Real-Analytic Operator Equations

UK-Japan Winter School
Nonlinear Analysis
Royal Academy of Engineering
London, 7-11 January 2013

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Let $F: \mathbb{R} \times X \rightarrow X$ be a C^{k} mapping, $k \geq 2$, of the form

$$
F(\lambda, x)=x-\lambda L x-R(\lambda, x)
$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $\|R(\lambda, x)\| /\|x\| \rightarrow 0$ as $\|x\| \rightarrow 0$.

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.
Let $F: \mathbb{R} \times X \rightarrow X$ be a C^{k} mapping, $k \geq 2$, of the form

$$
F(\lambda, x)=x-\lambda L x-R(\lambda, x)
$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $\|R(\lambda, x)\| /\|x\| \rightarrow 0$ as $\|x\| \rightarrow 0$.
$F(\lambda, 0)=0$ for all λ

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.
Let $F: \mathbb{R} \times X \rightarrow X$ be a C^{k} mapping, $k \geq 2$, of the form

$$
F(\lambda, x)=x-\lambda L x-R(\lambda, x)
$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $\|R(\lambda, x)\| /\|x\| \rightarrow 0$ as $\|x\| \rightarrow 0$.
$F(\lambda, 0)=0$ for all λ
$\{(\lambda, 0): \lambda \in \mathbb{R}\}$ is called the line of trivial solutions

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964
All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.
Let $F: \mathbb{R} \times X \rightarrow X$ be a C^{k} mapping, $k \geq 2$, of the form

$$
F(\lambda, x)=x-\lambda L x-R(\lambda, x)
$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $\|R(\lambda, x)\| /\|x\| \rightarrow 0$ as $\|x\| \rightarrow 0$.
$F(\lambda, 0)=0$ for all λ
$\{(\lambda, 0): \lambda \in \mathbb{R}\}$ is called the line of trivial solutions

Definition: λ_{0} is a bifurcation point if a sequence $\left\{\left(\lambda_{k}, x_{k}\right)\right\}$ of non-trivial solutions exists with

$$
F\left(\lambda_{k}, x_{k}\right)=0, \quad \lambda_{k} \rightarrow \lambda_{0}, \quad x_{k} \rightarrow 0, \quad x_{k} \neq 0
$$

Which values of λ are bifurcation points?

Which values of λ are bifurcation points?

Since $\lambda_{k} \rightarrow \lambda_{0}, L$ is compact, $\left\|R\left(\lambda_{k}, x_{k}\right)\right\| /\left\|x_{k}\right\| \rightarrow 0$ and

$$
\frac{x_{k}}{\left\|x_{k}\right\|}-\lambda_{k} L\left(\frac{x_{k}}{\left\|x_{k}\right\|}\right)-\frac{R\left(\lambda_{k}, x_{k}\right)}{\left\|x_{k}\right\|}=0
$$

and since L is compact, it follows that a subsequence of $\frac{x_{k}}{\left\|x_{k}\right\|}$ converges strongly to v where $\|v\|=1$ is a characteristic vector of v with characteristic value λ_{0}

Which values of λ are bifurcation points?

Since $\lambda_{k} \rightarrow \lambda_{0}, L$ is compact, $\left\|R\left(\lambda_{k}, x_{k}\right)\right\| /\left\|x_{k}\right\| \rightarrow 0$ and

$$
\frac{x_{k}}{\left\|x_{k}\right\|}-\lambda_{k} L\left(\frac{x_{k}}{\left\|x_{k}\right\|}\right)-\frac{R\left(\lambda_{k}, x_{k}\right)}{\left\|x_{k}\right\|}=0
$$

and since L is compact, it follows that a subsequence of $\frac{x_{k}}{\left\|x_{k}\right\|}$ converges strongly to v where $\|v\|=1$ is a characteristic vector of v with characteristic value λ_{0}

All bifurcation points are characteristic values of L

What does this tell us?

Characteristic Values of a Compact Operator

What does this tell us?

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I-\lambda L$ is a homeomorphism on X

What does this tell us?

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I-\lambda L$ is a homeomorphism on X
- characteristic values of L are isolated in \mathbb{R}

What does this tell us?

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I-\lambda L$ is a homeomorphism on X
- characteristic values of L are isolated in \mathbb{R}
- the generalised kernel $\mathcal{N}\left(\lambda_{0}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{ker}(\lambda I-L)^{n}$ is finite dimensional - its dimension equals the codimension of the generalised range $\mathcal{R}\left(\lambda_{0}\right)=\bigcap_{n \in \mathbb{N}}$ range $(\lambda I-L)^{n}$ is called the the multiplicity of λ_{0}

What does this tell us?

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I-\lambda L$ is a homeomorphism on X
- characteristic values of L are isolated in \mathbb{R}
- the generalised kernel $\mathcal{N}\left(\lambda_{0}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{ker}(\lambda I-L)^{n}$ is finite dimensional - its dimension equals the codimension of the generalised range $\mathcal{R}\left(\lambda_{0}\right)=\bigcap_{n \in \mathbb{N}}$ range $(\lambda I-L)^{n}$ is called the the multiplicity of λ_{0}
- a characteristic value is called simple if $\mathcal{N}\left(\lambda_{0}\right)$ is one-dimensional

What does this tell us?

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I-\lambda L$ is a homeomorphism on X
- characteristic values of L are isolated in \mathbb{R}
- the generalised kernel $\mathcal{N}\left(\lambda_{0}\right)=\bigcup_{n \in \mathbb{N}} \operatorname{ker}(\lambda I-L)^{n}$ is finite dimensional - its dimension equals the codimension of the generalised range $\mathcal{R}\left(\lambda_{0}\right)=\bigcap_{n \in \mathbb{N}}$ range $(\lambda I-L)^{n}$ is called the the multiplicity of λ_{0}
- a characteristic value is called simple if $\mathcal{N}\left(\lambda_{0}\right)$ is one-dimensional

Question: Which characteristic values are bifurcation points.

Simple Bifurcation

Special case of Crandall-Rabinowitz 1971

Simple Bifurcation

Special case of Crandall-Rabinowitz 1971

Every simple characteristic value of L is a bifurcation point.

