
Catalogue of Model Transformations

K. Lano

Dept. of Computer Science, King’s College London, Strand, London, WC2R 2LS, UK

This document presents a set of model transformations on UML class and
state machine models, as a preliminary version of a comprehensive catalogue for
use with UML development.

It is offered as a free resource to UML developers. Each transformation is
provided with an explanation of its purpose, examples of its use and conditions
necessary for its correct use.

Model transformations in UML can be classified in five categories:

1. Refinements.
2. Quality improvement transformations.
3. Elaborations.
4. Abstractions.
5. Design patterns.

1 Refinement Transformations

These transformations are used to refine a model towards an implementation. For
example, PIM to PSM transformations in the Model-driven Architecture. They
typically remove certain constructs or structures, such as multiple inheritance,
from a model, and represent them instead by constructs which are available in
the implementation platform.

1.1 Replacing inheritance by association

Description This transformation replaces an inheritance relationship between
two classes by an association between the classes.

Purpose This transformation is useful when refining a PIM towards a PSM for a
platform which does not support inheritance, such as the relational data model.
It can also be used to remove multiple inheritance for refinement to platforms
which do not support multiple inheritance.

Diagram Figure 1 shows the general structure of this transformation. The in-
heritance of B on A is replaced by a 0..1 to 1 association from B to A.

Correctness conditions Any expression in the original model which has B as con-
textual classifier, and which uses a feature f inherited from A, must be modified
in the new model to use ar .f instead.

The transformation is also used in [5] to improve the quality of models where
inheritance would be misapplied, such as situations of dynamic and multiple
roles. It is related to the Role pattern of [1].

A

B

A

B

ar1

0..1

att: T att: T

Fig. 1. Replace inheritance by association

1.2 Removal of many-many associations

Description This transformation replaces a many-many association with a new
class and two many-one associations.

Purpose Explicit many-many associations cannot be implemented using foreign
keys in a relational database – an intermediary table would need to be used
instead. This transformation is the object-oriented equivalent of introducing such
a table.

Diagram This is shown in Figure 2.

Conditions The new class must link exactly those objects that were connected
by the original association, and must not duplicate such links:

c1 : C & c2 : C & c1.ar = c2.ar & c1.br = c2.br ⇒ c1 = c2

In addition, any constraint with contextual classifier A or a subclass of A, which
refers to br , must replace this reference by cr1.br in the new model. Likewise
for navigations from B to A.

1.3 Removal of association classes

Description This transformation replaces an association class with a new class
and two associations.

Purpose Association classes cannot be represented directly in many object-
oriented programming languages.

A B
* *

CA B

* *1 1

br

ar brcr1 cr2

Fig. 2. Removing a many-many association

*
ar

1

att : T

A B

br

A BA_B

att : T1 *a

ar"

ar = ar".a br = br".b

1 1
b

br"

Fig. 3. Removing an association class

Diagram This is shown in Figure 3.

Conditions The new class must link exactly those objects that were connected
by the original association, and must not duplicate such links:

c1 : A B & c2 : A B & c1.a = c2.a & c1.b = c2.b ⇒ c1 = c2

Any constraint on C must be re-expressed as a constraint of the new class.
Constraints of A which refer to br must now be re-expressed using br”.b, etc.

1.4 Removing qualified associations

Description A qualified association with qualifier x : T to a class B is replaced
with an ordinary association to B enhanced with x : T as an additional attribute,
plus additional constraints.

Purpose Qualified associations cannot be directly expressed in some program-
ming languages, nor in relational databases.

Diagram Figure 4 shows the simple case where the qualified association has
multiplicity 1 at the target end.

A

x: T
1
br

B

A B

x: T
br

*

Fig. 4. Removing a qualified association

Conditions Constraints referring to br [val] in the original model must be changed
to use br→select(x = val) instead.

The constraints

br .x→size() = card(T)

and

br .x→size() = br→size()

hold in the new model.
In the case that the multiplicity of the original association is ∗ at the B end,

these constraints are replaced by:

w 6= v ⇒ br→select(x = w) ∩ br→select(x = v) = {}

Ie., the sets of B objects identified by different qualified index values are disjoint.

1.5 Removing aggregations

Description This transformation replaces a strong (composition) aggregation by
an association together with an additional constraint.

Purpose Aggregation cannot normally be represented directly in an OO pro-
gramming language.

Diagram Figure 5 shows the general situation.

Conditions The new constraint

killA(a) ⇒ killB (br(a))

expresses the deletion-propogating nature of the aggregation. The class B should
not be or become a supplier to any other class.

1.6 Weakening preconditions or strengthening postconditions

Description An operation precondition can be weakened (so that it is able to
be applied in more situations without error) and/or its postcondition strength-
ened (so that its effect is determined more precisely). Both potentially move the
method closer to implementation.

