiveType =>

result = createsInstanceOf + " " + assignsTo + " = 0;") &

(createsInstanceOf : CStruct.name =>

result = type + " " + assignsTo + " = NULL;") &

(createsInstanceOf.startsWith("Sequence") =>

result = type + " " + assignsTo + " = new" + elementType.name + "List();") &

(createsInstanceOf.startsWith("Set") =>

result = type + " " + assignsTo + " = new" + elementType.name + "List();")

CSequenceStatement::

query toString() : String

post:

41

result = statements->collect(s | s.toString() + "\n ")->sum()

IfStatement::

query toString() : String

post:

(elsePart.size = 0 =>

result = "if (" + test + ")\n { " +

ifPart + " }") &

(elsePart.size > 0 =>

result = "if (" + test + ")\n { " +

ifPart + " }\n else { " + elsePart.any + " }")

ForStatement::

query toString() : String

post:

ind = "ind_" + cstatId &

result = " int " + ind + " = 0;\n" +

" for (; " + ind + " < length((void**) " + loopRange + "); " + ind + "++)\n" +

" { " + loopRange.elementType + " " + loopVar + " = (" + loopRange + "[" + ind + "]);\n" +

" " + body + "\n" +

" } "

It was identified that the elsePart association ends should be 0..1 multiplicities to include the cases
of If statements without Else clauses. Likewise, the returnValue of a Return statement should be
optional. There are 24 operations and 1 rule for this iteration.

The estimated effort for this iteration is shown in Table 15.

Stage Effort (person days)
Req. Elicitation 2
Eval./Negotiation 1
Specification 6
Review/Validation 6
Implementation/ 4
Testing

Total 19

Table 15: Development effort for Iteration 4

6 Iteration 5: Use case mapping

In this iteration, the mapping usecases2C of use cases is specified and implemented. A large part
of this iteration was also taken up with integration testing of the complete transformation.

F1.5.1: A use case uc is mapped to a C operation with “application” scope, and with pa-
rameters corresponding to those of uc. Its code is given by the C translation of the activity
classifierBehaviour of uc.

F1.5.2: Included use cases are also mapped to operations, and invoked from the including use
case.

F1.5.3: Operation activities are mapped to C code for the corresponding COperation.
F1.5.1 and F1.5.2 are formalised as:

UseCase::

COperation->exists(cop | cop.name = name & cop.scope = "application" &

cop.isQuery = false &

42

cop.code = classifierBehaviour.mapStatement() &

parameters->forAll(x | CVariable->exists(y | y.name = x.name &

y.kind = "parameter" &

y.type = CType[x.type.typeId] &

y : cop.parameters)) &

cop.returnType = CType[returnType.typeId])

Similarly for the activities of UML operations (F1.5.3):

Operation::

COperation->exists(cop | cop.opId = name + "_" + owner.name &

cop.code = activity.mapStatement())

The other features of the COperation in this case are set by the iteration 2 mapping.
All auxiliary scope operations are printed before all entity operations, and these are printed

before all application operations:

COperation::

scope = "auxiliary" => self->display()

COperation::

scope = "entity" => self->display()

COperation::

scope = "application" => self->display()

The result of iterations 3, 4 and 5 is a transformation that operates on the 3 UML-RSDS
metamodels (a subset of Figure 3, and Figures 5 and 7) as inputs, and on a subset of the C
general metamodel (Figure ??) and on Figures 6, 8 as outputs. The completed prototype for
iterations 3, 4, 5 is uml2Cb.jar. It reads cmodel.txt produced by uml2Ca.jar and writes the
generated C program to the standard output.

There are 6 rules in this use case. Table 16 shows the resources used by this iteration.

Stage Effort (person days)
Req. Elicitation 1
Eval./Negotiation 0
Specification 1
Review/Validation 1
Implementation/ 5
Testing

Total 8

Table 16: Development effort for Iteration 5

7 Comparison with manual transformation development

Several code generators have previously been developed for UML-RSDS: for Java 4, Java 6, Java 7,
C# and C++. Each of these was developed using an agile development process but with manual
coding in Java. Table 17 shows the approximate effort in person-months expended for each of
these to date. The generators for Java 6, 7 and C# used very similar strategies and extensively
reused the code of the Java 4 version generator.

The best comparison with the C code generator is perhaps the C++ generator, which in-
volved considerable background research into the semantics, language and libraries of C++, and

43

Java 4 Java 6 Java 7 C# C++
Req. Anal. 6 1 2 3 6
Coding 12 3 4 4 6
Testing 6 1 1 1 2
Maintenance 6 1 1 1 3
Total 30 6 8 9 17

Table 17: Development effort for previous code generators

significant revision of the existing Java-oriented code generator. Likewise, the C code generator in-
volved substantial new work on the code generation stategy, in addition to the technical challenge
of implementing this strategy.

Summarising Tables 2, 4, 13, 15, 16, we obtain an overall estimate for the C code generator in
Table 18.

Stage Effort (person days)
Req. Elicitation 17
Eval./Negotiation 5
Specification 56
Review/Validation 57
Implementation/ 49
Testing
Total 184

Table 18: Overall development effort for C code generator

This amounts to 4.5 person months for requirements analysis/specification activities, compared
to 6 months for the manually-developed C++ generator (which had no specification). 49 days
were spent on implementation and testing, compared to 8 months for the C++ generator. A major
factor in this difference is the simpler and more concise transformation specification of the C code
generator (expressed in UML-RSDS) compared to the Java code of the C++ code generator.

8 Future work

The code generator specification can be used as the basis of alternative C translators. In particular,
there is interest in mapping to the high-integrity MISRA C subset [2]. For this subset, dynamic
memory allocation is not permitted, so for each class, a maximum bound must be provided to the
number of objects of the class. Classes can again be represented by C structs, but e instances
would be an array of structures, instead of an array of pointers to structures. Objects are repre-
sented as ints indexing into these arrays, and collections are also represented as fixed-size arrays.
The code generator satisfies most of the code structuring restrictions of MISRA C, and union data
structures and other cases of overlapping memory usage are already excluded. Recursive functions
are not permitted, so an alternative means of sorting (not treesort or qsort) must be used.

Conclusions

This case study is the largest transformation which has been developed using UML-RSDS, in terms
of the number of rules (of the order of 150 rules/operations in 5 subtransformations). By using a
systematic requirements engineering and agile development approach, we were able to effectively
modularise the transformation and to organise its structure and manage its requirements. Despite
the complexity of the transformation, it was possible to use patterns to enforce bx and other
properties, and to effectively prove these properties.

44

References

[1] K. Lano, S. Kolahdouz-Rahimi, Model-transformation Design Patterns, IEEE Transactions in Soft-
ware Engineering, vol 40, 2014.

[2] MIRA Ltd., MISRA-C:2004 Guidelines for the use of the C language in critical systems, 2004.

[3] OMG, Semantics of Business vocabulary rules (SBVR), Version 1.2 (2013),
www.omg.org/spec/SBVR/1.2/PDF.

45