Simple Bifurcation

Special case of Crandall-Rabinowitz 1971

Every simple characteristic value of L is a bifurcation point.
If λ_{0} is simple with characteristic vector $\xi_{0} \neq 0$ there exists a C^{k-1}-function $(\Lambda, \kappa):(-\epsilon, \epsilon) \rightarrow \mathbb{R} \times X$ such that

$$
\begin{aligned}
F(\Lambda(s), \kappa(s)) & =0 \text { for all } s \in(-\epsilon, \epsilon) \\
(\Lambda(0), \kappa(0)) & =\left(\lambda_{0}, 0\right), \kappa^{\prime}(0)=\xi_{0}
\end{aligned}
$$

Lyapunov-Schmidt Reduction

to finite dimensions
Let λ_{0} be any characteristic value of L

Lyapunov-Schmidt Reduction

to finite dimensions
Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$

Lyapunov-Schmidt Reduction

to finite dimensions
Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$ where

- $F\left(\lambda_{0}, 0\right)=0$
- $I-\lambda_{0} L=\partial_{x} F\left[\left(\lambda_{0}, 0\right)\right]: X \rightarrow X$,

Lyapunov-Schmidt Reduction

to finite dimensions
Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$ where

- $F\left(\lambda_{0}, 0\right)=0$
- $I-\lambda_{0} L=\partial_{x} F\left[\left(\lambda_{0}, 0\right)\right]: X \rightarrow X$,
- $\operatorname{ker}\left(I-\lambda_{0} L\right) \neq\{0\}$ and $q \in \mathbb{N}$ is the codimension of range $\left(I-\lambda_{0} L\right)$.

Lyapunov-Schmidt Reduction

to finite dimensions

Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$ where

- $F\left(\lambda_{0}, 0\right)=0$
- $I-\lambda_{0} L=\partial_{x} F\left[\left(\lambda_{0}, 0\right)\right]: X \rightarrow X$,
- $\operatorname{ker}\left(I-\lambda_{0} L\right) \neq\{0\}$ and $q \in \mathbb{N}$ is the codimension of range $\left(I-\lambda_{0} L\right)$.

Then there exist: open sets U and V with $\left(\lambda_{0}, 0\right) \in U \subset \mathbb{R} \times X,\left(\lambda_{0}, 0\right) \in V \subset \mathbb{R} \times \operatorname{ker}(L)$,

Lyapunov-Schmidt Reduction

to finite dimensions

Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$ where

- $F\left(\lambda_{0}, 0\right)=0$
- $I-\lambda_{0} L=\partial_{x} F\left[\left(\lambda_{0}, 0\right)\right]: X \rightarrow X$,
- $\operatorname{ker}\left(I-\lambda_{0} L\right) \neq\{0\}$ and $q \in \mathbb{N}$ is the codimension of range $\left(I-\lambda_{0} L\right)$.

Then there exist: open sets U and V with
$\left(\lambda_{0}, 0\right) \in U \subset \mathbb{R} \times X,\left(\lambda_{0}, 0\right) \in V \subset \mathbb{R} \times \operatorname{ker}(L)$, mappings $\omega \in C^{k}(V, X)$ and $h \in C^{k}\left(V, \mathbb{R}^{q}\right)$ with $\omega\left(\lambda_{0}, 0\right)=0$ and

Lyapunov-Schmidt Reduction

to finite dimensions

Let λ_{0} be any characteristic value of L The equation to be solved is $F(\lambda, x)=0$ where

- $F\left(\lambda_{0}, 0\right)=0$
- $I-\lambda_{0} L=\partial_{x} F\left[\left(\lambda_{0}, 0\right)\right]: X \rightarrow X$,
- $\operatorname{ker}\left(I-\lambda_{0} L\right) \neq\{0\}$ and $q \in \mathbb{N}$ is the codimension of range $\left(I-\lambda_{0} L\right)$.

Then there exist: open sets U and V with $\left(\lambda_{0}, 0\right) \in U \subset \mathbb{R} \times X,\left(\lambda_{0}, 0\right) \in V \subset \mathbb{R} \times \operatorname{ker}(L)$, mappings $\omega \in C^{k}(V, X)$ and $h \in C^{k}\left(V, \mathbb{R}^{q}\right)$ with $\omega\left(\lambda_{0}, 0\right)=0$ and

$$
\begin{aligned}
& F(\lambda, x)=0, \quad(\lambda, x) \in U \Leftrightarrow \\
& \quad \omega(\lambda, \xi)=x \text { where }(\lambda, \xi) \in V \text { and } h(\lambda, \xi)=0 .
\end{aligned}
$$

When λ_{0} is simple

When λ_{0} is simple

The infinite-dimensional problem

$$
F(\lambda, x)=0
$$

has been reduced to an equivalent finite-dimensional problem

$$
h(\lambda, \xi)=0, \quad(\lambda, \xi) \in V \subset \mathbb{R} \times \operatorname{ker}(L)
$$

When λ_{0} is simple

The infinite-dimensional problem

$$
F(\lambda, x)=0
$$

has been reduced to an equivalent finite-dimensional problem

$$
h(\lambda, \xi)=0, \quad(\lambda, \xi) \in V \subset \mathbb{R} \times \operatorname{ker}(L)
$$

When λ_{0} is simple, $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi)=0$ is almost trivial from the implicit function theorem applied to

$$
\xi^{-1} h(\lambda, \xi)=0, \quad \xi \neq 0, \lambda \in \mathbb{R}
$$

(but note the consequential loss of one derivative):

When λ_{0} is simple

The infinite-dimensional problem

$$
F(\lambda, x)=0
$$

has been reduced to an equivalent finite-dimensional problem

$$
h(\lambda, \xi)=0, \quad(\lambda, \xi) \in V \subset \mathbb{R} \times \operatorname{ker}(L)
$$

When λ_{0} is simple, $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi)=0$ is almost trivial from the implicit function theorem applied to

$$
\xi^{-1} h(\lambda, \xi)=0, \quad \xi \neq 0, \lambda \in \mathbb{R}
$$

(but note the consequential loss of one derivative): there exists a C^{k-1}-function $(\Lambda, \kappa):(-\epsilon, \epsilon) \rightarrow \mathbb{R} \times X$ with

$$
\begin{gathered}
F(\Lambda(s), \kappa(s))=0 \text { for all } s \in(-\epsilon, \epsilon) \\
(\Lambda(0), \kappa(0))=\left(\lambda_{0}, 0\right), \kappa^{\prime}(0)=\xi_{0}
\end{gathered}
$$

When λ_{0} is simple

The infinite-dimensional problem

$$
F(\lambda, x)=0
$$

has been reduced to an equivalent finite-dimensional problem

$$
h(\lambda, \xi)=0, \quad(\lambda, \xi) \in V \subset \mathbb{R} \times \operatorname{ker}(L)
$$

When λ_{0} is simple, $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi)=0$ is almost trivial from the implicit function theorem applied to

$$
\xi^{-1} h(\lambda, \xi)=0, \quad \xi \neq 0, \lambda \in \mathbb{R}
$$

(but note the consequential loss of one derivative): there exists a C^{k-1}-function $(\Lambda, \kappa):(-\epsilon, \epsilon) \rightarrow \mathbb{R} \times X$ with

$$
\begin{gathered}
F(\Lambda(s), \kappa(s))=0 \text { for all } s \in(-\epsilon, \epsilon) \\
(\Lambda(0), \kappa(0))=\left(\lambda_{0}, 0\right), \kappa^{\prime}(0)=\xi_{0}
\end{gathered}
$$

Note: the kernel being one-dimensional is not enough

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964
Characteristic values with odd multiplicity are bifurcation points