Diagram Figure 6 shows a general situation. It should be borne in mind that the
precondition of the operation in any interface used by a client will be the only
precondition that such a client can assume. Working to a more general (weaker)
precondition in a subclass is an issue of defensive programming: improving the
robustness of the actual implementation of the operation so that even if the
client does call it in an apparently invalid state (according to the interface), the
operation will still have defined behaviour.

A B

br

*

A B

br

*

kill A B=> kill (br)

Fig. 5. Removing aggregation

A

op(x: T): S pre: P1
post: Q1

A

op(x: T): S pre: P2
post: Q2

{ P1 => P2, Q2 => Q1 }

Fig. 6. Weakening preconditions/strengthening postconditions

1.7 Replace association by attribute

Description In UML 2.0, attributes of a class are equivalent to certain forms of
association from the class. Embedding an association into a class as an attribute
can be used as a step towards implementing it as an attribute of the class.

Diagram Figure 7 shows the equivalence of associations and attributes. Multiplicities,

A

br: B[m]

A B
br
m

B

*

Fig. 7. Equivalence of attributes and associations

visibilities, the {ordered} and {unique} constraints, and the indication / that the
feature is derived, can all be mapped from the association notation into identical
attribute notation.

Conditions Qualified associations cannot be represented as attributes, as there
is no corresponding attribute notation, ie, for specifying map data structures.
In addition the multiplicity at the owning entity end of an association cannot
be generally expressed in the attribute version. For an ordinary attribute this
multiplicity is ∗ and for an identity attribute (primary key) it is 0..1.

1.8 Introduce primary key

Description This transformation applies to any persistent class. If the class does
not already have a primary key, it introduces a new identity attribute, of integer
type, for this class, together with extensions of the constructor of the class, and
a new get method, to allow initialisation and read access of this attribute.

Purpose This is an essential step for implementation of a data model in a rela-
tional database.

Diagram This is shown in Figure 8.

A
att1: T1
att2: T2

akey: Integer

att2: T2
att1: T1

getakey(): Integer

A

{identity}

Fig. 8. Introduce primary key

Conditions A new constraint expressing the primary key property is added to
the new model:

A.allInstances()→size() = A.allInstances().akey→asSet()→size()

This must be maintained by the constructor, for example:

A(att1x : T1, att2x: T2, akeyx: Integer)

pre: A.allInstances().akey->excludes(akeyx)

1.9 Replace association by foreign key

Description This transformation applies to any explicit many-one association
between persistent classes. It assumes that primary keys already exist for the
classes linked by the association. It replaces the association by embedding values
of the key of the entity at the ‘one’ end of the association into the entity at the
‘many’ end.

Purpose This is an essential step for implementation of a data model in a rela-
tional database.

Diagram This is shown in Figure 9.

Conditions b.akey is equal to a.akey exactly when a 7→ b is in the original
association. This correspondence must be maintained by implementing addbr

and removebr operations in terms of the foreign key values.
Navigation from an A instance to its associated br set must be replaced by

B .allInstances()→select(akey = self .akey)

in the new model. Likewise for navigation from B to A.

1.10 Amalgamate subclasses into superclass

Description This transformation amalgamates all features of all subclasses of a
class C into C itself, together with an additional flag attribute to indicate which
class the current object really belongs to.

A

B

akey : T

bkey : S

akey : T

A

B

akey : T

bkey : S

1

*

{identity}

{identity}

{identity}

{identity}

br

Fig. 9. Replacing association by foreign key

Purpose This is one strategy for representing a class hierarchy in a relational
database. It is preferable to replacing inheritance by an association if the merged
classes are quite similar and differ only in a few attributes. Otherwise the result-
ing relational database tables will contain many blank columns.

Diagram This is shown in Figure 10.

Conditions Constraints of the subclasses must be re-expressed as constraints of
the amalgamated class, using the flag attribute, as illustrated in Figure 10.

Operations must also be redefined using explicit tests on flag instead of
dynamic binding. For example an operation op defined in all three original classes
would have the new postcondition definition

post: if (flag = isA)

then PostA

else if (flag = isB)

then PostB

else if (flag = isC)

then PostC

where the respective original postconditions are PostA, etc.
This transformation is related to the Collapsing Hierarchy refactoring of [3].

1.11 Make association into index

Description This replaces an association i which identifies a member of an or-
dered role by an integer index.

Purpose The resulting data structures are simpler and more efficient to imple-
ment.

A
atta : T1

X

B C
attc: T3

Y

attb: T21

*

*

1

InvC

A
atta : T1
attb: T2
attc: T3
flag: AType

AType <<enumeration>>
isA
isB
isC

X

*

1

*

Y0..1

flag = isB

ay

flag = isC =>
flag = isC => InvC

flag = isC

 ay.size = 1

Fig. 10. Amalgamation of subclasses transformation

Diagram Figure 11 shows this transformation where i in the first model is im-
plemented by br [index] in the second.

