Singular Solutions of a Seimilinear Parabolic equation

Eiji Yanagida (Tokyo Institute of Technology)
with Shota Sato and Masaki Hoshino

UK-Japan Winter School
Nonlinear Analysis
Royal Academy of Engineering, London, 7-11 January 2013

We consider singular solutions of the Fujita equation

$$
u_{t}=\Delta u+u^{p} \quad \text { in } \mathbf{R}^{N}, \quad p>1
$$

Typical superlinear equation
Appears naturally as a scaling limit
Scaling invariance
Simple-looking but rich mathematical structure
Various critical exponents

1. Singular steady states
2. Moving singularity
3. Dynamic singularity
4. Asymptotic behaviour of singular solutions
5. On-going and future works
6. Singular steady states

It has been known that if $N>2$ and $p>p_{s g}:=\frac{N}{N-2}$, then the equation

$$
u_{t}=\Delta u+u^{p}, \quad x \in \mathbf{R}^{N}
$$

has a singular steady state

$$
u=\varphi_{\infty}(r):=L r^{-m}, \quad r:=\left|x-\xi_{0}\right|
$$

where $\xi_{0} \in \mathbf{R}^{N}$ is arbitrary and

$$
m:=\frac{2}{p-1}, \quad L:=\{m(N-m-2)\}^{\frac{1}{p-1}}
$$

Singular steady state

Concerning other singular solutions, the exponents

$$
p_{*}:=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}, \quad N>2
$$

and

$$
p_{S}:=\frac{N+2}{N-2}, \quad N>2
$$

play crucial role.
(i) If $p_{s g}<p<p_{S}$, then for any $\alpha>0$, the solution φ_{α} of

$$
\left\{\begin{array}{l}
\varphi_{r r}+\frac{N-1}{r} \varphi_{r}+\varphi^{p}=0, \quad r>0 \\
\lim _{r \rightarrow \infty} r^{N-2} \varphi(r)=\alpha
\end{array}\right.
$$

is positive for all $r>0$ and $\varphi(r) \rightarrow \infty$ as $r \rightarrow 0$. Then $u=\varphi_{\alpha}(|x|)$ is a singular steady state.
(ii) It was shown by Chen-Lin (1999) that for $p_{s g}<p<p_{*},\left\{\varphi_{\alpha}\right\}$ the set of singular steady states $\left\{\varphi_{\alpha}\right\}$ has ordered structure (or separation property) : $0<\varphi_{\alpha_{1}}(r)<\varphi_{\alpha_{2}}(r)<\varphi_{\infty}(r)$ for all $0<\alpha_{1}<\alpha_{2}$ and $r>0$. Moreover φ_{α} satisfies

$$
\varphi_{\alpha}(r)=L r^{-m}-a_{\alpha} r^{-\lambda_{2}}+o\left(r^{-\lambda_{2}}\right) \quad \text { as } r \rightarrow 0
$$

where

$$
\begin{aligned}
& \lambda_{1}:=\frac{N-2-\sqrt{(N-2)^{2}-4 p L^{p-1}}}{2} \\
& \lambda_{2}:=\frac{N-2+\sqrt{(N-2)^{2}-4 p L^{p-1}}}{2}
\end{aligned}
$$

and $0<\lambda_{1}<\lambda_{2}<m$. The constant a_{α} is positive and monotone decreasing in α and satisfies $a_{\alpha} \rightarrow 0$ as $\alpha \rightarrow \infty$. We note that $u=\varphi_{\infty}(|x|)$ and $u=\varphi_{\alpha}(|x|)$ satisfy the Fujita equation in the distribution sense.

Structure of the singular steady states
2. Time-dependent singular solutions

The singularity of $u=\varphi_{\alpha}$ and $u=\varphi_{\infty}$ persists for all $t>0$, but it does not move in time.

We define a solution with a moving singularity as follows.