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964
Characteristic values with odd multiplicity are bifurcation points

- Caveat: Nothing about a curve of solutions bifurcating

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964

Characteristic values with odd multiplicity are bifurcation points

- Caveat: Nothing about a curve of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:
$\lambda z-z-i|z|^{2} z=0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^{2}$
Yet $X=\mathbb{C}$ is a real Banach space and 1 is a characteristic value of $L=I$ of multiplicity 2

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964

Characteristic values with odd multiplicity are bifurcation points

- Caveat: Nothing about a curve of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:
$\lambda z-z-i|z|^{2} z=0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^{2}$
Yet $X=\mathbb{C}$ is a real Banach space and 1 is a characteristic value of $L=I$ of multiplicity 2
- There are C^{∞} examples where non-simple characteristic values are bifurcation points but no continuum bifurcates

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964

Characteristic values with odd multiplicity are bifurcation points

- Caveat: Nothing about a curve of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:
$\lambda z-z-i|z|^{2} z=0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^{2}$
Yet $X=\mathbb{C}$ is a real Banach space and 1 is a characteristic value of $L=I$ of multiplicity 2
- There are C^{∞} examples where non-simple characteristic values are bifurcation points but no continuum bifurcates
- When X is a Hilbert space and $F(\lambda, x)=\nabla_{x} \Phi(\lambda, x)$, L is self-adjoint and all characteristic values are bifurcation points

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

$$
\text { Let } \mathcal{T}=\{(\lambda, x): F(\lambda, x)=0, x \neq 0\}
$$

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

$$
\text { Let } \mathcal{T}=\{(\lambda, x): F(\lambda, x)=0, x \neq 0\}
$$

Let λ_{0} be a characteristic value of L of odd multiplicity.

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

Let $\mathcal{T}=\{(\lambda, x): F(\lambda, x)=0, x \neq 0\}$
Let λ_{0} be a characteristic value of L of odd multiplicity.
Then there exists a continuum \mathcal{C}_{0} in \mathcal{T} with $\left(\lambda_{0}, 0\right) \in \overline{\mathcal{C}}_{0}$ and at least one of the following holds.

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

Let $\mathcal{T}=\{(\lambda, x): F(\lambda, x)=0, x \neq 0\}$
Let λ_{0} be a characteristic value of L of odd multiplicity.
Then there exists a continuum \mathcal{C}_{0} in \mathcal{T} with $\left(\lambda_{0}, 0\right) \in \overline{\mathcal{C}}_{0}$ and at least one of the following holds.

- \mathcal{C}_{0} is unbounded;

Rabinowitz's Global Bifurcation Theorem (1971)

in which he extended his 1969 joint work with M G Crandall on ODEs to the general case

Let $\mathcal{T}=\{(\lambda, x): F(\lambda, x)=0, x \neq 0\}$
Let λ_{0} be a characteristic value of L of odd multiplicity.
Then there exists a continuum \mathcal{C}_{0} in \mathcal{T} with $\left(\lambda_{0}, 0\right) \in \overline{\mathcal{C}}_{0}$ and at least one of the following holds.

- \mathcal{C}_{0} is unbounded;
- $\left(\lambda^{*}, 0\right) \in \overline{\mathcal{C}}_{0}$ for some characteristic value $\lambda^{*} \neq \lambda_{0}$ with odd multiplicity

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$
Let E be any closed subset of $\{(\lambda, x):|x| \geq 1\}$

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$
Let E be any closed subset of $\{(\lambda, x):|x| \geq 1\}$
Let χ_{ϵ} be the ϵ-mollification of the characteristic function of an ϵ neighbourhood of E.

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$
Let E be any closed subset of $\{(\lambda, x):|x| \geq 1\}$
Let χ_{ϵ} be the ϵ-mollification of the characteristic function of an ϵ neighbourhood of E.

Let $h(\lambda, x)=\sum 2^{-n}\left(1-\chi_{1 / n}(\lambda, x)\right)$

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$
Let E be any closed subset of $\{(\lambda, x):|x| \geq 1\}$
Let χ_{ϵ} be the ϵ-mollification of the characteristic function of an ϵ neighbourhood of E.

Let $h(\lambda, x)=\sum 2^{-n}\left(1-\chi_{1 / n}(\lambda, x)\right)$
Then $0 \leq h \leq 1$ is a C^{∞} function whose zero set is E.

Can more be said about the global continuum \mathcal{C}_{0} ?

For example when F is smooth and λ_{0} is simple?

Questions:

Is it path-connected?
Is it in any sense smooth when F is smooth?
Answer to both: No
Example: $\mathbb{R} \times X=\mathbb{R} \times \mathbb{R}$
Let E be any closed subset of $\{(\lambda, x):|x| \geq 1\}$
Let χ_{ϵ} be the ϵ-mollification of the characteristic function of an ϵ neighbourhood of E.

Let $h(\lambda, x)=\sum 2^{-n}\left(1-\chi_{1 / n}(\lambda, x)\right)$
Then $0 \leq h \leq 1$ is a C^{∞} function whose zero set is E.
Now let $F(\lambda, x)=h(\lambda, x)(x-\lambda L x)$ for any compact linear L

From MathSciNet:

MR0375019 (51 \#11215) Dancer, E. N. Global structure of the solutions of non-linear real analytic eigenvalue problems. Proc. London Math. Soc. (3) 27 (1973), 747765.

Let E and G be real Banach spaces. Suppose that $F: E \times \mathbb{R} \rightarrow G$ is a real analytic and Fredholm mapping. The author considers the equation $F(x, \lambda)=0$ and, proving some results on finite-dimensional real analytic germs, he obtains results on the local and global structure of solutions, i.e., results on the properties of the set $D=\{(x, \lambda): E \times(-\infty, \infty): F(x, \lambda)=0\}$ (e.g., D is locally compact, σ-compact, locally path-connected and closed). Under the assumption that F is real analytic, the set D has a number of rather nice properties (it is impossible to present briefly here these properties); this result complements earlier results. [see, e.g., P. H. Rabinowitz, J. Functional Analysis 7 (1971), 487513]

Local Real-Analytic Bifurcation

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

The bifurcating branch $\{(\Lambda(s), \kappa(s)): s \in(-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

The bifurcating branch $\{(\Lambda(s), \kappa(s)): s \in(-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda^{\prime} \not \equiv 0$ on $(-\epsilon, \epsilon)$ and

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

The bifurcating branch $\{(\Lambda(s), \kappa(s)): s \in(-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda^{\prime} \not \equiv 0$ on $(-\epsilon, \epsilon)$ and
Then, by analyticity of Λ^{\prime} and κ^{\prime}, chose $\epsilon>0$ such that

Local Real-Analytic Bifurcation

F is real-analytic - in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$
\begin{gathered}
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions } \\
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
\end{gathered}
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