A
A

B B

0..1 1

1 i * br {ordered}
br {ordered}*

1

index: Integer

index >= 0 &
index <= br.size

br.size > 0 =>
 i : br

Fig. 11. Transforming index association into an attribute

Condition References to i in the constraints of the original model need to be
replaced by

br→at(index)

under an assumption index > 0 in the new model.

1.12 Source splitting

Description This transformation refines the behaviour of a state machine by
introducing substates of a state s and splitting a transition from s into cases for
each of these substates.

Purpose A simple behaviour may need to be refined into subcases, in particular
if a new attribute or other structural feature is introduced in a class.

Diagram A simple case with two states is shown in Figure 12. Any number of
new states and corresponding transitions can be introduced.

A Be[G]/act

BA

A1

A2

e[G]/act

e[G]/act

Fig. 12. Source splitting

Condition All new substates of s must be sources of new transitions derived
from the transition of s . These new transitions can have additional postcondi-
tions/actions, but must have the same trigger and guard as the original transi-
tion. The targets of the new transitions can be substates of the original target.

This transformation is due to Cook and Daniels [2].

1.13 Target splitting

Description This transformation replaces a single transition in a state machine
by two or more transitions distinguished by disjoint firing conditions, and with
possibly distinct actions and target states.

Purpose This is used to refine behaviour by making distinct different cases which
were amalgamated in the abstract model. It can be used to define a state machine
for a subclass, so that the subclass state machine is behviourally compatible with
the superclass machine.

Diagram Figure 13 shows the structure of this transformation in the case of a
split into two transitions. One state of the source model is split into two, and a
transformation into the state is also split in two, such that G ≡ G1 ∨ G2 and
G1 ⇒ ¬ G2. Postconditions can be strengthened:

Post1 ⇒ Post

Post2 ⇒ Post

Any number of new substates of t can be introduced.

s

t

s

t1 t2

op(x)[G]/Post

op(x)[G2]/Post2op(x)[G1]/Post1

Fig. 13. Target splitting

This transformation is also due to Cook and Daniels [2].

1.14 Add orthogonal state machine

Description If a state machine SM of class C is made into a region in a con-
current composite state machine SM 1 of a class D , with two regions, where
the other region of SM 1 has a disjoint set of trigger events from SM , and both
regions have only call triggers, then SM 1 refines SM .

Purpose This transformation corresponds to the definition of a subclass D of
C which defines its own incremental behaviour independently of C and without
modifying C ’s behaviour.

Diagram This is shown in Figure 14.

SM

SM
SM1

Fig. 14. Adding a region

1.15 Express state machine in pre/post constraints

Description This transformation expresses the protocol state machine SM of a
class C , which only has call triggers on its transitions, as new data and pre/post
conditions of C . A new enumerated type: StatesC , is introduced, with an element
for each basic state configuration of the statemachine, and an attribute stateC :
StatesC of C , together with operation pre- and postconditions expressing the
behaviour of all the state machine transitions.

If operation α(p) has transitions tα1, ..., tαnα from state configurations sα1,
..., sαnα to state configurations pα1, ..., pαnα with guards Gα1, ..., Gαnα, then
the precondition of α is augmented with the condition

(stateC = sα1 & Gα1) or ... or (stateC = sαnα & Gαnα)

and the postcondition is augmented by conjuncts

(stateC@pre = sαi & Gαi@pre) ⇒ stateC = pαi

for i = 1, ...,nα.
Each state invariant Invs of a state s becomes a new class invariant

stateC = s ⇒ Invs

and each attribute of SM becomes an attribute of C .

Purpose The encoding of the state machine as explicit data and updates to this
can facilitate the generation of executable code to ensure that objects of the
class obey the dynamic behaviour it describes.

1.16 Express state machine as role classes

Description This transformation expresses the protocol state machine SM of a
class C , which only has call triggers on its transitions, as a hierarchy of new role
classes attached to C .

A new supplier class SM is introduced, with a subclass for each topmost
state of the statemachine, and these in turn have subclasses for each of their
states. Concurrent state machines are represented as an aggregate of the classes
representing each region. Each attribute of a state becomes an attribute of the
corresponding class, and likewise for constraints. Internal actions of a state be-
come operations of the corresponding class.

History states can be represented as additional associations recording the
state object associated to an object of C at exit from the composite state con-
taining the history state.

Purpose The representation of the state machine as classes makes its semantics
explicit in terms of class diagram semantics.

Diagram Figure 15 shows a typical example of this transformation.