Definition 1. $u(x, t)$ is a solution of the Fujita equation with a singularity at $\xi(t) \in \mathrm{R}^{N}$ if the following conditions are satisfied for some $T \in(0, \infty]:$
(i) $u(x, t)$ satisfies the equation in the distribution sense.
(ii) $u(x, t)$ is defined for $(x, t) \in \mathrm{R}^{N} \backslash\{\xi(t)\} \times[0, T), C^{2}$ with respect to x, and C^{1} with respect to t.
(iii) $u(x, t) \rightarrow \infty$ as $x \rightarrow \xi(t)$ for every $t \in[0, T)$.

Solution with a moving singularity

Consider the initial value problem
(P) $\quad \begin{cases}u_{t}=\Delta u+u^{p}, & x \in \mathbf{R}^{N} \backslash\{\xi(t)\}, \quad t>0, \\ u(x, 0)=u_{0}(x) \geq 0, & x \in \mathbf{R}^{N} \backslash\{\xi(0)\},\end{cases}$
where $\xi(t):[0, \infty) \rightarrow R^{N}$ is prescribed.
[Assumptions]
(A1) $\quad N \geq 3$ and $\frac{N}{N-2}<p<p_{*}:=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}$.
(A2) $\boldsymbol{\xi}(t)$ is sufficiently smooth.
(A3) $u_{0}(x)$ is nonnegative and continuous in $x \in R^{N} \backslash \xi(0)$, and is uniformly bounded for $|x-\xi(0)| \geq 1$.
(A4) $u_{0}(x)=L r^{-m}+o\left(r^{-m}\right)$ as $r=|x-\xi(0)| \rightarrow 0$.

Under the assumptions (A1) - (A4), the following results are obtained by Sato-Y (2009, 2010, 2011) and Sato (2011).
(i) (Time-local existence) For some time interval [0,T), there exists a solution u of (P) with a singularity at $\xi(t)$ such that

$$
u(x, t)=L r^{-m}+o\left(r^{-\lambda_{2}}\right)
$$

as $r=|x-\xi(t)| \rightarrow 0$ for all $t \in[0, T)$.
(ii) (Uniqueness) If u_{1} and u_{2} are two solutions of (P) such that

$$
\left|u_{1}(x, t)-u_{2}(x, t)\right|=o\left(r^{-\lambda_{2}}\right)
$$

as $r=|x-\xi(t)| \rightarrow 0$, then $u_{1} \equiv u_{2}$.
(iii) (Comparison principle) If $u_{1} \leq u_{2}$ at $t=t_{0}$, then $u_{1} \leq u_{2}$ for $t>t_{0}$.
(iv) (Time-global existence) For some $\xi(t) \not \equiv$ Const. and $u_{0}(x)$, the solution exists globally in time and is asymptotically radially symmetric as $t \rightarrow \infty$.
(v) (Sudden appearance and dissapaearcne of singularities) Singularities can appear or disappear at any time.
(vi) (Appearance of anomalous singularities) At some $t=T<\infty$, the leading term of u at $\boldsymbol{\xi}(t)$ may become different from $L r^{-m}$:

$$
\begin{array}{ll}
u(x, t) \simeq L|x-\xi(t)|^{-m} & \text { for } t \in(0, T) \\
u(x, t) \nsucceq L|x-\xi(t)|^{-m} & \text { at } t=T
\end{array}
$$

(vii) (Blow-up at spatial infinity of singular solutions) Blow-up can occur at spatial infinity, but the possibility of blow-up at a finite point is an open question.

$$
\text { Why } \frac{N}{N-2}<p<p_{*} ?
$$

Assume that a solution $u(x, t)$ with a singularity at $\xi(t)$ is close to the singular steady state $u=L|x-\xi(t)|^{-m}$, and formally expand the solution $u(x, t)$ at $r=0$ as follows:

$$
u(x, t)=L r^{-m}+\sum_{i=1}^{[m]} b_{i}(\omega, t) r^{-m+i}+v(y, t)
$$

where

$$
m=\frac{2}{p-1}, \quad y=x-\xi(t), \quad r=|y|, \quad \omega=\frac{1}{|y|} y \in S^{N-1}
$$

Substitute this expansion into the equation and equate each power of r to obtain a system of equations for $b_{i}(\omega, t)$.