The bifurcating branch $\{(\Lambda(s), \kappa(s)): s \in(-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda^{\prime} \not \equiv 0$ on $(-\epsilon, \epsilon)$ and
Then, by analyticity of Λ^{\prime} and κ^{\prime}, chose $\epsilon>0$ such that

$$
\begin{gathered}
\Lambda^{\prime}(s) \neq 0 \text { for } s \in(0, \epsilon), \quad \kappa^{\prime}(s) \neq 0 \text { for } s \in(-\epsilon, \epsilon) \\
\mathcal{R}^{+}:=\{(\Lambda(s), \kappa(s)): s \in(0, \epsilon)\} \subset \mathcal{T} \cap \mathfrak{N} .
\end{gathered}
$$

Unique Global Extension of \mathcal{R}^{+}

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.
(c) $\{s \geq 0:(\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.
(c) $\{s \geq 0:(\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.
(d) At each point, \mathfrak{R} has a local analytic re-parameterization:

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.
(c) $\{s \geq 0:(\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.
(d) At each point, \mathfrak{R} has a local analytic re-parameterization:

- For $s^{*} \in(0, \infty) \exists \rho^{*}:(-1,1) \rightarrow \mathbb{R}$ which is continuous, injective, $\rho^{*}(0)=s^{*}$, and
$t \mapsto \sigma^{*}(t):=\left(\Lambda\left(\rho^{*}(t)\right), \kappa\left(\rho^{*}(t)\right)\right)$ is analytic on $(-1,1)$

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.
(c) $\{s \geq 0:(\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.
(d) At each point, \mathfrak{R} has a local analytic re-parameterization:

- For $s^{*} \in(0, \infty) \exists \rho^{*}:(-1,1) \rightarrow \mathbb{R}$ which is continuous, injective, $\rho^{*}(0)=s^{*}$, and $t \mapsto \sigma^{*}(t):=\left(\Lambda\left(\rho^{*}(t)\right), \kappa\left(\rho^{*}(t)\right)\right)$ is analytic on $(-1,1)$
- Λ is injective on a right neighbourhood of 0

Unique Global Extension of \mathcal{R}^{+}

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^{+}as follows.
(a) $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): s \in[0, \infty)\}$
where $(\Lambda, \kappa):[0, \infty) \rightarrow \mathbb{R} \times X$ is continuous
(b) $\mathcal{R}^{+} \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s=0, \mathfrak{R}$ and \mathcal{R}^{+}coincide.
(c) $\{s \geq 0:(\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.
(d) At each point, \mathfrak{R} has a local analytic re-parameterization:

- For $s^{*} \in(0, \infty) \exists \rho^{*}:(-1,1) \rightarrow \mathbb{R}$ which is continuous, injective, $\rho^{*}(0)=s^{*}$, and $t \mapsto \sigma^{*}(t):=\left(\Lambda\left(\rho^{*}(t)\right), \kappa\left(\rho^{*}(t)\right)\right)$ is analytic on $(-1,1)$
- Λ is injective on a right neighbourhood of 0
- For $s^{*}>0 \Lambda$ is injective on $\left[s^{*}, s^{*}+\epsilon^{*}\right]$ and $\left[s^{*}-\epsilon^{*}, s^{*}\right], \epsilon^{*}>0$

Unique Global Continuation - Continued

Unique Global Continuation - Continued

(e) One of the following occurs:

Unique Global Continuation - Continued

(e) One of the following occurs:
(i) $\|(\Lambda(s), \kappa(s))\| \rightarrow \infty$ as $s \rightarrow \infty$;

Unique Global Continuation - Continued

(e) One of the following occurs:
(i) $\|(\Lambda(s), \kappa(s))\| \rightarrow \infty$ as $s \rightarrow \infty$;
(ii) \mathfrak{R} is a closed loop, $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): 0 \leq s \leq T\}$ and $(\Lambda(T), \kappa(T))=\left(\lambda_{0}, 0\right)$ for some $T>0$.

Unique Global Continuation - Continued

(e) One of the following occurs:
(i) $\|(\Lambda(s), \kappa(s))\| \rightarrow \infty$ as $s \rightarrow \infty$;
(ii) \mathfrak{R} is a closed loop, $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): 0 \leq s \leq T\}$ and $(\Lambda(T), \kappa(T))=\left(\lambda_{0}, 0\right)$ for some $T>0$.

Let $T>0$ is the smallest such T and that $(\lambda(s+T), \kappa(s+T))=(\Lambda(s), \kappa(s))$ for all $s \geq 0$.

Unique Global Continuation - Continued

(e) One of the following occurs:
(i) $\|(\Lambda(s), \kappa(s))\| \rightarrow \infty$ as $s \rightarrow \infty$;
(ii) \mathfrak{R} is a closed loop, $\mathfrak{R}=\{(\Lambda(s), \kappa(s)): 0 \leq s \leq T\}$ and $(\Lambda(T), \kappa(T))=\left(\lambda_{0}, 0\right)$ for some $T>0$.

Let $T>0$ is the smallest such T and that $(\lambda(s+T), \kappa(s+T))=(\Lambda(s), \kappa(s))$ for all $s \geq 0$.
(f) If $\left(\Lambda\left(s_{1}\right), \kappa\left(s_{1}\right)\right)=\left(\Lambda\left(s_{2}\right), \kappa\left(s_{2}\right)\right) \in \mathfrak{N}, \quad s_{1} \neq s_{2}$, then (e)(ii) occurs and $\left|s_{1}-s_{2}\right|$ is an integer multiple of T.

In particular, $(\Lambda, \kappa):[0, \infty) \rightarrow \mathcal{S}$ is locally injective.

Cautionary Remarks

Cautionary Remarks

- \mathfrak{R} may not be maximal: Other curves or manifolds in \mathcal{S} may intersect \mathfrak{R}.

Cautionary Remarks

- \mathfrak{R} may not be maximal: Other curves or manifolds in \mathcal{S} may intersect \mathfrak{R}.
- $\mathfrak{\Re}$ may self-intersect in the sense that while $s \mapsto(\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.

Cautionary Remarks

- \mathfrak{R} may not be maximal: Other curves or manifolds in \mathcal{S} may intersect \mathfrak{R}.
- \mathfrak{R} may self-intersect in the sense that while $s \mapsto(\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- \mathfrak{R} may not be smooth where $\sigma^{* \prime}(0)=0$ even though \mathfrak{R} has a local analytic parameterization at every point.

Cautionary Remarks

- \mathfrak{R} may not be maximal: Other curves or manifolds in \mathcal{S} may intersect \Re.
- $\mathfrak{\Re}$ may self-intersect in the sense that while $s \mapsto(\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- \mathfrak{R} may not be smooth where $\sigma^{* \prime}(0)=0$ even though \mathfrak{R} has a local analytic parameterization at every point. $\left\{\left(t^{2}, t^{3}\right): t \in(-1,1)\right\}$ has a cusp at $t=0$, even though its parametrization is real-analytic.

