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1 Hypersurfaces in real space forms

The problem of classifying hypersurfaces with constant principal curvatures has
a long and interesting history. Some of the earlier papers related to this problem
were written by Somigliana [44], Levi-Civita [35] and Segre [43], and are to some
extent related to geometrical optics. It follows from their work that a hypersurface
M in an n-dimensional Euclidean space En has constant principal curvatures if and
only if M is an open part of a round sphere, or of an affine hyperplane, or of a tube
around a k-dimensional affine subspace, k ∈ {1, . . . , n− 2}.

Élie Cartan [15] obtained the corresponding classification in real hyperbolic
space RHn. A hypersurface M in RHn has constant principal curvatures if and
only if M is congruent to a horosphere in RHn, to a totally geodesic hyperplane
RHn−1 ⊂ RHn or one its equidistant hypersurfaces, or to a tube around a totally
geodesic RHk ⊂ RHn, k ∈ {0, . . . , n−2}. The first step in the proof is to show, using
the Gauss-Codazzi equations, that the number g of distinct principal curvatures
of M is either 1 or 2. If g = 1, then M is an umbilical hypersurface, and the
classification of such hypersurfaces in RHn is rather elementary. If g = 2, one can
show that M has a focal manifold at some fixed distance, and using methods from
focal set theory one can prove that this focal set must be totally geodesic.

A remarkable consequence of the previous two results is that every hypersurface
with constant principal curvatures in En or RHn is an open set of a homogeneous
hypersurface. In other words, every complete hypersurface with constant princi-
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pal curvatures in En or RHn is homogeneous. This is no longer true for hyper-
surfaces with constant principal curvatures in the sphere Sn. The first complete
inhomogeneous hypersurfaces with constant principal curvatures in a sphere were
constructed by Ozeki and Takeuchi [42]. Using representations of Clifford algebras,
Ferus, Karcher and Münzner [24] generalized these examples and obtained a large
number of complete inhomogeneous hypersurfaces with constant principal curva-
tures in spheres. Homogeneous hypersurfaces in spheres were classified by Hsiang
and Lawson [25]. Basically, every such hypersurface is isometrically congruent to
an orbit of the isotropy representation of a Riemannian symmetric space of rank 2.

The story about the classification of isoparametric hypersurfaces in spheres is
quite interesting. It started with several papers by Ëlie Cartan ([15], [16], [17], [18]).
Cartan observed that the level sets of isoparametric functions on spheres have con-
stant principal curvatures, and conversely, every hypersurface in Sn with constant
principal curvatures is an open part of a level set of an isoparametric function on
Sn. He also classified all isoparametric hypersurfaces in spheres with at most three
distinct principal curvatures. Roughly, these are the umbilical hyperspheres, the
Riemannian products Sa × Sb ⊂ Sn with a + b = n − 1, and the tubes around
the four Cartan-Veronese embeddings of the projective planes over the normed real
division algebras R, C, H and O. Using methods from algebraic topology, Münzner
[40] proved that the number g of distinct principal curvatures of an isoparametric
hypersurface in a sphere satisfies g ∈ {1, 2, 3, 4, 6}. Abresch [1] then obtained for the
cases g ∈ {4, 6} some restrictions on the multiplicities of the principal curvatures.
In particular, when g = 6, all the multiplicities must be equal and n ∈ {7, 13}.
Dorfmeister and Neher [23] settled the case for S7. Every isoparametric hyper-
surface in S7 with six distinct principal curvatures is an open part of a principal
orbit of the isotropy representation of the symmetric space G2/SO4. Miyaoka [38]
recently proved that every isoparametric hypersurface in S13 with six distinct prin-
cipal curvatures is an open part of a principal orbit of the adjoint representation of
the exceptional compact Lie group G2. All these results together imply that every
complete isoparametric hypersurface in a sphere with g ∈ {1, 2, 3, 6} is homoge-
neous. The remaining case g = 4 is still open, but there has been some significant
recent progress. Abresch’s result about the multiplicities for g = 4 states that they
come in pairs (m1,m2), where m1 is the multiplicity of two principal curvatures,
and m2 is the multiplicity of the remaining two principal curvatures. Cecil, Chi and
Jensen [19] proved that every inhomogeneous isoparametric hypersurface in Sn is
congruent to one of the examples constructed by Ferus, Karcher and Münzner with
the possible exception of the pairs (4, 5), (3, 4), (7, 8) and (6, 9). Recently Chi [20]
presented a simpler proof of this result and also settled the case (3, 4), showing that
there are no further new examples.