These equations are solvable and the remainder term $v(y, t)$ must satisfy

$$
v_{t}=\Delta v+\xi_{t} \cdot \nabla v+\frac{p L^{p-1}}{|y|^{2}} v+o\left(|y|^{-2}\right)
$$

This equation is well-posed if and only if

$$
0<p L^{p-1}<\frac{(N-2)^{2}}{4}
$$

These inequalities hold if

$$
N>2 \text { and } \frac{N}{N-2}<p<p_{*}=\frac{N+2 \sqrt{N-1}}{N-4+2 \sqrt{N-1}}
$$

$$
L:=\left\{\frac{2}{p-1}\left(N-\frac{2}{p-1}-2\right)\right\}^{\frac{1}{p-1}}
$$

3. Existence of a solution with a dynamic singularity

Hereafter, we consider the case where the solution is time-dependent but the singular point is fixed to the origin (i.e., $\boldsymbol{\xi}(t) \equiv 0$).
$(\mathrm{P}) \quad \begin{cases}u_{t}=\Delta u+u^{p}, & x \in \mathbf{R}^{N} \backslash\{0\}, \quad t>0, \\ u(x, 0)=u_{0}(x) \geq 0, & x \in \mathbf{R}^{N} \backslash\{0\}, \\ u(x, t) \rightarrow \infty \text { as } x \rightarrow 0, & t>0 .\end{cases}$

We shall show

- More general results for the existence and uniqueness.
- Convergence to φ_{∞} from below.
- Convergence to φ_{α}.

Theorem 1. Let $N \geq 3, p_{s g}<p<p_{*}$ and $a(t) \in C^{1}([0, \infty))$ be given. Assume that

$$
\begin{aligned}
& u_{0}(x) \text { is continuous and positive for } x \neq 0, \\
& u_{0}(x) \text { is uniformly bounded for }|x|>1, \\
& u_{0}(x)=L|x|^{-m}+O\left(|x|^{-\lambda}\right) \text { as }|x| \rightarrow 0 \text { for } \exists \lambda<\min \left\{m, \lambda_{2}+2\right\} .
\end{aligned}
$$

Then there exist $T>0$ and a positive solution $u(x, t)$ of (P) defined on $\mathbf{R}^{N} \backslash\{0\} \times(0, T)$ with the following properties:
(i) $u(x, t)$ satisfies the equation in the distribution sense.
(ii) $u(x, t)$ is C^{2} with respect to $x \neq 0$ and C^{1} with respect to $t>0$.
(iii) $u(x, t)=L|x|^{-m}-a(t)|x|^{-\lambda_{2}}+o\left(|x|^{-\lambda_{2}}\right)$ as $|x| \rightarrow 0$.

Remarks

- We can also show more general results about the uniqueness and comparison principle.
- For solutions with a moving singularity, we mainly considered the case where $a(t) \equiv 0$. When $a(t)$ is not constant, we say that the solution has a dynamic singularity.

Outline of the proof

Step 1: Construct suitable comparison functions with a singularity at the origin.

Step 2: Construct a sequence of approximate solutions on annular domains

$$
D_{n}:=\left\{x \in \mathbf{R}^{N}: \frac{1}{n}<|x|<n\right\}
$$

with suitable boundary conditions.