Cautionary Remarks

- \mathfrak{R} may not be maximal: Other curves or manifolds in \mathcal{S} may intersect \mathfrak{R}.
- \mathfrak{R} may self-intersect in the sense that while $s \mapsto(\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- \Re may not be smooth where $\sigma^{* \prime}(0)=0$ even though \Re has a local analytic parameterization at every point. $\left\{\left(t^{2}, t^{3}\right): t \in(-1,1)\right\}$ has a cusp at $t=0$, even though its parametrization is real-analytic.
- (e)(i) is stronger than saying \mathfrak{R} is unbounded in $\mathbb{R} \times X$.

Sketch of Proof

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map
$\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with
$\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by
\mathcal{A}_{n} and vice versa.

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map
$\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with
$\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by
\mathcal{A}_{n} and vice versa.

- The mapping $n \mapsto \mathcal{A}_{n}$ is injective.

Sketch of Proof

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map $\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with $\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_{n} and vice versa.

- The mapping $n \mapsto \mathcal{A}_{n}$ is injective.
$\left\{\mathcal{A}_{0}\right\},\left\{\left(\lambda_{0}, 0\right)\right\}$ is a route of length 1 with $\left(\lambda_{0}, 0\right) \in \partial \mathcal{A}_{0}$

Maximal Routes

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$
To show this we use the local properties of equations with analytic operators in an essential way

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$
To show this we use the local properties of equations with analytic operators in an essential way
Once we understand that structure, the global unique continuation result is more-or-less obvious

The Story So Far

The equation: $F(\lambda, x)=0$ where F is \mathbb{R}-analytic

The equation: $F(\lambda, x)=0$ where F is \mathbb{R}-analytic

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

The equation: $F(\lambda, x)=0$ where F is \mathbb{R}-analytic

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

The equation: $F(\lambda, x)=0$ where F is \mathbb{R}-analytic

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$$
\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}: \text { all non-singular solutions }
$$

The equation: $F(\lambda, x)=0$ where F is \mathbb{R}-analytic

Let

$$
\mathcal{S}=\{(\lambda, x): F(\lambda, x)=0\}: \text { all solutions }
$$

$$
\mathcal{T}=\{(\lambda, x) \in \mathcal{S}: x \neq 0\}: \text { all non-trivial solutions }
$$

$\mathfrak{N}=\left\{(\lambda, x) \in \mathcal{S}: \operatorname{ker}\left(\partial_{x} F[(\lambda, x)]\right)=\{0\}\right\}:$ all non-singular solutions

Points of \mathfrak{N} lie on one-dimensional branches parametrised by the distinguished parameter λ

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

Problem: show that if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

Problem: show that if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$

Analyticity: Tools of the Trade

\mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F}.

Analyticity: Tools of the Trade

\mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F}.
Let $F: U \rightarrow Y$ is C^{∞} where U is open in X.

Analyticity: Tools of the Trade

\mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F}.
Let $F: U \rightarrow Y$ is C^{∞} where U is open in X.
Definition (\mathbb{F}-analyticity is a local property.)
$F: U \rightarrow Y$ is \mathbb{F} - analytic at $x_{0} \in U$ if at each point of a ball B about x_{0} in X, it is the sum of its Taylor series:

$$
F(x)=\sum_{k=0}^{\infty} \frac{1}{k!} d^{k} F\left[x_{0}\right]\left(x-x_{0}\right)^{k}, \quad x \in B
$$

F is analytic on U if it is analytic at each point of U.

Analyticity: Tools of the Trade

\mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F}.
Let $F: U \rightarrow Y$ is C^{∞} where U is open in X.
Definition (\mathbb{F}-analyticity is a local property.)
$F: U \rightarrow Y$ is \mathbb{F} - analytic at $x_{0} \in U$ if at each point of a ball B about x_{0} in X, it is the sum of its Taylor series:

$$
F(x)=\sum_{k=0}^{\infty} \frac{1}{k!} d^{k} F\left[x_{0}\right]\left(x-x_{0}\right)^{k}, \quad x \in B
$$

F is analytic on U if it is analytic at each point of U.

Theorem. F is analytic on U if and only if for each $x_{0} \in U$ there exist constants $r, C, R>0$, depending on x_{0}, such that

$$
\left\|d^{k} F[x]\right\| \leq \frac{C k!}{R^{k}} \text { for all } x \in U \text { with }\left\|x-x_{0}\right\|<r
$$

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

The map $x+i y \mapsto x-i y$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R}-analytic.

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

The map $x+i y \mapsto x-i y$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R}-analytic.

It is not linear on the complex linear space \mathbb{C}. In fact it is not even differentiable and is therefore not \mathbb{C} analytic.

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

The map $x+i y \mapsto x-i y$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R}-analytic.

It is not linear on the complex linear space \mathbb{C}. In fact it is not even differentiable and is therefore not \mathbb{C} analytic.
$f(x, y)=(x y, x y)$ is \mathbb{R}-analytic from \mathbb{R}^{2} into itself.
However it is zero on both axes. Hence non-trivial \mathbb{R}-analytic functions can have cluster points of zeros.

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

The map $x+i y \mapsto x-i y$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R}-analytic.

It is not linear on the complex linear space \mathbb{C}. In fact it is not even differentiable and is therefore not \mathbb{C} analytic.
$f(x, y)=(x y, x y)$ is \mathbb{R}-analytic from \mathbb{R}^{2} into itself.
However it is zero on both axes. Hence non-trivial \mathbb{R}-analytic functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically zero:

Difference between \mathbb{R} - and \mathbb{C}-Analyticity

The map $x+i y \mapsto x-i y$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R}-analytic.

It is not linear on the complex linear space \mathbb{C}. In fact it is not even differentiable and is therefore not \mathbb{C} analytic.
$f(x, y)=(x y, x y)$ is \mathbb{R}-analytic from \mathbb{R}^{2} into itself.
However it is zero on both axes. Hence non-trivial \mathbb{R}-analytic functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically zero:

Theorem Suppose that that $U \subset X$ is an open connected set and that $F: U \rightarrow Y$ is \mathbb{F}-analytic. Suppose also that $F \equiv 0$ on a non-empty open set $W \subset U$. Then F is identically zero on U.

More on \mathbb{R} - and \mathbb{C}-Analyticity

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected
$g_{k}: U \rightarrow \mathbb{F}$ is \mathbb{F}-analytic, $1 \leq k \leq m$.

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected
$g_{k}: U \rightarrow \mathbb{F}$ is \mathbb{F}-analytic, $1 \leq k \leq m$.
$E=\left\{x \in U: g_{k}(x)=0 \in \mathbb{F}, 1 \leq k \leq m\right\}$ an analytic variety

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected
$g_{k}: U \rightarrow \mathbb{F}$ is \mathbb{F}-analytic, $1 \leq k \leq m$.
$E=\left\{x \in U: g_{k}(x)=0 \in \mathbb{F}, 1 \leq k \leq m\right\}$ an analytic variety
If $E \neq U$, then $U \backslash E$ is dense in U.

