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We comnsider singular solutions of the Fujita equation

ur = Au+vP? in RY, p > 1.

Typical superlinear equation

Appears naturally as a scaling limit

Scaling invariance

Simple-looking but rich mathematical structure

Various critical exponents

Singular steady states
. Moving singularity
. Dynamic singularity

Asymptotic behaviour of singular solutions
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On-going and future works



1. Singular steady states

N
It has been known that if NV > 2 and p > pgg4 := N _ 2’ then the

equation
ut:Au-l—up, wERNa
has a singular steady state
U = Pool(r) := Lr~ "™, r:=|x— &,

where &o € RY is arbitrary and

m:i= ——, L := {m(N—m—2)}ﬁ.



Singular steady state



Concerning other singular solutions, the exponents

N+ 2N —1
Px 1= N > 2,

N —4+2JN -1’

and
_N—|—2

N — 2

Ps : , N> 2

play crucial role.

(i) If psg < p < ps, then for any a > 0, the solution ¢, of

( N —1
<¢W+ er + ¥ =0, r > 0.
\ rango rN="2p(r) = a.

is positive for all » > 0 and ¢(r) — oo as r — 0. Then u = ¢, (|x|)

is a singular steady state.



(ii) It was shown by Chen-Lin (1999) that for p;; < p < p«, {¥a} the
set of singular steady states {¢,} has ordered structure (or separa-
tion property): 0 < o, () < @Yo, (1) < Yool(r) for all 0 < a; < a2

and » > 0. Moreover ¢, satisfies
Yo (r) =Lr ™ —a,r 2 +o(r ) asr—0,

where

N —2— /(N —2)2—4pLr-1
2 b
N —2+ /(N —2)2 —4pLr-1
; :

)\1:

)\2:

and 0 < A1 < Az < m. The constant a, is positive and monotone
decreasing in o and satisfies a, — 0 as a — oo. We note that
U = Pool(lx|) and u = @, (|x|) satisfy the Fujita equation in the

distribution sense.
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Structure of the singular steady states



2. Time-dependent singular solutions
The singularity of u = ¢, and u = ¢, persists for all £ > 0, but
it does not move in time.

We define a solution with a moving singularity as follows.

Definition 1. wu(x,t) is a solution of the Fujita equation with a singu-
larity at £(t) € RY if the following conditions are satisfied for some

T € (0, 00]:

(i) u(x,t) satisfies the equation in the distribution sense.

(ii) u(x,t) is defined for (xz,t) € RV \{&(t)} x [0,T), C? with respect

to x, and C! with respect to t.

(iii) u(x,t) — oo as x — &(t) for every t € [0,T).



u(x, t)

E (t)

Solution with a moving singularity



Consider the initial value problem

(P) { w = Au + u?, r € RV \ {£()}, t> 0,
w(z,0) = uo(x) >0, =€ RN\ {£0)},

where £(t) : [0,00) — RY is prescribed.

[Assumptions]
N N 4+ 2N —1
(A1) N > 3 and < p < Py i= il :
N — 2 N —44+ 2N —1

(A2) £(t) is sufficiently smooth.

(A3) wug(x) is nonnegative and continuous in z € R \ £(0), and is

uniformly bounded for |x — £(0)| > 1.

(A4) ug(x) =Lr ™ +o(r ™) asr = |x—&(0)| — 0.



Under the assumptions (Al) - (A4), the following results are ob-
tained by Sato-Y (2009, 2010, 2011) and Sato (2011).

(i) (Time-local existence) For some time interval [0,T), there exists

a solution u of (P) with a singularity at £(¢) such that
u(x,t) = Lr~"™ + o(r—>2)

asr =|x—€&()| — 0 forallt e [0,T).

(ii) (Uniqueness) If u; and us are two solutions of (P) such that
ua (z,t) — uz(z, t)| = o(r™>2)
asr = |x — &(t)| — 0, then u; = wuo.

(iii) (Comparison principle) If u; < ug at t = tg, then u; < wuy for

t > 1.



(iv) (Time-global existence) For some £(t) £ Const. and ug(x), the
solution exists globally in time and is asymptotically radially

symmetric as t — oo.

(v) (Sudden appearance and dissapaearcne of singularities) Singu-

larities can appear or disappear at any time.