It is remarkable that apart from spheres no other symmetric space is known
which admit inhomogeneous hypersurfaces with constant principal curvatures (apart
from trivial constructions on products using known examples).
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2 Hypersurfaces in complex space forms

The homogeneous hypersurfaces in complex projective space CPn were classi-
fied by Takagi [45]. Consider a Hermitian symmetric space G/K of rank 2 and with
real dimension 2n+2. The isotropy representation of G/K induces a cohomogeneity
one action on S2n+1 which is compatible with the Hopf fibration S2n+1 → CPn.
The principal orbits of the induced cohomogeneity one action on CPn are of course
homogeneous hypersurfaces. Takagi proved that each homogeneous hypersurfaces
in CPn is holomorphically congruent to such an orbit. The classification of Hermi-
tian symmetric spaces therefore readily leads to the classification of homogeneous
hypersurfaces in CPn.

The classification of homogeneous hypersurfaces in the complex hyperbolic space
CHn is more complicated due to the noncompactness of the isometry group. The
final classification was obtained by Berndt and Tamaru [12]. Consider an Iwasawa
decomposition G = KAN of G = SU1,n. Then the solvable Lie group AN acts sim-
ply transitively on CHn. The orbits of N are horospheres in CHn, and they are all
holomorphically congruent to each other. Now consider the Lie algebra a+n of AN .
The nilpotent subalgebra n is isomorphic to the (2n − 1)-dimensional Heisenberg
algebra and can be realized algebraically as the sum of two root spaces n = gα+g2α
of a suitable restricted root space decomposition of g = su1,n. The root space gα
is isomorphic to Cn−1 with respect to the complex structure on CHn. Let v be a
linear subspace of gα with constant Kähler angle, and denote by gα	 v the orthog-
onal complement of v in gα. Then s = a + (gα 	 v) + g2α is a subalgebra of a + n.
The corresponding subgroup S of AN ∼= CHn can be viewed as a submanifold of
CHn. If v is a k-dimensional complex subspace of gα, then S is holomorphically
congruent to a totally geodesic CHn−k ⊂ CHn. If v is 1-dimensional, then S is
the ruled real hypersurface in CHn which is generated by a horocycle in a totally
geodesic RH2 ⊂ CHn. This homogeneous ruled real hypersurface was first discov-
ered by Lohnherr [36] in his PhD thesis. Every tube around such a submanifold
S ⊂ CHn is a homogeneous hypersurface in CHn. Finally, every tube a totally
geodesic RHn ⊂ CHn is a homogeneous hypersurface. Berndt and Tamaru proved
that every homogeneous hypersurface in CHn is holomorphically congruent to one
of the above examples.

Consider a hypersurface M in a Hermitian manifold N . The normal bundle νM
of M and the complex structure J of N induce a one-dimensional foliation on M
through the integral manifolds of JνM . If these integral manifolds are all totally
geodesic in M , then M is called a Hopf hypersurface. The sphere S2n+1 ⊂ Cn+1 is
an elementary example of a Hopf hypersurface. If N is a Kähler manifold, then M is
a Hopf hypersurface if and only if the maximal complex subbundle C of the tangent
bundle TM of M is invariant under the shape operator of M , or equivalently, if the
nonzero vectors in JνM are all principal curvature vectors of M . It is remarkable
that every homogeneous hypersurface in CPn is a Hopf hypersurface, whereas in
CHn most of the homogeneous hypersurfaces are not Hopf hypersurfaces.