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected
$g_{k}: U \rightarrow \mathbb{F}$ is \mathbb{F}-analytic, $1 \leq k \leq m$.
$E=\left\{x \in U: g_{k}(x)=0 \in \mathbb{F}, 1 \leq k \leq m\right\}$ an analytic variety
If $E \neq U$, then $U \backslash E$ is dense in U.
If $\mathbb{F}=\mathbb{C}$, then $U \backslash E$ is also connected.

More on \mathbb{R} - and \mathbb{C}-Analyticity

Suppose that $U \subset \mathbb{F}^{n}$ is open and connected
$g_{k}: U \rightarrow \mathbb{F}$ is \mathbb{F}-analytic, $1 \leq k \leq m$.
$E=\left\{x \in U: g_{k}(x)=0 \in \mathbb{F}, 1 \leq k \leq m\right\}$ an analytic variety
If $E \neq U$, then $U \backslash E$ is dense in U.
If $\mathbb{F}=\mathbb{C}$, then $U \backslash E$ is also connected.
(Riemann Extension Theorem) If f is \mathbb{C}-analytic on $U \backslash E$ and $\sup _{\sim}\left\{|f(x)|: x \in U_{\mathcal{\sim}} \backslash E\right\}<\infty$, there exists a \mathbb{C}-analytic function \widetilde{f} on U with $f=\widetilde{f}$ on $U \backslash E$.

Analytic Implicit Function Theorem

Analytic Implicit Function Theorem
X, Y, Z Banach spaces, $\left(x_{0}, y_{0}\right) \in U$ (open) $\subset X \times Y$, $F: U \rightarrow Z$ analytic and $\partial_{x} F\left[\left(x_{0}, y_{0}\right)\right] \in \mathcal{L}(X, Z)$ bijective.

Then $y_{0} \in V($ open $) \subset Y,\left(x_{0}, y_{0}\right) \in W($ open $) \subset U$ and an \mathbb{F}-analytic mapping $\phi: V \rightarrow X$ such that $\phi\left(y_{0}\right)=x_{0}$ and

$$
F^{-1}\left(z_{0}\right) \cap W=\{(\phi(y), y): y \in V\}
$$

Analytic Implicit Function Theorem
X, Y, Z Banach spaces, $\left(x_{0}, y_{0}\right) \in U$ (open) $\subset X \times Y$, $F: U \rightarrow Z$ analytic and $\partial_{x} F\left[\left(x_{0}, y_{0}\right)\right] \in \mathcal{L}(X, Z)$ bijective.

Then $y_{0} \in V($ open $) \subset Y,\left(x_{0}, y_{0}\right) \in W($ open $) \subset U$ and an \mathbb{F}-analytic mapping $\phi: V \rightarrow X$ such that $\phi\left(y_{0}\right)=x_{0}$ and

$$
F^{-1}\left(z_{0}\right) \cap W=\{(\phi(y), y): y \in V\}
$$

Simple Analytic Local Bifurcation

Analytic Implicit Function Theorem
X, Y, Z Banach spaces, $\left(x_{0}, y_{0}\right) \in U$ (open) $\subset X \times Y$,
$F: U \rightarrow Z$ analytic and $\partial_{x} F\left[\left(x_{0}, y_{0}\right)\right] \in \mathcal{L}(X, Z)$ bijective.
Then $y_{0} \in V($ open $) \subset Y,\left(x_{0}, y_{0}\right) \in W($ open $) \subset U$ and an \mathbb{F}-analytic mapping $\phi: V \rightarrow X$ such that $\phi\left(y_{0}\right)=x_{0}$ and

$$
F^{-1}\left(z_{0}\right) \cap W=\{(\phi(y), y): y \in V\}
$$

Simple Analytic Local Bifurcation
The \mathbb{R}-analytic implicit function theorem leads to an \mathbb{R}-analytic version of Lyapunov-Schmidt Reduction and hence to \mathbb{R}-analyticity of the branch which bifurcates locally from a simple characteristic value:

Analytic Implicit Function Theorem
X, Y, Z Banach spaces, $\left(x_{0}, y_{0}\right) \in U$ (open) $\subset X \times Y$,
$F: U \rightarrow Z$ analytic and $\partial_{x} F\left[\left(x_{0}, y_{0}\right)\right] \in \mathcal{L}(X, Z)$ bijective.
Then $y_{0} \in V($ open $) \subset Y,\left(x_{0}, y_{0}\right) \in W($ open $) \subset U$ and an \mathbb{F}-analytic mapping $\phi: V \rightarrow X$ such that $\phi\left(y_{0}\right)=x_{0}$ and

$$
F^{-1}\left(z_{0}\right) \cap W=\{(\phi(y), y): y \in V\}
$$

Simple Analytic Local Bifurcation
The \mathbb{R}-analytic implicit function theorem leads to an \mathbb{R}-analytic version of Lyapunov-Schmidt Reduction and hence to
\mathbb{R}-analyticity of the branch which bifurcates locally from a simple characteristic value:

If $F: \mathbb{R} \times X \rightarrow X$ is \mathbb{R}-analytic and λ_{0} is a simple characteristic value of L with characteristic vector $\xi_{0} \neq 0$. Then there exists an \mathbb{R}-analytic function $(\Lambda, \kappa):(-\epsilon, \epsilon) \rightarrow \mathbb{R} \times X$ such that

$$
\begin{gathered}
F(\Lambda(s), \kappa(s))=0 \text { for all } s \in(-\epsilon, \epsilon) \\
(\Lambda(0), \kappa(0))=\left(\lambda_{0}, 0\right), \kappa^{\prime}(0)=\xi_{0}
\end{gathered}
$$

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

$$
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}!
$$

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}! \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}! \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

$x_{0} \in U($ open $) \subset \mathbb{F}^{n}$ and $f: U \rightarrow \mathbb{F}$ an \mathbb{F}-analytic function.

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$ Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}!, \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

$x_{0} \in U($ open $) \subset \mathbb{F}^{n}$ and $f: U \rightarrow \mathbb{F}$ an \mathbb{F}-analytic function.
Then $f(x)=\sum_{p \in \mathbb{N}_{0}^{n}} f_{p} x^{p}$ where $f_{p}=\frac{1}{p!} \frac{\partial^{p} f}{\partial x^{p}}\left(x_{0}\right)$ and
$\sum_{p \in \mathbb{N}_{0}^{n}} r^{|p|}\left|f_{p}\right|<\infty$ for some $r>0$

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$ Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}!, \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

$x_{0} \in U($ open $) \subset \mathbb{F}^{n}$ and $f: U \rightarrow \mathbb{F}$ an \mathbb{F}-analytic function.
Then $f(x)=\sum_{p \in \mathbb{N}_{0}^{n}} f_{p} x^{p}$ where $f_{p}=\frac{1}{p!} \frac{\partial^{p} f}{\partial x^{p}}\left(x_{0}\right)$ and
$\sum_{p \in \mathbb{N}_{0}^{n}} r^{|p|}\left|f_{p}\right|<\infty$ for some $r>0$
A function so defined is analytic at x_{0} in \mathbb{F}^{n}.