(vi) (Appearance of anomalous singularities) At somet =T < oo,

the leading term of u at £(t) may become different from Lr—":
u(x,t) ~ Llx — &E(@)|™™ for t € (0,T),
u(x,t) 2 Llx — &)™ att =T.
(vii) (Blow-up at spatial infinity of singular solutions) Blow-up can

occur at spatial infinity, but the possibility of blow-up at a finite

point is an open question.



Why < p < ps?

N — 2
Assume that a solution u(x,t) with a singularity at &£(t) is close
to the singular steady state u = L|x — £(t)|~™, and formally expand

the solution u(x,t) at » = 0 as follows:

[m]
u(xz,t) = Lr~ ™ + Z bi(w,t)r ™1 + v(y,t),
=1
where
2 1
m=——, y=xz—£&@t), r=lyl, w=-—yeSV
p—1 |y

Substitute this expansion into the equation and equate each power

of r to obtain a system of equations for b;(w,t).



These equations are solvable and the remainder term v(y,t) must

satisfy

pLP—1
|y|?

ve = Av+ & - Vo + v + o(|ly|~2).

This equation is well-posed if and only if

< (N—2)2.

0 < pLP~1
b 4

These inequalities hold if

N > 2 and




3. Existence of a solution with a dynamic singularity
Hereafter, we consider the case where the solution is time-dependent

but the singular point is fixed to the origin (i.e., £(t) = 0).

( uy = Au + uP, x € RN\ {0}, t>0,
®)  { w@0) =u(x) >0,  xeRN\ {0},
. u(x,t) > 00 asx — 0, t>0.

We shall show
e More general results for the existence and uniqueness.
e Convergence to ¢, from below.

e Convergence to ¢p,.



Theorem 1. Let N > 3, ps; < p < p« and a(t) € C*([0,00)) be
given. Assume that

ug(x) is continuous and positive for x # 0,

ug(x) is uniformly bounded for |z| > 1,

ug(x) = L|z|™™ 4+ O(|z|~?*) as |z| — 0 for IX < min{m, X + 2}.

Then there exist T' > 0 and a positive solution u(x,t) of (P) defined
on RY \ {0} x (0,T) with the following properties :

(i) u(x,t) satisfies the equation in the distribution sense.
(ii) u(wx,t) is C? with respect to x # 0 and C' with respect to t > 0.

(iii) u(x,t) = L|z|™™ — a(t)|xz|~>*2 + o(|z|~>2) as |z| — O.



Remarks

e We can also show more general results about the uniqueness

and comparison principle.

e For solutions with a moving singularity, we mainly considered
the case where a(t) = 0. When a(t) is not constant, we say that

the solution has a dynamic singularity.



Outline of the proof

Step 1: Construct suitable comparison functions with a singularity

at the origin.

Step 2: Construct a sequence of approximate solutions on annular

domains

1
Dn::{wERN:g<|a}|<n}

with suitable boundary conditions.

Step 3: Extract a convergent subsequence, and show that the lim-

iting function is indeed a solution of (P) with desired properties.



4. Convergence from below to ¢

Theorem 2. Let N > 3 and psg < p < p«. Assume that the initial

value ug(x) satisfies
ug(x) is continuous in x # 0,
0 < uo(x) < poo(|z|) for = € RN \ {0},

ug(z) = poo(|z]|) + O(|]z| =) as || — 0 for FX < min{m, \; + 2}.

Then the singular solution u(x,t) of (P) with a(t) = 0 exists globally

in time and has the following properties:

(i) 0 < u(z,t) < poo(|z|) for all (x,t) € RN \ {0} x (0, c0).

(ii) u(x,t) — ¢_ (|x|) as t — oo uniformly on any compact set in

RN \ {0}.



(iii) If uo satisfies
0 < poo(|z]) —uo(x) < er(l+]z))™"  for z € RY \ {0}

with some ¢; > 0 and !l € (m, N — \y), then there exists c; > 0 such
that the singular solution satisfies

l—Xq

0 < |:13|>‘1‘<poo(|:13|) —u(z,t)| < cat™ 2 for all £ > 1.

Here, the range | € [m, N — \;) and the rate l_;‘l are optimal.




Proof. The proof is based on the comparison method. We look for

a subsolution of the form
u (x,t) := max{p(r) — U(|x|,t), 0}.