The classification of hypersurfaces in CPn or CHn with constant principal cur-
vatures is still an open problem. There are some partial results though. Kimura [28]
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(for CPn) and Berndt [2] (for CHn) established that every Hopf hypersurface with
constant principal curvatures in CPn or CHn is an open part of a homogeneous
hypersurface. The number g of distinct principal curvatures for homogeneous hyper-
surfaces satisfies g ∈ {2, 3, 5} in the projective case (Takagi [45]) and g ∈ {2, 3, 4, 5}
in the hyperbolic case (Berndt and Dı́az Ramos [6]). Takagi ([46] for g = 2, [47]
for g = 3 and n ≥ 3) and Wang ([48] for g = 3 and n = 2) proved that every
hypersurface in CPn with constant principal curvatures and g ≤ 3 is an open part
of a homogeneous hypersurface. The analogous result for CHn was established by
Montiel [39] for g = 2 and by Berndt and Dı́az Ramos for g = 3 ([4] for n ≥ 3 and
[5] for n = 2). It is an elementary consequence of the Codazzi equation that there
are no umbilical hypersurfaces in CPn and CHn, that is, g = 1 is impossible. Little
is known about the situation for other values of g, although there has been some
recent progress by Dı́az Ramos and Dominguez Vazquez [22].

It is not known whether or not a hypersurface with constant principal curvatures
in CPn is necessarily a Hopf hypersurface. A positive answer would provide a
complete classification in view of Kimura’s result. It is also not known whether
or not there exist complete inhomogeneous hypersurfaces with constant principal
curvatures in CPn or CHn.

3 Hypersurfaces in quaternionic space forms

The homogeneous hypersurfaces in quaternionic projective space HPn were clas-
sified by Iwata [26] and D’Atri [21]. Any such hypersurface is either a tube around
a totally geodesic HP k ⊂ HPn for some k ∈ {0, . . . , n − 1} or a tube around a
totally geodesic CPn ⊂ HPn. The number g of distinct principal curvatures for
a homogeneous hypersurface in HPn satisfies g ∈ {2, 3, 4}. Martinez and Pérez
proved that every hypersurface in HPn with two distinct principal curvatures is an
open part of a homogeneous hypersurface. Complete classifications for g = 3 or
larger g are not known, and g = 1 is impossible.

A hypersurface M in a Riemannian manifold N is curvature-adapted if the
normal Jacobi operator and the shape operator of M commute, or equivalently, are
simultaneously diagonalizable. Let ξ be a local unit normal vector field of M and
denote by RN the Riemannian curvature tensor of N . The normal Jacobi operator
Kξ of M is defined by KξX = RN (X, ξ)ξ for all X ∈ TM . It is evident that every
hypersurface in a real space form is curvature-adapted, as Kξ is a multiple of the
identity transformation at each point. A hypersurface in a non-flat complex space
form is curvature-adapted if and only if it is a Hopf hypersurface. The concept of
curvature-adapted hypersurfaces therefore provides some kind of generalization of
Hopf hypersurfaces in Hermitian manifolds to more general manifolds. However,
it appears that there are not many such hypersurfaces in more general manifolds.
Berndt [3] proved that a hypersurface in HPn is curvature-adapted if and only if it
is an open part of a homogeneous hypersurface in HPn. It is quite surprising that
homogeneous hypersurfaces in HPn can be characterized by such a simple algebraic
condition. An interesting question is whether or not every hypersurface in HPn
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with constant principal curvatures is curvature-adapted. A positive answer would
provide a complete classification of hypersurfaces in HPn with constant principal
curvatures.