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}!, \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

$x_{0} \in U($ open $) \subset \mathbb{F}^{n}$ and $f: U \rightarrow \mathbb{F}$ an \mathbb{F}-analytic function.
Then $f(x)=\sum_{p \in \mathbb{N}_{0}^{n}} f_{p} x^{p}$ where $f_{p}=\frac{1}{p!} \frac{\partial^{p} f}{\partial x^{p}}\left(x_{0}\right)$ and
$\sum_{p \in \mathbb{N}_{0}^{n}} r^{|p|}\left|f_{p}\right|<\infty$ for some $r>0$
A function so defined is analytic at x_{0} in \mathbb{F}^{n}.
If U (open) $\subset \mathbb{C}^{n}$ and $f: U \rightarrow \mathbb{C}$ is \mathbb{C}-analytic and $f(x) \in \mathbb{R}$ for all $x \in U \cap \mathbb{R}^{n}$ we say that f is real-on-real.

In $\mathbb{F}^{n}: x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{F}^{n}$ and $p=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{N}_{0}^{n}$
Notation

$$
\begin{gathered}
x^{p}=x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \quad p!=p_{1}!p_{2}!\cdots p_{n}! \\
|x|^{2}=\sum_{j=1}^{n}\left|x_{j}\right|^{2}, \quad|p|=\sum_{j=1}^{n} p_{j}, \quad \frac{\partial^{p} f}{\partial x^{p}}=\frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}
\end{gathered}
$$

$x_{0} \in U($ open $) \subset \mathbb{F}^{n}$ and $f: U \rightarrow \mathbb{F}$ an \mathbb{F}-analytic function.
Then $f(x)=\sum_{p \in \mathbb{N}_{0}^{n}} f_{p} x^{p}$ where $f_{p}=\frac{1}{p!} \frac{\partial^{p} f}{\partial x^{p}}\left(x_{0}\right)$ and
$\sum_{p \in \mathbb{N}_{0}^{n}} r^{|p|}\left|f_{p}\right|<\infty$ for some $r>0$
A function so defined is analytic at x_{0} in \mathbb{F}^{n}.
If U (open) $\subset \mathbb{C}^{n}$ and $f: U \rightarrow \mathbb{C}$ is \mathbb{C}-analytic and $f(x) \in \mathbb{R}$ for all $x \in U \cap \mathbb{R}^{n}$ we say that f is real-on-real.

This means that when $x_{0} \in U \cap \mathbb{R}^{n}$ the coefficients f_{p} are real.

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$ Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

 Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0For example: $q \in \mathbb{N}$ and $r>0$,

$$
0 \in \mathcal{B}_{r}^{q}:=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_{r}(\mathbb{F}) \subset \mathbb{F}^{n}(\text { open })
$$

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

 Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0For example: $q \in \mathbb{N}$ and $r>0$,

$$
0 \in \mathcal{B}_{r}^{q}:=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_{r}(\mathbb{F}) \subset \mathbb{F}^{n}(\text { open })
$$

Let C_{r}^{q} denote the space of \mathbb{F}-valued \mathbb{F}-analytic functions u on \mathcal{B}_{r}^{q} with $u(0)=0$ of the form

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

 Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0For example: $q \in \mathbb{N}$ and $r>0$,

$$
0 \in \mathcal{B}_{r}^{q}:=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_{r}(\mathbb{F}) \subset \mathbb{F}^{n}(\text { open })
$$

Let C_{r}^{q} denote the space of \mathbb{F}-valued \mathbb{F}-analytic functions u on \mathcal{B}_{r}^{q} with $u(0)=0$ of the form

$$
\begin{gathered}
u(x)=\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0} u_{p} x^{p} \\
\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0}\left|u_{p}\right| r^{(q+1)|p|-q p_{n}}=:\|u\|_{r, q}<\infty .
\end{gathered}
$$

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

 Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0For example: $q \in \mathbb{N}$ and $r>0$,

$$
0 \in \mathcal{B}_{r}^{q}:=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_{r}(\mathbb{F}) \subset \mathbb{F}^{n}(\text { open })
$$

Let C_{r}^{q} denote the space of \mathbb{F}-valued \mathbb{F}-analytic functions u on \mathcal{B}_{r}^{q} with $u(0)=0$ of the form

$$
\begin{gathered}
u(x)=\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0} u_{p} x^{p} \\
\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0}\left|u_{p}\right| r^{(q+1)|p|-q p_{n}}=:\|u\|_{r, q}<\infty .
\end{gathered}
$$

$\left(C_{r}^{q},\|\cdot\|_{r, q}\right)$ is a Banach algebra since it is complete and closed under multiplication with $\|u v\|_{r, q} \leq\|u\|_{r, q}\|v\|_{r, q}$

Banach Algebras for \mathbb{F}-analytic Functions at $0 \in \mathbb{F}^{n}$

 Many different norms can be defined on functions $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ which have $f(0)=0$ and are \mathbb{F}-analytic at 0For example: $q \in \mathbb{N}$ and $r>0$,

$$
0 \in \mathcal{B}_{r}^{q}:=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_{r}(\mathbb{F}) \subset \mathbb{F}^{n}(\text { open })
$$

Let C_{r}^{q} denote the space of \mathbb{F}-valued \mathbb{F}-analytic functions u on \mathcal{B}_{r}^{q} with $u(0)=0$ of the form

$$
\begin{gathered}
u(x)=\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0} u_{p} x^{p} \\
\sum_{p \in \mathbb{N}_{0}^{n}, p \neq 0}\left|u_{p}\right| r^{(q+1)|p|-q p_{n}}=:\|u\|_{r, q}<\infty .
\end{gathered}
$$

$\left(C_{r}^{q},\|\cdot\|_{r, q}\right)$ is a Banach algebra since it is complete and closed under multiplication with $\|u v\|_{r, q} \leq\|u\|_{r, q}\|v\|_{r, q}$

For given q, any function which is analytic at 0 is on one of these classes for some choice of r sufficiently small.

Weierstrass Division Theorem

Weierstrass Division Theorem

Suppose $0 \in U($ open $) \subset \mathbb{F}^{n}, f: U \rightarrow \mathbb{F}$ is analytic, $f(0)=0$ and, for $\left(0, \cdots, 0, x_{n}\right) \in U$,

$$
f\left(0, \cdots, 0, x_{n}\right)=x_{n}^{q} v\left(x_{n}\right) \text { where } v(0) \neq 0 \text { and } q \geq 1
$$

Weierstrass Division Theorem

Suppose $0 \in U($ open $) \subset \mathbb{F}^{n}, f: U \rightarrow \mathbb{F}$ is analytic, $f(0)=0$ and, for $\left(0, \cdots, 0, x_{n}\right) \in U$,

$$
f\left(0, \cdots, 0, x_{n}\right)=x_{n}^{q} v\left(x_{n}\right) \text { where } v(0) \neq 0 \text { and } q \geq 1
$$

Let $g: U \rightarrow \mathbb{F}$ be any \mathbb{F}-analytic function with $g(0)=0$.

