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Abstract. This paper contains a survey about the classification of symmetric subman-
ifolds of symmetric spaces. It is an extended version of a talk given by the author at the
7th International Workshop on Differential Geometry at Kyungpook National University
in Taegu, Korea, in November 2002.

1. Introduction

A connected Riemannian manifold M is a symmetric space if for each point p ∈ M there
exists an involutive isometry sp of M such that p is an isolated fixed point of M . Symmetric
spaces play an important role in Riemannian geometry because of their relations to algebra,
analysis, topology and number theory. The symmetric spaces have been classified by
E. Cartan. A thorough introduction to symmetric spaces can be found in [4].

Symmetric submanifolds play an analogous role in submanifold geometry. The precise
definition of a symmetric submanifold is as follows. A submanifold S of a Riemannian
manifold M is a symmetric submanifold of M if for each point p ∈ S there exists an
involutive isometry σp of M such that

σp(p) = p , σp(S) = S and (σp)∗(X) =

{
−X , if X ∈ TpS ,

X , if X ∈ νpS .

Here, TpS denotes the tangent space of S at p and νpS the normal space of S at p. The
isometry σp is called the extrinsic symmetry of S at p. It follows from the very definition
that a symmetric submanifold is a symmetric space.

The aim of this paper is to present a survey about the classification problem of symmetric
submanifolds of symmetric spaces. Another survey, concentrating on general theory of
symmetric submanifolds and on the classification in rank one symmetric spaces, has been
presented by Naitoh and Takeuchi in [18].

The author would like to thank the organisers of the workshop for the invitation to
attend the workshop and to give a talk.

2. Totally geodesic symmetric submanifolds

Let S be a symmetric submanifold of a Riemannian manifold M . Let p ∈ S and σp

be the extrinsic symmetry of S at p. The connected component S⊥p of the fixed point set

of σp containing p is a totally geodesic submanifold of M such that TpS
⊥
p = νpS. The
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submanifold S⊥p is just the image under the exponential map of M of the normal space
νpS. Thus a necessary condition for a submanifold to be symmetric is that tangent to
each normal space there exists a totally geodesic submanifold of M . This is no restriction
in a space of constant curvature, but it is quite restrictive in more general Riemannian
manifolds like symmetric spaces. Since every symmetric submanifold is a symmetric space,
it is geodesically complete. Let q1, q2 be two distinct points in S. Then there exists a
geodesic γ in S connecting q1 and q2. The geodesic symmetry σp at the midpoint p on
γ between q1 and q2 maps S⊥q1

to S⊥q2
, and vice versa. This shows that any two normal

submanifolds S⊥q1
and S⊥q2

are congruent to each other under an isometry of M . Thus
we may talk about the congruence class of the normal submanifolds associated to S. We
denote by S⊥ any representative of this congruence class of normal submanifolds S⊥p , p ∈ S.

Let α be the second fundamental form of S. Since each isometry of M is an affine map
with respect to the Levi Civita connection, we get

(∇⊥
Xα)(Y, Z) = σp∗(∇⊥

Xα)(Y, Z) = (∇⊥
σp∗Xα)(σp∗Y, σp∗Z) = −(∇⊥

Xα)(Y, Z)

for all p ∈ S and X, Y, Z ∈ TpS. Thus the second fundamental form of a symmetric
submanifold is parallel. The Codazzi equation then implies that each tangent space of S
is curvature-invariant, that is, R(TpS, TpS)TpS ⊂ TpS for all p ∈ S, where R denotes the
Riemannian curvature tensor of M . We summarize this in

Proposition. Let S be a symmetric submanifold of a Riemannian manifold M . Then
the following statements hold:

(i) the second fundamental form of S is parallel;
(ii) each tangent space of S is curvature-invariant, that is, R(TpS, TpS)TpS ⊂ TpS for

all p ∈ S;
(iii) for each point p ∈ S there exists a totally geodesic submanifold S⊥p of M with

p ∈ S⊥p and TpS
⊥
p = νpS. Any two normal submanifolds S⊥q1

and S⊥q2
, q1, q2 ∈ S, are

congruent to each other under an isometry of M .