1.17 Flattening a state machine

Description This transformation removes composite states and expresses their
semantics in terms of their substates instead: a transition from a composite state
boundary becomes duplicated as a transition from each of the enclosed states
(if they do not already have a transition for that event). A transition to the
composite state boundary becomes a transition to its default initial state.

Purpose The transformation reduces the complexity of the constructs used to
express dynamic behaviour, making this behaviour easier to verify, although the
size of the model will be increased.

Diagram Figure 16 shows a typical case of elimination of a composite state,
Figure 17 shows the elimination of a concurrent composite state. In this exam-
ple the transformation uses a synchronisation semantics for transitions with the
same trigger in two components of the same concurrent composite state: these
transitions must synchronise. This is a semantic variation point in UML – se-
mantics in which transitions for the same trigger can also occur independently
are also possible, and can be expressed by a variation on this transformation.

C
S1 S2S3

S4

C
CRole

S1 S2

S3 S4

1

Fig. 15. Representing state machine as classes

A
B

C

A1

A2 A3

e1

e2

e3

e4

e5

B

C

A1

A2 A3

e1

e2
e4

e5

e3

e5
e5

Fig. 16. Eliminating a composite state

B

C
e1

e5

e5

B

C

A1

A2 A3

e3

e4

e5

A

A4

e1 e2
e6 e2

e5

A1,A3

A2,A3

A1,A4

A2,A4

e2

e6

e6

e3
e4

e1

e4

e5

Fig. 17. Flattening a concurrent composite state

2 Quality Improvement Transformations

The transformations in this category aim to improve the structure of a model,
making it conform more closely to normal uses of UML notation, or improving
its precision or its flexibility for extension and adaption.

Two general categories of quality improvement transformation are the re-
moval of redundancy and the factoring out/decomposition of elements.

The ‘introduce superclass’ transformation is one example of the removal of
redundancies from a model. Normally redundancies should be eliminated – they
complicate a model unnecessarily and, if implemented, lead to extra work and
possibilities for program flaws. Other examples of such transformations are the
removal of redundant inheritances and associations.

2.1 Introduce superclass

Description Introduces a superclass of several existing classes, to enable common
features of these classes to be factored out and placed in a single location.

Purpose In general, this transformation should be applied if there are several
classes A, B , ... which have common features, and there is no existing common
superclass of these classes. Likewise if there is some natural generalisation of
these classes which is absent in the model.

Diagram Figure 18 shows a generic example, where the existing classes have
both common attributes, operations and roles.

A B

C

AorB

att: Integer

att1: Real

op(): Integer

op(): Integer

x: Boolean
y: Boolean

op(): Integer
op2(x: Real)

*

cr

0..8

A B

C

att: Integer
att1: Real
op(): Integer

att: Integer
x: Boolean
y: Boolean
op(): Integer
op2(x: Real)

cr

cr

1..8

0..5*

*

cr.size <= 5cr.size >= 1

Fig. 18. General superclass introduction

Conditions The features that are placed in the superclass must have the same in-
tended meaning in the different subclasses, rather than an accidental coincidence
of names.

The properties of the features in the superclass are the disjunction of their
properties in the individual subclasses. For common roles, this means that their
multiplicity on the association from the superclass is the ‘strongest common
generalisation’ of their multiplicities on the subclass associations. Eg, if the sub-
class multiplicities were m1..n1 and m2..n2, the superclass multiplicity would
be min(m1,m2)..max (n1,n2). For common operations, the conjunction of the
individual preconditions can be used as the superclass operation precondition,
and the disjunction of the individual postconditions as the superclass operation
postcondition.

Common constraints of the subclasses can also be placed on the superclass.

Variations include situations where a common superclass already exists, but
some common features of its subclasses are missing from it. In this case the
common features are simply moved up to the superclass. The ‘Pull up method’
refactoring of [3] is one case of this situation.

2.2 Remove redundant association

Description An explicit association which can be computed as a derived asso-
ciation from other model elements is made implicit and derived, or eliminated
completely.

Purpose Such associations duplicate information needlessly. In an implementa-
tion the overhead of maintaining consistency between the association and the
information it duplicates could be considerable, and prone to errors.

Diagram Figure 19 shows a situation where the redundant association is the
relational composition of two others, in Figure 20 it is the inverse of another
association.

A

B

C

br

cr1

cr2

*

*

*

cr2 = br.cr1

Fig. 19. Redundant composition association

A

Bbr

*

*
ar

x: br <=> self: x.ar

Fig. 20. Redundant inverse association

Conditions The removed explicit association must be expressible as a derived
association, ie, there must be a simple rule for computing it in terms of other
model elements. Constraints referring to the roles of the association must be
re-expressed in terms of the expressions these roles are derived from.