Step 3: Extract a convergent subsequence, and show that the limiting function is indeed a solution of (\mathbf{P}) with desired properties.
4. Convergence from below to φ_{∞}

Theorem 2. Let $N \geq 3$ and $p_{s g}<p<p_{*}$. Assume that the initial value $u_{0}(x)$ satisfies

$$
\begin{aligned}
& u_{0}(x) \text { is continuous in } x \neq 0 \\
& 0 \leq u_{0}(x) \leq \varphi_{\infty}(|x|) \text { for } x \in \mathrm{R}^{N} \backslash\{0\} \\
& u_{0}(x)=\varphi_{\infty}(|x|)+O\left(|x|^{-\lambda}\right) \text { as }|x| \rightarrow 0 \text { for }{ }^{\exists} \lambda<\min \left\{m, \lambda_{2}+2\right\}
\end{aligned}
$$

Then the singular solution $u(x, t)$ of (P) with $a(t) \equiv 0$ exists globally in time and has the following properties:
(i) $0<u(x, t)<\varphi_{\infty}(|x|)$ for all $(x, t) \in \mathrm{R}^{N} \backslash\{0\} \times(0, \infty)$.
(ii) $u(x, t) \rightarrow \varphi_{\infty}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$.
(iii) If u_{0} satisfies

$$
0 \leq \varphi_{\infty}(|x|)-u_{0}(x) \leq c_{1}(1+|x|)^{-l} \quad \text { for } x \in \mathbf{R}^{N} \backslash\{0\}
$$

with some $c_{1}>0$ and $l \in\left(m, N-\lambda_{1}\right)$, then there exists $c_{2}>0$ such that the singular solution satisfies

$$
0<|x|^{\lambda_{1}}\left|\varphi_{\infty}(|x|)-u(x, t)\right| \leq c_{2} t^{-\frac{l-\lambda_{1}}{2}} \quad \text { for all } t>1
$$

Here, the range $l \in\left[m, N-\lambda_{1}\right)$ and the rate $\frac{l-\lambda_{1}}{2}$ are optimal.

Proof. The proof is based on the comparison method. We look for a subsolution of the form

$$
u^{-}(x, t):=\max \left\{\varphi_{\infty}(r)-U(|x|, t), 0\right\}
$$

It becomes a subsolution if \boldsymbol{U} is positive and satisfies the linearized equation at φ_{∞} :

$$
U_{t}=U_{r r}+\frac{N-1}{r} U_{r}+p \varphi_{\infty}(r)^{p-1} U
$$

where $p \varphi_{\infty}(r)^{p-1}=\frac{p L^{p-1}}{r^{2}}$. Here we set $V(r, t):=r^{\lambda_{1}} U(r, t)$, where $0<\lambda_{1}<\lambda_{2}$ be the roots of

$$
\lambda^{2}-(N-2) \lambda+p L^{p-1}=0
$$

Then the linearized equation is rewritten as a generalized radial heat equation

$$
V_{t}=V_{r r}+\frac{d-1}{r} V_{r}, \quad r>0, t>0,
$$

where

$$
d:=N-2 \lambda_{1}=\lambda_{2}-\lambda_{1}+2>2 .
$$

The generalized radial heat equation has been extensively studied in 1960's. Among others, we use a result by Bragg (1966) to show that $U \rightarrow 0$ as $t \rightarrow 0$ with a desired rate.
5. Convergence to the singular steady state φ_{α}

Theorem 3. Assume the same conditions as in Theorem 2. Then the singular solution $u(x, t)$ of (P$)$ with $a(t) \equiv a_{\alpha}$ exists globally in time and has the following properties:
(i) $0<u(x, t)<\varphi_{\infty}(|x|)$ for all $(x, t) \in \mathbf{R}^{N} \backslash\{0\} \times(0, \infty)$.
(ii) $u(x, t) \rightarrow \varphi_{\alpha}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$.
(iii) If u_{0} satisfies

$$
\left|u_{0}(x)-\varphi_{\alpha}(|x|)\right| \leq c_{1}(1+|x|)^{-l} \quad \text { for } x \in \mathbf{R}^{N} \backslash\{0\}
$$

with some $c_{1}>0$ and $l \in(m, N)$, then there exists $c_{2}>0$ such that

$$
|x|^{\lambda_{1}}\left|u(x, t)-\varphi_{\alpha}(|x|)\right| \leq c_{2} t^{-\frac{l-\lambda_{1}}{2}} \quad \text { for all } t>1
$$