We assume now that M is a symmetric space. Let G be identity component of the
isometry group of M , o ∈ M , and K the isotropy subgroup of G at o. Let g = k ⊕ m be
the corresponding Cartan decomposition of the Lie algebra g of G. We identify ToM and
m in the usual way. Then the curvature tensor Ro of M at o is given by

Ro(X,Y )Z = −[[X, Y ], Z]

for all X,Y, Z ∈ m ∼= ToM . This shows that a subspace V of ToM is curvature-invariant
if and only if V is a Lie triple system, that is, if [[V, V ], V ] ⊂ V . Given a subspace V of
ToM , there exists a totally geodesic submanifold S of M with o ∈ M and ToS = V if and
only if V is a Lie triple system.

A connected submanifold F of a Riemannian manifold M is reflective if the geodesic
reflection of M in F is a well-defined global isometry. As each connected component of the
fixed point set of an isometry is totally geodesic, a reflective submanifold is necessarily a
totally geodesic submanifold. We assume again that M = G/K is a connected Riemannian
symmetric space. Let o ∈ M , g = k⊕m be the corresponding Cartan decomposition, and
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V a Lie triple system in m such that its orthogonal complement V ⊥ is also a Lie triple
system in m. Since V is a Lie triple system, there exists a connected complete totally
geodesic submanifold F of M with o ∈ F and ToF = V . In fact, F is the orbit through
o of the connected Lie subgroup of G with Lie algebra [V, V ] ⊕ V ⊂ k ⊕ m = g. The fact
that V ⊥ is a Lie triple system means geometrically there exists an open neighborhood U
of F in M such that the geodesic reflection of U in F is an isometry. If, in addition, M is
simply connected, this local geodesic reflection can be extended to a globally well-defined
isometry on M , since every local isometry on a simply connected, complete, real analytic
Riemannian manifold can be extended to a global isometry. We thus have proved

Corollary. Let S be a symmetric submanifold of a symmetric space M . Then, at each
point o ∈ S, the tangent space ToS and the normal space νoS is a Lie triple system. If,
in addition, M is simply connected, then there exists a reflective submanifold F of M with
o ∈ F and ToF = ToS, where o ∈ S is an arbitrary point. In particular, a complete totally
geodesic submanifold of a simply connected symmetric space is a symmetric submanifold if
and only if it is a reflective submanifold.

Reflective submanifolds of simply connected irreducible symmetric spaces of compact
type have been classified by Leung in [7] and [8], where also an explicit list can be found.
Using duality between symmetric spaces of compact type and of noncompact type one
can use Leung’s classification to derive the corresponding classification for the noncompact
case.

We now discuss briefly some classification results of symmetric submanifolds of Euclidean
space Rn, the sphere Sn, the complex projective space CP n, the quaternionic projective
space HP n, the real hyperbolic space RHn, the complex hyperbolic space CHn, and the
quaternionic hyperbolic space HHn. For more details we refer to the survey by Naitoh and
Takeuchi [18].

3. Symmetric submanifolds of Rn

An R-space or real flag manifold is an orbit of the isotropy representation of a simply
connected symmetric space M of compact type. Note that the isotropy representation
of a symmetric space of noncompact type is the same as the one of the corresponding
dual symmetric space of compact type. Thus, in order to classify and study R-spaces
it is sufficient to consider just one type of symmetric spaces. An R-space which is a
symmetric space is called a symmetric R-space. A symmetric R-space coming from the
isotropy representation of an irreducible symmetric space is called an irreducible symmetric
R-space. Every symmetric R-space is the Riemannian product of irreducible symmetric R-
spaces.

The classification of the symmetric R-spaces was established by Kobayashi and Nagano
[5]. It follows from their classification and a result by Takeuchi [21] that the symmetric
R-spaces consist of the Hermitian symmetric spaces of compact type and their real forms.
A real form MR of a Hermitian symmetric space M is a connected, complete, totally
real, totally geodesic submanifold of M with dimRMR = dimCM . These real forms were
classified by Takeuchi [21] and independently by Leung [9].
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One can show that every irreducible symmetric R-space is a symmetric submanifold of
the corresponding tangent space (which is a Euclidean space). Surprisingly, as was proved
by Ferus [3], there are essentially no other symmetric submanifolds in Euclidean spaces.
More precisely, we have

Theorem (Ferus). Let S be a symmetric submanifold of Rn. Then there exist non-
negative integers n0, n1, . . . , nk with n = n0 + . . . + nk and irreducible symmetric R-spaces
S1 ⊂ Rn1, . . . , Sk ⊂ Rnk such that S is isometric to Rn0×S1× . . .×Sk and the embedding
of S into Rn is the product embedding of Rn0 × S1 × . . .× Sk into Rn = Rn0 × . . .× Rnk .