In certain cases, eg, the Observer pattern, maintaining explicit inverse as-
sociations is a valid decision, however even in these cases it is preferable to
avoid such bidirectional dependence and communication if possible, eg, by the
update method providing all needed information to the observer objects directly,
without the need for the observers to callback to the observable.

2.3 Eliminate redundant inheritance

Description If a class inherits another by two or more different paths of inheri-
tance, remove all but one path, if possible.

Purpose A redundant inheritance conveys no extra information, but complicates
the model.

Diagram Figure 21 shows a typical situation where class A directly inherits
from class C , and also indirectly via a more specific class B . The first inheri-
tance is redundant and can be removed. (In some languages, such as Java, such
inheritances would actually be invalid. In UML, according to the ‘object-oriented
resolution’ of operation behaviour, any operations defined in C potentially make
the model ill-formed [6]).

A

C

B

A

C

B

Fig. 21. Redundant inheritance removal

Conditions The removed inheritance, eg, of E inheriting from F , must be gen-
uinely redundant, ie, there must exist another chain of inheritances from E to
F via other intermediary classes.

2.4 Remove redundant classes

Description Classes may be redundant because they are essentially duplicates
of other classes in the model but with a different name (synonyms), or because
they are not needed in the system being defined.

Purpose Duplication of classes will lead to over-complex models which are diffi-
cult to modify and analyse.

Diagram Figure 22 shows a typical case where class A and class B are almost
identical and can be replaced by a single class.

A

B

C

/y: Integer

/x: Integer

cr

*

cr*att: Real

att: Real

x = cr.size

y = cr.size

A

C

/x: Integer

cr

*

att: Real

x = cr.size

Fig. 22. Redundant class removal

Conditions The constraints of the removed class should be expressed equivalently
in the new model, if they are required for the system.

A related case is when a class has been introduced as an intermediary dele-
gate between two other classes but is later recognised as redundant, because no
constraints refer to it, and any operations it has are carried out by delegation.
This is the ‘inline class’ refactoring of [3].

2.5 Remove redundant transitions

Description In a state machine, a transition has priority over another if both are
triggered by the same event, and the first has a source state which is a substate
of the source of the second. Therefore if the two transitions have identical guard,
trigger, target and actions, the higher-priority transition is redundant and can
be removed from the diagram.

Purpose Duplication of transitions complicates the model unnecessarily.

S1

S

S1

S

op[G]/acts

T

op[G]/acts

T

op[G]/acts

Fig. 23. Redundant transition removal

Diagram Figure 23 shows a typical case.

2.6 Merge partial classes

Description Classes may define only part of a coherent concept, other parts
may be expressed in different classes and their commonalities have not been
recognised. This transformation merges such classes into a single class.

Diagram Figure 24 shows a typical case where class User and class Person

represent parts of the same concept and can probably be merged into a single
class. The existence of 1-1 or 1-0..1 associations between classes is often an

User

Person
name: String
address: String
age: Integer

name: String
userId: String
password:
 String

1

1

User

name: String
address: String
age: Integer

 Stringpassword:
userId: String
username: String

Fig. 24. Merging partial classes

indicator of unnecessary separation of a single concept into two classes (in the
second case it may indicate a missing specialisation-generalisation relationship,
with the superclass being at the 1 end of the association).

Another group of transformations improve a model by factoring out certain
groups of features from a class into new classes or interfaces, or factoring common
features of a set of states into a new superstate.

2.7 Introduce interface(s) for supplier class(es)

Description If class A is a client of class B , but only uses some of B ’s operations,
introduce an interface BI of B which has the subset of operations of B that are
used by A. Make A a client of BI instead of B .

Purpose This reduces the dependencies in the model and enables separate de-
velopment of A and B , and permits them to be placed in different layers or tiers
of the system.

Diagram Figure 25 shows this transformation.

A B
op1(...): T1
op2(...): T2
op3(...): T3

*

br

A B
op1(...): T1
op2(...): T2
op3(...): T3

B_I

op1(...): T1
*

br

Fig. 25. Introducing an interface

Conditions A must only depend on the specifications of operations of B , not on
their implementation.

An example where it is important to factor out different interfaces of a class
for different clients is a password database (Figure 26): general users can only
use the check and setPassword operations, whilst the system administrator can
delete and create user records.

2.8 Disaggregation

Description A class is factored into component classes.

Purpose A class may become large and unmanageable, with several loosely con-
nected functionalities. It should be split into several classes, such as a mas-
ter/controller class and helper classes, which have more coherent functionalities
and data.