Homogeneous hypersurfaces in quaternionic hyperbolic space HHn are not yet
classified. Berndt and Tamaru [12] reduced the classification problem of such hyper-
surfaces to the problem of classifying all linear subspaces of a quaternionic vector
space with constant quaternionic Kähler angle. Through this reduction many new
examples of homogeneous hypersurfaces in HHn were found, but the complete clas-
sification of such subspaces is still elusive. Berndt [3] showed that every curvature-
adapted hypersurface in HHn with constant principal curvatures is an open part of
a horosphere in HHn, or of a tube around a totally geodesic HHk ⊂ HHn for some
k ∈ {0, . . . , n − 1}, or of a tube around a totally geodesic CHn ⊂ HHn. All these
hypersurfaces are homogeneous. It is an open problem whether or not the assump-
tion of constant principal curvatures is necessary for this result. The classification
of hypersurface in HHn (n ≥ 3) with two distinct constant principal curvatures
was obtained by Ortega and Pérez [41]; any such hypersurface is an open part of a
homogeneous hypersurface. For n = 2 the problem seems to be still open.

4 Hypersurfaces in octonionic space forms

The octonionic space forms are just the Cayley projective plane OP 2 =
F4/Spin9 and the Cayley hyperbolic plane OH2 = F−204 /Spin9. The problem with
these spaces is that there is no reasonable octonionic structure on them, something
like a Kähler structure on a complex space form or a quaternionic Kähler structure
on a quaternionic space form. This makes it quite difficult to make effective use
of the Gauss-Codazzi equations, and presumably just for this reason there are only
few results about hypersurfaces in OP 2 and OH2. There is though a useful explicit
expression for the Riemannian curvature tensor on octonionic space forms, which
was derived by Brown and Gray [14].

The homogeneous hypersurfaces in OP 2 were classified by Iwata [27]. There
are only two families of homogeneous hypersurfaces. One is given by the geodesic
hyperspheres in OP 2, and the other one by the tubes around a totally geodesic
HP 2 ⊂ OP 2. The first family arises as the principal orbits of the action of the
isotropy group Spin9, and the second one as the principal orbits of the action of
the maximal subgroup Sp3Sp1 of F4.

The homogeneous hypersurfaces in OH2 were classified by Berndt and Tamaru
[12]. Consider an Iwasawa decomposition F−204 = Spin9AN and the corresponding
decomposition on Lie algebra level, f−204 = so9+a+n. The 15-dimensional nilpotent
Lie algebra n decomposes into n = gα + g2α with some restricted root spaces in a
suitable restricted root space decomposition of f−204 . The root space g2α is the 7-
dimensional center of n. Let v be a k-dimensional linear subspace of gα ∼= R8 and
denote by gα	v the orthogonal complement of v in gα. Then s = a⊕ (gα	v)+g2α
is a subalgebra of a + n. The corresponding subgroup S of AN can be viewed as
a submanifold of OH2 as AN acts simply transitively on OH2. If k = 1, then
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S and its equidistant hypersurfaces are homogeneous hypersurfaces in OH2. If
k ∈ {2, 3, 4, 6, 7}, then every tube around S is a homogeneous hypersurface. If
k = 4, there exists a one-parameter family of incongruent submanifolds S, in all
other cases the submanifold S is unique up to congruence. Every homogeneous
hypersurface in OH2 is isometrically congruent to one of the above homogeneous
hypersurfaces, or to a horosphere in OH2, or to a geodesic hypersphere in OH2,
or to a tube around a totally geodesic OH1 ⊂ OH2, or to a tube around a totally
geodesic HH2 ⊂ OH2.

The number g of distinct principal curvatures of a homogeneous hypersurface
in OP 2 satisfies g ∈ {2, 3, 4}, whereas the possible values for g for homogeneous
hypersurfaces in OH2 have not yet been calculated. No classifications for hyper-
surfaces with constant principal curvatures in OP 2 or OH2 in terms of the number
g are known. It is also not known what the curvature-adapted hypersurfaces are in
these two octonionic space forms.