In the following table we list all symmetric submanifolds S of Rn which are isometric
to irreducible symmetric R-spaces. The spaces in the upper box of the table arise from
adjoint representations of compact Lie groups and are the Hermitian symmetric spaces
among the irreducible symmetric R-spaces. The spaces in the lower box are the real forms
of Hermitian symmetric spaces.

S n Remarks

G+
2 (Rm) = SO(m)/SO(2)SO(m− 2) m(m− 1)/2 m ≥ 5

SO(2m)/U(m) m(2m− 1) m ≥ 3
Gp(Cm) = SU(m)/S(U(p)U(m− p)) m2 − 1 m ≥ 2, 1 ≤ p ≤ [m

2
]

Sp(m)/U(m) m(2m + 1) m ≥ 2
E6/Spin(10)U(1) 78
E7/E6U(1) 133
Gp(Rm) = SO(m)/S(O(p)O(m− p)) (m + 2)(m− 1)/2 m ≥ 3, 1 ≤ p ≤ [m

2
]

Gp(Hm) = Sp(m)/Sp(p)Sp(m− p) (2m + 1)(m− 1) m ≥ 2, 1 ≤ p ≤ [m
2
]

U(m) 2m2 m ≥ 2
(Sp−1 × Sm−p−1)/Z2 p(m− p) m ≥ 3, 1 ≤ p ≤ [m

2
]

SO(m) m2 m ≥ 5
U(2m)/Sp(m) 2m(2m− 1) m ≥ 3
U(m)/SO(m) m(m + 1) m ≥ 3
Sp(m) 4m2 m ≥ 2
G2(H4)/Z2 = (Sp(4)/Sp(2)Sp(2))/Z2 42
OP 2 = F4/Spin(9) 26
(SU(8)/Sp(4))/Z2 70
S1 × E6/F4 54

4. Symmetric submanifolds of Sn and RHn

If S is a symmetric submanifold of Sn, then it is also a symmetric submanifold of Rn+1.
From the classification of symmetric submanifolds of Euclidean spaces we therefore get
easily the classification of symmetric submanifolds of Sn.

Theorem. Let S be a symmetric submanifold of Sn. Then there exist nonnegative
integers n1, . . . , nk with n+1 = n1 + . . .+nk and irreducible symmetric R-spaces S1 ⊂ Rn1,
. . . , Sk ⊂ Rnk such that S is isometric to S1× . . .× Sk and the embedding of S into Sn is
the product embedding of S1 × . . .× Sk into Sn ⊂ Rn+1 = Rn1 × . . .× Rnk .



SYMMETRIC SUBMANIFOLDS OF SYMMETRIC SPACES 5

The classification of symmetric submanifolds of RHn can be deduced in a similar fashion
by using the Lorentzian space Ln+1 instead of the Euclidean space Rn+1. Consider the
standard model of the real hyperbolic space in Ln+1.

Theorem. Let S be a symmetric submanifold of RHn. Then there exist nonnegative
integers n0, n1, . . . , nk with n = n0 + . . .+nk and irreducible symmetric R-spaces S1 ⊂ Rn1,
. . . , Sk ⊂ Rnk such that S is isometric to RHn0×S1× . . .×Sk and the embedding of S into
RHn is the product embedding of RHn0×S1× . . .×Sk into Ln+1 = Ln0+1×Rn1× . . .×Rnk .

In both theorems one has to consider suitable normalizations so that each embedding
really lives in the sphere or in the real hyperbolic space.

5. Symmetric complex submanifolds of CP n and CHn

The symmetric complex submanifolds of the complex projective space CP n have been
classified by Nakagawa and Takagi in [19].