Diagram Figure 27 shows a generic example.

check(uId: String,
 pwd: String): Boolean
setPassword(uId: String,
 pwd: String,
 newpwd: String)

PasswordDatabase

delete(uId: String)
create(uId: String,
 pwd: String)

 check(uId,newpwd) = true
check(uId,pwd)@pre = true =>
post:

UserInterface Administrator
Interface

Fig. 26. Example of interface factoring

A

att1: T1
att2: T2
att3: T3
att4: T4
att5: T5
att6: T6
att7: T7

A

AAux1

AAux2

att1: T1
att3: T3
att4: T4

att5: T5
att6: T6

att2: T2
att7: T7

1

1

Fig. 27. Disaggregation

Conditions The helper/component objects always exist when the master object
delegates operations to them. Constraints of A which refer to the attributes
which have been placed in auxillary classes must replace the attribute reference
by a suitable navigation expression.

Figure 28 shows an example of disaggregation for classes in a student accom-
modation agency web system.

PersonalDetails
address: String
name: String
age: Integer

1

bookingId: Integer {identity}

AccommodationBooking

CourseDetails
course: String
year: Integer

1

hall1: String
hall2: String
hall3: String
smoking: Boolean
selfcatering: Boolean

Preferences
1

Fig. 28. Disaggregation for web forms

This transformation is related to ‘Extract Class’ in [3].

2.9 Factor out sub-operations

Description An operation is factored into sub-operations.

Purpose An operation may involve complex or repeated sub-computations. These
can be factored into private helper operations of the same class, invoked from
the operation.

Diagram Figure 29 shows a generic example where a complex expression exp is
factored out into a separate operation m1.

Conditions It should be checked that the helper operations do not already exist
in the class or in other classes before they are created. The helper operations
should be query operations.

This transformation, combined with ‘introduce superclass’, gives the tem-
plate method pattern in the case that methods in two separate classes have the
same remainder after their helper method code is factored out.

A similar transformation introduces derived features:

C

post:

m(x: T) : S

y : P

 y = f1(exp(x,y)) &
 result = f2(exp(x,y))

post:

y : P

 y = f1(m1(x,y)) &
 result = f2(m1(x,y))

m1(x: T, y: P): Q
m(x: T) : S

post:

 result = exp(x,y)

{query}

C

Fig. 29. Factoring an operation

2.10 Introduce derived features

Description An expression e built from local features of a class, which reoccurs
several times in a specification, is replaced by a new derived feature f of the
class, plus the constraint f = e.

Purpose Complex repeated expressions lead to inefficient implementations. A
derived feature representing the expression need only be recomputed when one
of its defining features changes value.

2.11 Introduce superstate

Description If states s1, ..., sn of a statechart all have a common set of outgoing
transitions, ie, for a non-empty set α1, ..., αm of events they have transitions
ts1,α1

, ..., tsn ,α1
, etc, such that, for a given j , the tsi ,αj

all have the same guards,
actions and target states, then introduce a new superstate s of the si , and replace
the tsi ,αj

by new transitions ts,αj
from s to the common target of the tsi ,αj

, and
with the same guard and actions. Common invariants of the substates can be
placed on the superstate.

Purpose This reduces the complexity of the diagram (the number of transitions
is reduced by (n − 1) ∗m) and may identify a conceptually significant state that
was omitted from the original model.

Diagram Figure 30 shows this transformation.

S1

S2

S3

T1

T2

α2

α1/ act1

α1/act1

α1/act1

[G]

[G]

[G]α2

α2

T1

T2

α1/ act1

α2 [G]

S1

S2

S3

Fig. 30. Introduce superstate

Conditions The new state can only be introduced if it does not overlap with
other states (except those it entirely contains or is contained by).

2.12 Introduce entry or exit actions of a state

Description If all transitions t1, ..., tn into a state s have the same final sequence
act of actions, factor these out and define the entry action of s to be act instead.

Likewise, if all transitions with source s have a common initial action act ′,
this can become the exit action of s .

Purpose This reduces the complexity and redundancy of the diagram. It may
correspond to a more efficient or modular implementation.

Diagram Figure 31 shows an example of this transformation.

2.13 Raise supplier abstraction level

Description If class A is a client of class B , a subclass of C , make A a client of
C instead if A only uses features and properties of C .

Purpose If A depends on an over-specific class, this reduces the independence of
parts of the system and makes it less easy to modify.

Diagram Figure 32 shows this transformation.

Conditions The client must genuinely be independent of the specific features of
its current supplier.

S1

S2

S3

S4

S5

S6

e1/act/act1/act2

e2/act3/act4/act1/act2

e3/act5/act6

e4/act5

e4/act5/act7/act8

S1

S2

S4

S5

S6

e1/act

e2/act3/act4

e3/act6

e4

e4/act7/act8

S3
entry:
act1/act2

exit: act5

Fig. 31. Introducing entry and exit actions

A B
op1(...): T1
op2(...): T2
op3(...): T3

*

br

A
*

br

op3(...): T3
op2(...): T2
op1(...): T1

B

C
op1(...): T1

C

op1(...): T1

Fig. 32. Raise supplier abstraction

2.14 Express OCL constraints graphically

Description Replaces textual constraints by equivalent diagram elements.