Here, the range $l \in[m, N)$ and the rate $\frac{l-\lambda_{1}}{2}$ are optimal.
[Idea of the proof]
The proof is more delicate than that of Theorem 2. The linearized equation at φ_{α} is written as

$$
U_{t}=U_{r r}+\frac{N-1}{r} U_{r}+p \varphi_{\alpha}(r)^{p-1} U
$$

Setting $V(r, t):=r^{\lambda_{1}} U(r, t)$, this equation is rewritten as

$$
V_{t}=V_{r r}+\frac{d-1}{r} V_{r}+g(r, t) V
$$

where

$$
\begin{gathered}
g(r, t):=p \varphi_{\alpha}(r)^{p-1}-\frac{p L^{p-1}}{r^{2}}<0 \\
g(0, t)=0 \text { and } g(r) \simeq-C r^{-2} \text { at } r \simeq \infty
\end{gathered}
$$

We study the behavior of solutions of this equation by using the matched asymptotics.

Convergence rate $|x|^{\lambda 1}\|u-\phi\| \sim t^{-q}$

Remark 1.

In Theorems 2 and 3, the rate $\frac{l-\lambda_{1}}{2}$ is common, but the ranges are different. Namely, φ_{α} is slightly more stable than φ_{∞}.

Remark 2.

The convergence is faster in the inner region.

In the inner region $\left(|x|<C t^{1 / 2}\right)$

$$
|x|^{\lambda_{1}}\left|u(x, t)-\varphi_{\alpha}(|x|)\right| \leq c_{2} t^{-\frac{l}{2}} \quad \text { for all } t>1
$$

In the whole space,

$$
|x|^{\lambda_{1}}\left|u(x, t)-\varphi_{\alpha}(|x|)\right| \leq c_{2} t^{-\frac{l-\lambda_{1}}{2}} \quad \text { for all } t>1
$$

This suggests that the convergence rate may vary depending on the spatial weight.
[Convergence from above to φ_{∞}]
Theorem 4. Let $p_{s g}<p< \begin{cases}p_{*} & \text { for } 2<N \leq 10, \\ \frac{N+2}{N-1} & \text { for } N>10 .\end{cases}$
Assume that the initial value $u_{0}(x)$ satisfies
$u_{0}(x)$ is continuous in $x \neq 0$,
$\varphi_{\infty}(|x|) \leq u_{0}(x) \leq(1+\delta) \varphi_{\infty}(|x|) x \in \mathrm{R}^{N} \backslash\{0\}$,
$u_{0}(x)=L|x|^{-m}+O\left(|x|^{-\lambda}\right)$ as $|x| \rightarrow 0$ for ${ }^{\exists} \lambda<\min \left\{m, \lambda_{2}+2\right\}$.
If $\delta>0$ is sufficiently small and $a(t) \equiv 0$, then the singular solution $u(x, t)$ of (P) exists globally in time and has the following properties:
(i) $\varphi_{\infty}(|x|) \leq u(x, t)<\infty$ for $(x, t) \in \mathrm{R}^{N} \backslash\{0\} \times(0, \infty)$,
(ii) $u(x, t) \rightarrow \varphi_{\infty}(|x|)$ as $t \rightarrow \infty$ uniformly on any compact set in $\mathbf{R}^{N} \backslash\{0\}$.

We construct a supersolution by using a forward self-similar solution with a singularity at the origin. We have found that such a solution exists above the singular steady state φ_{∞} if and only if

$$
p_{s g}<p< \begin{cases}p_{*} & \text { for } N \leq 10 \\ \frac{N+2}{N-1} & \text { for } N>10\end{cases}
$$

Ongoing and future works:
Behaviour of solutions in the case $a(t) \not \equiv$ Const.
Asymptotic behaviour in the case $\xi(t) \not \equiv$ Const.
Time-periodic solution with a singularity
Multiple and higher dimensional singularities
Bounded domain
Singularities on a boundary
Removability of singularities
Collision and splitting of singularities
Other parameter regions
Other equations