Theorem (Nakagawa-Takagi). A complete complex submanifold of CP n, n ≥ 2, is a
symmetric submanifold if and only if it is congruent to one of the following models:

1. the totally geodesic subspace CP k ⊂ CP n for some k ∈ {1, . . . , n− 1};
2. the second Veronese embedding of CPm into CP n, where n = (m+2)(m+1)/2− 1

and m ≥ 2, given by the set of all rank one matrices (up to complex scalars) in the
(n+1)-dimensional complex vector space of all symmetric (m+1)×(m+1)-matrices
with complex coefficients;

3. the Segre embedding of CPm1 × CPm2 into CP n, where n = (m1 + 1)(m2 + 1)− 1
and m1,m2 ≥ 1, given by

([z0 : . . . : zm1 ], [w0 : . . . : wm2 ]) 7→ [z0w0 : . . . : zνwµ : . . . zm1wm2 ] ;

4. the complex quadric Qn−1 = G+
2 (Rn+1) in CP n, where n ≥ 2, given by

Qn−1 = {[z0 : . . . : zn] ∈ CP n | z2
0 + . . . + z2

n = 0} ;

5. the Plücker embedding of the complex Grassmannian G2(Cm) into CP n, where n =
m(m − 1)/2 − 1 and m ≥ 3, which is induced by the orbit through e1 ∧ e2 of the
canonical action of SU(m) on Λ2Cm.

6. the embedding of the Hermitian symmetric space SO(10)/U(5) into CP 15 which is
induced by the orbit through the highest weight vector of a 16-dimensional irreducible
spin representation of SO(10);

7. the embedding of the Hermitian symmetric space E6/Spin(10)U(1) into CP 26 which
is induced by the orbit through the highest weight vector of the 27-dimensional ir-
reducible representation of the exceptional Lie group E6.

Kon [6] proved that every symmetric complex submanifold of the complex hyperbolic
space CHn, n ≥ 2, is totally geodesic.
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6. Symmetric totally real submanifolds of CP n and CHn

The classification of n-dimensional symmetric totally real submanifolds of CP n was
established by Naitoh [11] (for the irreducible case) and by Naitoh and Takeuchi [17]
(for the general case). Consider first the natural action of SL(m,C) on Jm(R) ⊗ C, the
complexification of the real Jordan algebra Jm(R) of all symmetric m ×m-matrices with
real coefficients, given by (A,X) 7→ AXAT for A ∈ SL(m,C) and X ∈ Jm(R) ⊗ C.
The complex dimension of Jm(R) ⊗ C is m(m + 1)/2, and hence this action induces an
action of SL(m,C) on CP n with n = m(m + 1)/2 − 1. This action has exactly m orbits
which are parametrized by the rank of the matrices. The subgroup of SL(m,C) preserving
complex conjugation on CP n is SL(m,R). Now fix a maximal compact subgroup SO(m)
of SL(m,R). The restriction to SO(m,C) of the action of SL(m,C) on Jm(R)⊗ C splits
off a one-dimensional trivial factor corresponding to the trace. This means that SO(m,C),
and hence SO(m), fixes the point o in CP n given by complex scalars of the identity matrix
in Jm(R)⊗C. The maximal compact subgroup SO(m) of SL(m,R) determines a maximal
compact subgroup SU(m) of SL(m,C). The orbit of the action of SU(m) through o gives
an embedding of SU(m)/SO(m) in CP n as a symmetric totally real submanifold of real
dimension n. Using the real Jordan algebras Jm(C), Jm(H) and J3(O), and corresponding
subgroups according to the following table,

SL(m,C) SL(m,C)× SL(m,C) SL(2m,C) E6(C)
SL(m,R) SL(m,C) SL(m,H) E−26

6

SO(m) SU(m) Sp(m) F4

SU(m) SU(m)× SU(m) SU(2m) E6

we can construct further symmetric totally real submanifolds of CP n. Naitoh proved in
[11] that all n-dimensional irreducible symmetric totally real submanifolds of CP n which
are not totally geodesic can be obtained in this way.

Theorem (Naitoh). An n-dimensional complete irreducible totally real submanifold
of CP n, n ≥ 2, is a symmetric submanifold if and only if it is congruent to one of the
following embeddings:

1. the totally geodesic subspace RP n of CP n;
2. the embedding of SU(m)/SO(m) into CP n via the Jordan algebra Jm(R), where

m ≥ 3 and n = (m + 1)m/2− 1;
3. the embedding of SU(m) into CP n via the Jordan algebra Jm(C), where m ≥ 3 and

n = m2 − 1;
4. the embedding of SU(2m)/Sp(m) into CP n via the Jordan algebra Jm(H), where

m ≥ 3 and n = (2m + 1)(m− 1);
5. the embedding of E6/F4 into CP 26 via the Jordan algebra J3(O).