Purpose This transformation makes the properties of the model more immedi-
ately visually apparent, more readable and comprehensible by a wider range of
people and analysis tools, and more concise.

Examples are multiplicity constraints on association ends, cardinality con-
straints on classes, subset constraints between associations, etc. If a particular
kind of constraint is needed frequently in a domain or system, then a new UML
stereotype abbreviating the constraint can be introduced by means of a profile,
and used in the diagram instead of the constraint formula. The ‘identity’ (pri-
mary key) stereotype of attributes is an example of this approach. UML allows
new graphical icons or display styles to be used to indicate stereotyping, in addi-
tion (eg, the identity attributes could be written in bold font, instead of labelling
them with ‘{identity}’).

2.15 Make partial roles total

Description A 0..1 multiplicity role of a class A may be turned into a 1 multi-
plicity role by either moving the role to a superclass of its current target, or by
moving the other end to a subclass of A on which the association is total.

Purpose Total associations are generally easier to implement and manage than
partial associations.

Diagram Figure 33 shows the ‘generalise target’ version of this transformation.
Figure 34 the ‘specialise source’ version.

Conditions In the first version we need the condition

br→isEmpty() ⇒ not(cr→isEmpty())

r is the union of br and cr .

2.16 Introduce module

Description This transformation groups together related classes into a single
unit (eg, a UML package or subsystem).

Purpose This transformation improves the modularity and hence analysability
of the model.

Diagram Figure 35 shows this transformation.

A

B

C

br

0..1

cr

0..1

A

C B

r

1

BorC

Fig. 33. Making partial roles total (a)

0..1

A
C

cr

B

A
C

cr

B

 1

Fig. 34. Making partial roles total (b)

Move LetterMove

Word

letterMoves

wordsFormed

*

*

Move LetterMove

Word

letterMoves

wordsFormed

*

*

Move
addLetterMove(m: Move, lm: LetterMove)
validateMove(m: Move, b: Board)
calculateScore(m: Move, b: Board) : Integer

Fig. 35. Introducing modules

Conditions The classes must represent a coherent unit. Normally if a class is
included in a module so are its subclasses, aggregate part classes, and those
classes which are suppliers to it and not suppliers to any other class (ie, subor-
dinate/auxiliary classes).

2.17 Simplify postconditions

Description A number of logical transformations can be made on postconditions
of an operation to simplify its specification.

Two postconditions with the forms A ⇒ B , A ⇒ C can be combined into
a single postcondition A ⇒ B & C .

Two postconditions with the forms A ⇒ C , B ⇒ C can be combined into
A or B ⇒ C .

If the left hand side P of a postcondition P ⇒ Q is a test on the prestate,
and is implied by a precondition of the operation, then the postcondition can be
simplified to Q .

Purpose It is important to make postconditions as clear and simple as possible,
to improve analysability and readability.

3 Design Patterns

Many design patterns can be considered as model transformations, restructuring
a model of a system without application of the pattern into an improved model
in which the pattern is applied. These transformations can be either quality
improvements or refinements (or both) in their effect.

3.1 Introduce Abstract Factory pattern

Description This pattern allows a decrease in the level of coupling between
classes in a system by enabling a client class to create objects of a general kind
without needing to know what particular implementation subtype they belong
to.

Diagram The before and after structures of a system to which this pattern has
been applied are given in Figure 36. The notation of [4] has been used: a dashed
arrow indicates a creation dependency, whilst a solid arrow indicates clientship.

productBproductA

implementation_kind:
 ImpType

settup()

settup()

factory
productA productB

ProductB1

ProductB2

ProductB1

ProductB2

ProductA1

AbstractProductA

ProductA1

AbstractProductBAbstractFactory

After:

Before:

AbstractProductA

ConcreteFactory1

ConcreteFactory2

AbstractProductB

ProductA2

ProductA2

Client

Client_1

Fig. 36. Application of Abstract Factory Pattern

In the initial description of a system, we could have the following form of
postcondition for the settup operation:

if implementation kind = < type1 >

then

(productA.oclIsTypeOf (ProductA1) &
productA.oclIsNew() &
productB .oclIsTypeOf (ProductB1) &
productB .oclIsNew())

else

(productA.oclIsTypeOf (ProductA2) &
productA.oclIsNew() &

productB .oclIsTypeOf (ProductB2) &
productB .oclIsNew())

The disadvantage of this approach is the necessity for a case statement and
knowledge in Client of the names of the implementation classes ProductA1,
ProductA2, etc.