5 Hypersurfaces in symmetric spaces of higher rank

The symmetric spaces which we discussed above all have rank one. A important
geometric feature of these spaces is that any two tangent vectors of the same length
can be mapped onto each other by an isometry, that is, all directions are geometri-
cally equivalent. This is no longer true in symmetric spaces of higher rank, and this
causes major difficulties, but also interesting new phenomena. Consider for example
the symmetric space SL4(R)/SO4. This space can be identified with the space of
all upper triangular matrices X = (xij), i, j = 1, 2, 3, 4, with detX = 1. By setting
x12 = 0 or x23 = 0 we obtain two homogeneous minimal hypersurfaces M12 and
M23 of SL4(R)/SO4 respectively. These two hypersurfaces have the same principal
curvatures with the same multiplicities, but they are not isometrically congruent
(see[10]). This means that generically one cannot distinguish homogeneous hyper-
surfaces in a symmetric space of higher rank by means of their principal curvatures
and their multiplicities.

Homogeneous hypersurfaces in irreducible, simply connected, symmetric spaces
of compact type have been investigated and classified by Kollross [32]. One of the
remarkable consequences of this classification is that there are compact symmetric
spaces which do not admit any homogeneous hypersurfaces. This is in sharp con-
trast to the noncompact case where every symmetric space admits homogeneous
hypersurfaces. For example, horospheres in symmetric spaces of noncompact type
are homogeneous hypersurfaces. This indicates that the concept of duality between
symmetric spaces of compact type and of noncompact type cannot be used for
a classification of homogeneous hypersurfaces in symmetric spaces of noncompact
type.

Berndt and Tamaru developed in a series of papers (see [10], [11], [12], [13]) a
conceptual approach to the classification of cohomogeneity one actions, or equiva-
lently, to the classification of homogeneous hypersurfaces, in symmetric spaces of
noncompact type. Every homogeneous hypersurface arises as a principal orbit of a
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cohomogeneity one action on the space. For topological reasons a cohomogeneity
one action on a symmetric space of noncompact type induces either a Riemannian
foliation or has exactly one singular orbit. The cohomogeneity one actions whose
orbits form a Riemannian foliation were classified in [10]. The moduli space of such
actions up to orbit equivalence depends only on the rank of the symmetric space
and on possible duality and triality principles on the space.

The homogeneous hypersurfaces with a totally geodesic focal set were classified
in [11]. As of today there is no explicit classification of totally geodesic subman-
ifolds in symmetric spaces. Wolf [49] classified totally geodesic submanifolds in
symmetric spaces of rank one, and Klein classified in a series of papers ([29], [30],
[31]) totally geodesic submanifolds in symmetric spaces of rank two. A particular
class of totally geodesic submanifolds are the reflective submanifolds. A subman-
ifold of a Riemannian manifold is reflective if and only if the geodesic reflection
in the submanifold is a globally well-defined isometry. Reflective submanifolds in
symmetric spaces were classified by Leung ([33], [34]). Reflective submanifolds
always come in pairs. For every reflective submanifold F in a symmetric space
there exists a reflective submanifold F⊥ in that space such that F⊥ is tangent
to the normal space of F at some point. The congruency class of F⊥ does not
depend on the point in F . A reflective submanifold F in a symmetric space of
noncompact type is the focal set of a homogeneous hypersurface if and only if
the rank of F⊥ is one. A complete list of such submanifolds can be obtained
from Leung’s classification of reflective submanifolds. There are five non-reflective
totally geodesic submanifolds which arise as the focal set of a homogeneous hy-
persurface: G2

2/SO4 ⊂ SOo3,4/SO3SO4, GC
2 /G2 ⊂ SOC

7 /SO7, CH2 ⊂ G2
2/SO4,

SL3(R)/SO3 ⊂ G2
2/SO4, SL3(C)/SU3 ⊂ GC

2 /G2. All these exceptions are myste-
riously related to the exceptional Lie group G2.