Naitoh and Takeuchi proved in [17] that each n-dimensional symmetric totally real sub-
manifold of CP n is basically a product of the irreducible submanifolds discussed above
and a flat torus. A suitable product of n + 1 circles in S2n+1 projects via the Hopf map
to a flat torus T n embedded in CP n as a symmetric totally real submanifold. Naitoh and
Takeuchi gave in [17] a unifying description of all n-dimensional symmetric totally real
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submanifolds of CP n using the Shilov boundary of symmetric bounded domains of tube
type. The classification of n-dimensional symmetric totally real submanifolds of CHn has
been obtained by Naitoh in [12].

7. Symmetric totally complex submanifolds of HP n and HHn

The 2n-dimensional symmetric totally complex submanifolds of the quaternionic projec-
tive space HP n have been classified by Tsukada in [22]. A basic tool for the classification is
the twistor map CP 2n+1 → HP n. Consider Hn+1 as a (right) vector space and pick a unit
quaternion, say i, which turns Hn+1 into a complex vector space C2n+2. The twistor map
CP 2n+1 → HP n maps a complex line in C2n+2 to the quaternionic line in Hn+1 spanned
by it. The fiber over each point is a complex projective line CP 1 ⊂ CP 2n+1. Alterna-
tively, the set of all almost Hermitian structures in the quaternionic Kähler structure of a
quaternionic Kähler manifold M forms the so-called twistor space Z of M , and the natural
projection Z → M is the so-called twistor map onto M . In the case of HP n the twistor
space is just CP 2n+1.

Now let S be a 2n-dimensional non-totally geodesic symmetric totally complex subman-
ifold of HP n. The first step in the classification is to show that S is a Hermitian symmetric
space with respect to a Kähler structure which is induced from the quaternionic Kähler
structure of HP n. Then one shows that S can be lifted to a Kähler immersion into the
twistor space CP 2n+1. The main part of the proof is then to show, using representation
theory of complex semisimple Lie algebras, that this lift is one of the following embeddings
in CP 2n+1:

1. the embedding of Sp(3)/U(3) into CP 13;
2. the embedding of G3(C6) into CP 19;
3. the embedding of SO(12)/U(6) into CP 31;
4. the embedding of E7/E6U(1) into CP 55;
5. the embedding of CP 1 ×G+

2 (Rm) into CP 2n+1, where m ≥ 3 and n = m− 1.

Note that in the last case the submanifold is isometric to CP 1 × CP 1 for m = 3 and
isometric to CP 1 × CP 1 × CP 1 for m = 4. The embedding of G3(C6) into CP 19 is
the Plücker embedding. The image of each of these embeddings under the Hopf map
CP 2n+1 → HP n is indeed a 2n-dimensional symmetric totally complex submanifold of
HP n, and Tsukada proved

Theorem (Tsukada). A 2n-dimensional complete irreducible totally complex subman-
ifold of HP n, n ≥ 2, is a symmetric submanifold if and only if it is congruent to one of
the following embeddings:

1. the totally geodesic subspace CP n of HP n;
2. the embedding of Sp(3)/U(3) into HP 6;
3. the embedding of G3(C6) into HP 9;
4. the embedding of SO(12)/U(6) into HP 15;
5. the embedding of E7/E6U(1) into HP 27;
6. the embedding of CP 1 ×G+

2 (Rm) into HP n, where m ≥ 3 and n = m− 1.



8 JÜRGEN BERNDT

Tsukada proved in [22] that every symmetric totally complex submanifold of the quater-
nionic hyperbolic space HHn, n ≥ 2, is totally geodesic.

8. Grassmann geometries

Let M be an m-dimensional connected Riemannian manifold. For each integer k ∈
{1, . . . , m− 1} the identity component G of the isometry group of M acts canonically on
the Grassmann bundle Gk(TM) of all k-dimensional linear subspaces of TpM , p ∈ M . For
V ∈ Gk(TM) we denote by G · V the orbit of G through V . By G(V ) we denote the
set of all connected submanifolds S of M with the property that all its tangent spaces
belong to G · V . The set G(V ) is called the Grassmann geometry associated to V . If S is
a homogeneous submanifold of M , then all its tangent spaces lie in the same orbit of G,
and hence the Grassmann geometry G(S) associated to S is well-defined. We give some
examples.