In the revised version, we factor out the implementation dependence into the
factory objects:

post:

productA = factory .CreateProductA() &
productB = factory .CreateProductB()

An initialisation action to set implementation kind in Client will become an ac-
tion creating factory in Client 1. The concrete subtypes of Factory are
ConcreteFactory1, whose CreateProductA and CreateProductB operations return
new instances of ProductA1 and ProductB1 respectively. Similarly for ConcreteFactory2.
The implementation kind attribute is therefore replaced by polymorphic be-
haviour depending upon which subclass ConcreteFactory1 or ConcreteFactory2
of AbstractFactory the factory object belongs to.

Conditions An important correctness property which must be true for any pat-
tern which introduces an intermediate class such as Factory to implement at-
tributes of a client class, is that objects of this intermediate class should not be
shared between distinct clients.

For example, if another object had access to the factory of a Client object
obj then it could delete or change the class of factory during the execution of
obj .settup(), so invalidating the above restructuring.

3.2 Introduce State pattern

Description An operation may consist of many cases, one for each element of
an enumerated type. This explicit conditional choice can be made implicit by
using operation polymorphism and separating the behaviour for each case into
a separate subclass.

Purpose The pattern reduces the complexity of operations in the original class,
and increases cohesion by localising aspects relating to a particular state into a
separate class.

Diagram Figure 37 shows a general situation.

Condition Membership of the subclass for a state (eg, A1 for state1) in the
refined model should coincide with the state attribute having that state as its
value (att = state1) in the original model.

A

att: T

T <<enumeration>>
state1
state2

op(x: S)

post: att = state1 =>
 Pred1
post: att = state2 =>
 Pred2

A

A1 A2

op(x: S)

op(x: S)
post: Pred1

op(x: S)
 post: Pred2

Fig. 37. Introducing the State pattern

3.3 Introducing the Facade pattern

Description The facade pattern aims at simplifying the dependencies between
classes by bundling up a group of classes into a new subsystem: these classes are
typically used as common suppliers by several client subsystems.

The direct dependencies between clients and suppliers are replaced by de-
pendencies of the clients on a new facade class, which acts as an interface for the
new subsystem. This facade then invokes operations of the original suppliers to
implement the services required by clients.

Purpose This transformation increases the modularity of the system, and reduces
the potentially C ∗ S dependencies between the clients and suppliers to C + S ,
where C is the number of clients and S the number of their suppliers.

Diagram Figure 38 shows a typical example.

Conditions The sets of clients and suppliers should be disjoint. Each new opera-
tion of the facade interface must reproduce exactly the functionality expected by
the client that uses the operation to replace its original call(s) on the suppliers.

3.4 Introduce Singleton pattern

Description The Singleton pattern gives a standard design for a class which
must have only one object instantiation.

Old System: New System:

Facade

Subsystem

Clients

Subsystem

Clients

Fig. 38. Facade Pattern Design Step

Purpose This pattern implements a constraint

C .allInstances()→size() ≤ 1

for a class C .

Diagram Figure 39 shows the structure of a typical Singleton class after applica-
tion of this pattern. The constraint is ensured by the definition of the constructor
as private, and the getInstance() operation.

3.5 Replacing synchronous invocation by asynchronous

Description This pattern replaces a synchronous call of a client on a supplier by
an asynchronous call, using an intermediate active object.

Purpose This transformation aims to improve efficiency by reducing the time
that the client is blocked waiting for the supplier to complete its action.

Diagram This is a transformation both on the class diagram of the system
(Figure 40) and on the state machine (Figure 41).

Condition The required action m(val) should not return any result required by
the client.

C

exist: Boolean

−C()
+getInstance(): C
post:

1

instance

 then
 instance.isNew() &
 exist = true & result = instance
 else
 result = instance

 if exist = false

Fig. 39. Introduction of Singleton class

Client Supplier

Client SupplierActive
<<active>>

Delegate
m(z: T)

m(z: T)

1 1

1

n(z: T)

Fig. 40. Replacing synchronous by asynchronous: Class diagram

Client

.../m(val)

Supplier

m(z)[G]/acts

Supplier

m(z)[G]/acts

Client

ActiveDelegate

.../n(val)

n(x)/setv(x)

/m(v)

Fig. 41. Replacing synchronous by asynchronous: State machine

References

1. D. Bämer, et al, Role Object, Pattern Languages of Program Design, Addison-
Wesley, 2000.

2. S. Cook and J. Daniels, Designing Object Systems, Prentice Hall, 1994.
3. M. Fowler, Refactoring: Improving the design of existing code, Addison-Wesley,

2000.
4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-oriented Software, Addison-Wesley, 1994.
5. M. Grand, Patterns in Java, Wiley, 1998.
6. OMG, UML 2.0 Superstructure, 2005.