Homogeneous hypersurfaces with a non-totally geodesic focal set in noncompact
symmetric spaces of rank one were discussed above and investigated in [12]. The
paper [13] is devoted to higher rank symmetric spaces. Berndt and Tamaru devel-
oped two construction methods for cohomogeneity one actions with a non-totally
geodesic singular orbit on symmetric spaces of noncompact type. These two meth-
ods are based on horospherical decompositions of symmetric spaces of noncompact
type and Langlands decompositions of parabolic subalgebras of semisimple real Lie
algebras. Horospherical decompositions are in one-to-one correspondence to subsets
of a set of simple roots of a restricted root space decomposition of the Lie algebra
of the isometry group of the symmetric space. Roughly, every symmetric space of
noncompact type is diffeomorphic to the product of a semisimple totally geodesic
submanifold, a Euclidean totally geodesic submanifold and a horocyclic submani-
fold. The first method states that every cohomogeneity one action on the semisimple
totally geodesic submanifold can be canonically extended to a cohomogeneity one
action on the symmetric space. This leads to many new examples of homogeneous
hypersurfaces with a non-totally geodesic focal set. The second method involves the
algebraic structure of the horocyclic submanifold and is more delicate. Until now
basically only two examples of homogeneous hypersurfaces are known which can be
constructed in this way and not by any of the other methods described above, one
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example in G2
2/SO4 and the other one in GC

2 /G2. This conceptual approach has
been applied successfully by Berndt and Tamaru to classify explicitly homogeneous
hypersurfaces in several noncompact symmetric space of rank 2.

Apart from the homogeneous hypersurfaces, no other examples are known of hy-
persurfaces with constant principal curvatures in symmetric spaces of higher rank.
It would be desirable to find geometric conditions for classifying hypersurfaces in
higher rank symmetric spaces. Berndt and Suh ([7], [8], [9]) investigated this in
more detail for the rank two symmetric space SU2+m/S(U2Um) and its noncom-
pact dual space SU2,m/S(U2Um). Both spaces are distinguished by being equipped
with both a Kähler structure and a quaternionic Kähler structure. Denote by C

the maximal complex subbundle and by Q the maximal quaternionic subbundle of
the tangent bundle TM of a hypersurface M in one of these two spaces. In the
compact case, it was shown in [7] that both C and Q are invariant under the shape
operator of M if and only if M is congruent to an open part of a tube around a
totally geodesic SU2+(m−1)/S(U2Um−1) ⊂ SU2+m/S(U2Um) or of a tube around a
totally geodesic HPn = Sp1+n/Sp1Spn ⊂ SU2+2n/S(U2U2n), where m = 2n. The
analogous problem for the noncompact space is more complicated, and a partial
solution was obtained in [9]. Since SU2+m/S(U2Um) is a Kähler manifold, we can
construct a unit tangent vector field on it by rotating a unit normal vector field
with the Kähler structure. The flow of this vector field is knows as the Reeb flow
on the hypersurface. In [8] it was shown that the Reeb flow on a hypersurface M
in SU2+m/S(U2Um) is isometric if and only if M is congruent to an open part of a
tube around the totally geodesic SU2+(m−1)/S(U2Um−1) ⊂ SU2+m/S(U2Um).

Horospheres play an important role for the geometry of symmetric spaces of
noncompact type. Geometrically, horospheres are spheres whose center is at infinity,
where infinity refers to the boundary of the symmetric space with regard to its
geodesic (or conic) compactification. The geometric concept of singular tangent
vectors leads naturally to the concept of singular points at infinity. In [9] a simple
characterization of horospheres whose center at infinity is singular was obtained. A
horosphere M in SU2,m/S(U2Um) has a singular point at infinity if and only if the
maximal complex subbundle C of TM is invariant under shape operator of M , or
equivalently, if and only if the maximal quaternionic subbundle Q of TM is invariant
under shape operator of M . An interesting problem is to find a generalisation of
this characterization of ”singular” horospheres in SU2,m/S(U2Um) to symmetric
spaces of higher rank in general.
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[37] A. Martinez and J.D. Pérez, Real hypersurfaces in quaternionic projective
space, Ann. Mat. Pura Appl. (4) 145 (1986), 355–384.

[38] R. Miyaoka, Isoparametric hypersurfaces with (g,m) = (6,2), preprint, 2009.

[39] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc.
Japan 37 (1985), 515–535.

[40] H.F. Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251
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