1. Let Sn be the n-dimensional sphere and RHn the n-dimensional real hyperbolic
space, and k ∈ {1, . . . , n − 1}. The Grassmann geometry G(Sk) (respectively
G(RHk)) associated to a totally geodesic Sk ⊂ Sn (respectively RHk ⊂ RHn) is
the set of all k-dimensional connected submanifolds of Sn (respectively RHn).

2. Let CP n be the n-dimensional complex projective space and CHn the n-dimensional
complex hyperbolic space, and k ∈ {1, . . . , n − 1}. The Grassmann geometry
G(CP k) (respectively G(CHk)) associated to a totally geodesic CP k ⊂ CP n (re-
spectively CHk ⊂ CHn) is the set of all k-dimensional connected complex subman-
ifolds of CP n (respectively CHn).

3. The Grassmann geometry G(RP n) (respectively G(RHn)) associated to a totally
geodesic RP n ⊂ CP n (respectively RHn ⊂ CHn) is the set of all n-dimensional
connected totally real submanifolds of CP n (respectively CHn).

4. Let HP n be the n-dimensional quaternionic projective space and HHn the n-
dimensional quaternionic hyperbolic space, and k ∈ {1, . . . , n − 1}. The Grass-
mann geometry G(CP n) (respectively G(CHn)) associated to a totally geodesic
CP n ⊂ HP n (respectively CHn ⊂ HHn) is the set of all n-dimensional connected
totally complex submanifolds of HP n (respectively HHn).

We can now rephrase the corollary from Section 2 in the following way.

Corollary. Let S be a symmetric submanifold of a simply connected Riemannian sym-
metric space M . Then there exists a reflective submanifold F of M such that S ∈ G(F ).

This motivates to study the Grassmann geometries of reflective submanifolds in more
detail. We say that a Grassmann geometry associated to a reflective submanifold F is trivial
if it contains only totally geodesic submanifolds. Otherwise the Grassmann geometry G(F )
is said to be nontrivial. For simply connected Riemannian symmetric space of compact type
Naitoh determined in [13], [14], [15], [16] all nontrivial Grassmann geometries associated to
reflective submanifolds. Using duality between Riemannian symmetric spaces of compact
type and of noncompact type his results can easily be transferred also to the noncompact
case. For the irreducible case his main result is
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Theorem (Naitoh). Let F be a reflective submanfold of a simply connected irreducible
Riemannian symmetric space. Then the Grassmann geometry G(F ) associated to F is
nontrivial if and only if it is one of the Grassmann geometries in the above examples or
if it is a Grassmann geometry associated to an irreducible symmetric R-space (see next
section).

This result might be viewed as a generalization of the classical result by Alekseevsky
[1] that a quaternionic submanifold of HP n or HHn is totally geodesic, as the Grassmann
geometries associated to HP k and HHk are trivial according to Naitoh’s result. We now
have to explain the Grassmann geometries associated to irreducible symmetric R-spaces.

9. Grassmann geometries associated to irreducible symmetric R-spaces

Let S be an irreducible symmetric R-space coming from the isotropy representation of
the simply connected irreducible Riemannian symmetric space M = G/K. Then S is the
orbit of the action of K on m through a nonzero tangent vector X ∈ ToM ∼= m. The vector
X determines a closed geodesic γ in M . The antipodal point o′ of o on γ is a pole of o,
that is, o′ is a fixed point of the action of K on M . Let p and p′ be the two midpoints
on γ between o and o′. Then the orbit F = K · p = K · p′ is isometric to the irreducible
symmetric R-space S. Moreover, F is a reflective submanifold of M . The Grassmann
geometry G(F ) associated to F is what we call the Grassmann geometry associated to
the irreducible symmetric R-space S. The submanifold F is also known as the centrosome
of the two poles o and o′. Moreover, the orbit of K through any point on the geodesic
different from o, o′, p, p′ is a symmetric submanifold of M that is not totally geodesic.

We illustrate this with a simple example. Consider the sphere Sn = SO(n + 1)/SO(n),
where SO(n) is the isotropy subgroup of SO(n + 1) at o ∈ Sn. Then SO(n) has exactly
one other fixed point o′ in Sn, namely the antipodal point of o in Sn. Let γ be a closed
geodesic through o and o′. Then the orbit F of SO(n) through any of the two midpoints
on γ between o and o′ is an equator, that is, a totally geodesic hypersphere Sn−1, which
obviously is a reflective submanifold. The orbits through the other points on γ are totally
umbilical hyperspheres and clearly symmetric submanifolds of the sphere Sn.