It becomes a subsolution if U is positive and satisfies the linearized

equation at @ o:
N —1 1
U =U,, + TU’I” + pgooo('r)p Ua

T A
where ppo ()P~ = 5 —- Here we set V(r,t) := r*U(r,t), where
I’Q
0 < A1 < X2 be the roots of

A2 — (N —2)A+pLP~t =0.



Then the linearized equation is rewritten as a generalized radial

heat equation

d—1
‘/t:‘/rr+—v'r, ’l">0,t>0,
T

where

d:ZN—ZAlez—A1—|—2>2.

The generalized radial heat equation has been extensively studied in
1960’s. Among others, we use a result by Bragg (1966) to show that

U — 0ast— 0 with a desired rate.



5. Convergence to the singular steady state ¢,

Theorem 3. Assume the same conditions as in Theorem 2. Then
the singular solution u(x,t) of (P) with a(t) = a, exists globally in
time and has the following properties:

(i) 0 < u(z,t) < poo(|z|) for all (z,t) € RN \ {0} x (0, c0).

(ii) u(x,t) — pa(|xz|) as t — oo uniformly on any compact set in
RN\ {0}.

(iii) If uo satisfies
wo(@) — palle)] < er(l+]al)  for = € RV \ {0}

with some ¢; > 0 and [ € (m, IN), then there exists ca > 0 such that

1

@M |u(m, t) — pallz])| < cat™ 2 for all t > 1.

Here, the range I € [m, N) and the rate l_;‘l are optimal.




[Idea of the proof]

The proof is more delicate than that of Theorem 2. The linearized

equation at ¢, is written as
N —1 1
U = U, + TUT’ + pSOa("“)p U.

Setting V (r,t) := r*U(r,t), this equation is rewritten as

d—1
‘/t — V'r'r _I_ TV'P -I_ g("“, t)Va

where X
_ pLP~
g(rst) := ppa(r)P~" — =z <0

g(0,t) =0 and g(r) ~ —Cr~—? at r ~ oo.

We study the behavior of solutions of this equation by using the

matched asymptotics.



A1 —q
Convergence rate |x| lu -0 | —~ t

1 4

N- 414
2
¢

N-2214

m- Aj

>

0 A1 m N -2 N 1
-1

Spatial decay rate ug —¢ ~ | x|



Remark 1.

In Theorems 2 and 3, the rate : 5

are different. Namely, ¢, is slightly more stable than ¢ .

Remark 2.

The convergence is faster in the inner region.

In the inner region (|z| < Ct'/?)
|zc|>‘1’u(a3,t) — pa(lz])| < cot™2  for all t > 1.
In the whole space,

l—Xq

|a:|>‘1‘u(w,t) — pa(lz])| < cat™ 2 for all ¢ > 1.

=M js common, but the ranges

This suggests that the convergence rate may vary depending on the

spatial weight.



[Convergence from above to @]

o for 2 < N <10,
Theorem 4. Let p,, < p < N + 2
Psg <P N + " for N > 10.

Assume that the initial value ug(x) satisfies
ug(x) is continuous in x # 0,
Poo (|z]) < uo(x) < (14 8)poo(lz]) z € RY \ {0},
ug(z) = L|z|™™ + O(|z|~>) as |z| — 0 for A < min{m, Ay + 2}.

If & > 0 is sufficiently small and a(t) = 0, then the singular solution
u(xz,t) of (P) exists globally in time and has the following properties:

(1) pool|z]) < u(x,t) < oo for (z,t) € RY \ {0} x (0, 00),

ii) u(x,t) — Yoo(|xr|) as t — oo uniformly on any compact set in
©

RN \ {0}.



We construct a supersolution by using a forward self-similar so-
lution with a singularity at the origin. We have found that such a

solution exists above the singular steady state ., if and only if

D for N < 10,
psg<p< N + 2

for N > 10.
N —1




Ongoing and future works:

Behaviour of solutions in the case a(t) Z Const.
Asymptotic behaviour in the case &£(t) Z Const.
Time-periodic solution with a singularity
Multiple and higher dimensional singularities
Bounded domain

Singularities on a boundary

Removability of singularities

Collision and splitting of singularities

Other parameter regions

Other equations