Theorem (Naitoh). Let G(F ) be the Grassmann geometry associated to the irreducible
symmetric R-space F and assume that the rank of M is greater than one. Then every
symmetric submanifold in G(F ) that is not totally geodesic arises in the way described
above.

We now turn to the noncompact case. We start with recalling the theory of symmetric R-
spaces from another viewpoint (see Kobayashi and Nagano [5], Nagano [10], and Takeuchi
[20] for details). Let (g, σ) be a positive definite symmetric graded Lie algebra, that is,
g is a real semisimple Lie algebra with a gradation g = g−1 ⊕ g0 ⊕ g1 so that g−1 6= {0}
and the adjoint action of g0 on the vector space g−1 is effective, and a Cartan involution
σ satisfying σ(gp) = g−p for all p ∈ {−1, 0, 1}. The positive definite symmetric graded Lie
algebras have been completely classified (see [5], [20]).

By defining τ(X) = (−1)pX for X ∈ gp we obtain an involutive automorphism τ of
g which satisfies στ = τσ. Let g = k ⊕ p be the Cartan decomposition induced by σ.
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Then we have τ(k) = k and τ(p) = p. Let k = k+ ⊕ k− and p = p+ ⊕ p− be the ±1-
eigenspace decompositions of k and p with respect to τ . Obviously, we have k+ = k ∩ g0,
k− = k ∩ (g−1 ⊕ g1), p+ = p ∩ g0 and p− = p ∩ (g−1 ⊕ g1). Since g is a semisimple Lie
algebra, there is a unique element ν ∈ g0 so that gp = {X ∈ g | ad(ν)X = pX} for all
p ∈ {−1, 0, 1}. It can be easily seen that ν ∈ p and hence ν ∈ p+.

We denote by B the Killing form of g. The restriction of B to p× p is a positive definite
inner product on p and will be denoted by 〈·, ·〉. This inner product is invariant under
the adjoint action of k on p and under the involution τ |p. In particular, p+ and p− are
perpendicular to each other. Let G be the simply connected Lie group with Lie algebra g
and K be the connected Lie subgroup of G corresponding to k, and define the homogeneous
space M = G/K. Let π : G → M be the natural projection, and put o = π(e), where
e ∈ G is the identity. The restriction to p of the differential π∗e : g → ToM of π at e
yields a linear isomorphism p → ToM . In the following we will always identify p and ToM
via this isomorphism. From the Ad(K)-invariant inner product 〈·, ·〉 on p ∼= ToM we get
a G-invariant Riemannian metric on M . Then M = G/K is the Riemannian symmetric
space of noncompact type which is associated with (g, σ, 〈·, ·〉).

We put K ′
+ = {k ∈ K|Ad(k)ν = ν}. Then K ′

+ is a closed Lie subgroup whose Lie algebra
is k+. The homogeneous space M ′ = K/K ′

+ is diffeomorphic to the orbits Ad(K) · ν ⊂ p
and K · π(exp ν) ⊂ M , where exp : g → G denotes the Lie exponential map from g into
G. We equip M ′ with the induced Riemannian metric from M . Then M ′ is a compact
Riemannian symmetric space associated to the orthogonal symmetric Lie algebra (k, τ |k),
where τ |k is the restriction of τ to k. The symmetric spaces M ′ arising in this manner
are precisely the symmetric R-spaces. If g is simple, then M ′ is an irreducible symmetric
R-space.

The subspace p− is a Lie triple system in p = ToM and [p−, p−] ⊂ k+. Thus there exists a
complete totally geodesic submanifold F of M with o and ToF = p−. Since F is the image
of p− under the exponential map of M at o, we see that F is simply connected. We define
a Lie subalgebra h of g by h = k+ ⊕ p− and denote by H the connected Lie subgroup of
G which corresponds to h. Then, by construction, F is the H-orbit through o. We denote
by K+ the isotropy subgroup at o of the action of H on M . The Lie algebra of K+ is k+.
Since F = H/K+ is simply connected, K+ is connected. The restriction τ |h of τ to h is
an involutive automorphism of g and (h, τ |h) is an orthogonal symmetric Lie algebra dual
to (k, τ |k). Moreover, F is a Riemannian symmetric space of noncompact type associated
with (h, τ |h). Since both p− and p+ are Lie triple systems, F is a reflective submanifold
of M . The corresponding Grassmann geometry G(F ) is a geometry according to Naitoh’s
Theorem.

We will construct a one-parameter family of symmetric submanifolds in M consisting
of submanifolds belonging to that Grassmann geometry, and which contains the totally
geodesic submanifold F and the symmetric R-space M ′. For each c ∈ R we define a
subspace pc of p− ⊕ k− = g−1 ⊕ g1 by pc = {X + c ad(ν)X |X ∈ p−}. In particular,
p1 = g1 and p−1 = g−1 are Abelian subalgebras of g. Then hc = k+ ⊕ pc is a τ -invariant
Lie subalgebra of g and (hc, τ |hc) is an orthogonal symmetric Lie algebra. We denote by
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Hc the connected Lie subgroup of G with Lie algebra hc and by Sc the orbit of the origin
o by Hc in M .

Proposition. For each c ∈ R the orbit Sc is a symmetric submanifold of M belonging
to the Grassmann geometry G(F ) on M . The submanifolds Sc and S−c are congruent via
the geodesic symmetry so of M at o. The submanifolds Sc, 0 ≤ c < 1, form a family of
noncompact symmetric submanifolds which are homothetic to the the reflective submanifold
F . The submanifolds Sc, 1 < c < ∞, form a family of compact symmetric submanifolds
which are homothetic to the symmetric R-space M ′. The submanifold M1 is a flat symmet-
ric space which is isometric to a Euclidean space. The second fundamental form αc of Sc

is given by αc(X, Y ) = c[ad(ν)X,Y ] ∈ p+ = T⊥
o Sc for all X, Y ∈ p− = ToSc. In particular,

all submanifolds Sc, 0 ≤ c < ∞, are pairwise noncongruent.

It was proved in [2] that every symmetric submanifold of an irreducible Riemannian
symmetric space of noncompact type and rank ≥ 2 arises in this way.

Theorem (Berndt-Eschenburg-Naitoh-Tsukada). Let M be an irreducible Rie-
mannian symmetric space of noncompact type and rank ≥ 2, and let G(F ) be the Grass-
mann geometry on M associated to a reflective submanifold F whose compact dual is a
Grassmann geometry associated to an irreducible symmetric R-space. Then every complete
submanifold in G(F ) is congruent to F or to a symmetric submanifold Sc as constructed
above.

We list below the symmetric spaces M and reflective submanifolds that are relevant for
the above theorem.

M F Remarks

SO(n,C)/SO(n) SOo(2, n− 2)/SO(2)SO(n− 2) n ≥ 5
SO(2n,C)/SO(2n) SO(n,H)/U(n) n ≥ 3
SL(n,C)/SU(n) SU(p, n− p)/S(U(p)U(n− p)) n ≥ 2, 1 ≤ p ≤ [n

2
]

Sp(n,C)/Sp(n) Sp(n,R)/U(n) n ≥ 2
EC

6 /E6 E−14
6 /Spin(10)U(1)

EC
7 /E7 E−25

7 /E6U(1)
SL(n,R)/SO(n) SOo(p, n− p)/SO(p)SO(n− p) n ≥ 3, 1 ≤ p ≤ [n

2
]

SL(n,H)/Sp(n) Sp(p, n− p)/Sp(p)Sp(n− p) n ≥ 2, 1 ≤ p ≤ [n
2
]

SU(n, n)/S(U(n)U(n)) R× SL(n,C)/SU(n) n ≥ 2
SOo(p, n− p))/SO(p)SO(n− p) RHp−1 × RHn−p−1 n ≥ 3, 2 ≤ p ≤ [n

2
]

SOo(n, n)/SO(n)SO(n) SO(n,C)/SO(n) n ≥ 5
SO(2n,H)/U(2n) R× SL(n,H)/Sp(n) n ≥ 3
Sp(n,R)/U(n) R× SL(n,R)/SO(n) n ≥ 3
Sp(n, n)/Sp(n)Sp(n) Sp(n,C)/Sp(n) n ≥ 2
E6

6/Sp(4) Sp(2, 2)/Sp(2)Sp(2)
E−26

6 /F4 F−20
4 /Spin(9)

E7
7/SU(8) SL(4,H)/Sp(4)

E−25
7 /E6U(1) R× E−26

6 /F4
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