Weierstrass Division Theorem

Suppose $0 \in U($ open $) \subset \mathbb{F}^{n}, f: U \rightarrow \mathbb{F}$ is analytic, $f(0)=0$ and, for $\left(0, \cdots, 0, x_{n}\right) \in U$,

$$
f\left(0, \cdots, 0, x_{n}\right)=x_{n}^{q} v\left(x_{n}\right) \text { where } v(0) \neq 0 \text { and } q \geq 1
$$

Let $g: U \rightarrow \mathbb{F}$ be any \mathbb{F}-analytic function with $g(0)=0$.
Then for some $r>0$,
$g\left(x_{1}, \cdots, x_{n}\right)=h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)+\sum_{k=0}^{q-1} h_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}$
for all $\left(x_{1}, \cdots, x_{n}\right) \in U_{0}=\mathcal{B}_{r}^{q}$, where h is analytic on U_{0} and h_{k} is analytic on $V=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1}$.

Weierstrass Division Theorem

Suppose $0 \in U$ (open) $\subset \mathbb{F}^{n}, f: U \rightarrow \mathbb{F}$ is analytic, $f(0)=0$ and, for $\left(0, \cdots, 0, x_{n}\right) \in U$,

$$
f\left(0, \cdots, 0, x_{n}\right)=x_{n}^{q} v\left(x_{n}\right) \text { where } v(0) \neq 0 \text { and } q \geq 1
$$

Let $g: U \rightarrow \mathbb{F}$ be any \mathbb{F}-analytic function with $g(0)=0$.
Then for some $r>0$,
$g\left(x_{1}, \cdots, x_{n}\right)=h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)+\sum_{k=0}^{q-1} h_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}$
for all $\left(x_{1}, \cdots, x_{n}\right) \in U_{0}=\mathcal{B}_{r}^{q}$, where h is analytic on U_{0} and h_{k} is analytic on $V=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1}$.
The functions h_{k} and h are uniquely determined by f and g.

Weierstrass Division Theorem

Suppose $0 \in U($ open $) \subset \mathbb{F}^{n}, f: U \rightarrow \mathbb{F}$ is analytic, $f(0)=0$ and, for $\left(0, \cdots, 0, x_{n}\right) \in U$,

$$
f\left(0, \cdots, 0, x_{n}\right)=x_{n}^{q} v\left(x_{n}\right) \text { where } v(0) \neq 0 \text { and } q \geq 1
$$

Let $g: U \rightarrow \mathbb{F}$ be any \mathbb{F}-analytic function with $g(0)=0$.
Then for some $r>0$,
$g\left(x_{1}, \cdots, x_{n}\right)=h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)+\sum_{k=0}^{q-1} h_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}$
for all $\left(x_{1}, \cdots, x_{n}\right) \in U_{0}=\mathcal{B}_{r}^{q}$, where h is analytic on U_{0} and h_{k} is analytic on $V=\left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1}$.
The functions h_{k} and h are uniquely determined by f and g. If $\mathbb{F}^{n}=\mathbb{C}^{n}$ and f and g are real-on-real, then h_{k} and h are real-on-real.

Key Step in Proof of Division theorem

Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_{k} can be obtained by comparing coefficients.

Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_{k} can be obtained by comparing coefficients.

It suffices therefore to show that, for $r>0$ sufficiently small, a bijection $\Gamma: C_{r}^{q} \rightarrow C_{r}^{q}$ is defined by

Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_{k} can be obtained by comparing coefficients.

It suffices therefore to show that, for $r>0$ sufficiently small, a bijection $\Gamma: C_{r}^{q} \rightarrow C_{r}^{q}$ is defined by

$$
\Gamma u(x)=f(x) L u(x)+A u(x), \quad x \in \mathcal{B}_{r}^{q},
$$

where for $u \in C_{r}^{q}$ and $x \in \mathcal{B}_{r}^{q}$,

$$
A u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n}<q}} u_{p} x^{p}, \quad L u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n} \geq q}} u_{p} x_{1}^{p_{1}} \cdots x_{n-1}^{p_{n-1}} x_{n}^{p_{n}-q}
$$

Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_{k} can be obtained by comparing coefficients.

It suffices therefore to show that, for $r>0$ sufficiently small, a bijection $\Gamma: C_{r}^{q} \rightarrow C_{r}^{q}$ is defined by

$$
\Gamma u(x)=f(x) L u(x)+A u(x), \quad x \in \mathcal{B}_{r}^{q},
$$

where for $u \in C_{r}^{q}$ and $x \in \mathcal{B}_{r}^{q}$,

$$
A u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n}<q}} u_{p} x^{p}, \quad L u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n} \geq q}} u_{p} x_{1}^{p_{1}} \cdots x_{n-1}^{p_{n-1}} x_{n}^{p_{n}-q}
$$

Now it is not difficult to see that

$$
\|(\Gamma-I) u\|_{r, q}=\leq r^{-q}\|u\|_{r, q}\left(C(f) r^{1+q}+r^{q}\|1-v\|_{r, q}\right) \rightarrow 0 \text { as } r \rightarrow 0
$$

Key Step in Proof of Division theorem

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_{k} can be obtained by comparing coefficients.

It suffices therefore to show that, for $r>0$ sufficiently small, a bijection $\Gamma: C_{r}^{q} \rightarrow C_{r}^{q}$ is defined by

$$
\Gamma u(x)=f(x) L u(x)+A u(x), \quad x \in \mathcal{B}_{r}^{q},
$$

where for $u \in C_{r}^{q}$ and $x \in \mathcal{B}_{r}^{q}$,

$$
A u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n}<q}} u_{p} x^{p}, \quad L u(x)=\sum_{\substack{p \in \mathbb{N}_{0}^{n}, p_{n} \geq q}} u_{p} x_{1}^{p_{1}} \cdots x_{n-1}^{p_{n-1}} x_{n}^{p_{n}-q}
$$

Now it is not difficult to see that

$$
\|(\Gamma-I) u\|_{r, q}=\leq r^{-q}\|u\|_{r, q}\left(C(f) r^{1+q}+r^{q}\|1-v\|_{r, q}\right) \rightarrow 0 \text { as } r \rightarrow 0
$$

Hence Γ is a bijection on C_{r}^{q} and for $g \in C_{r}^{q}$ there is a unique $u \in C_{r}^{q}$ with $\Gamma u=g$. The uniqueness of h and h_{k} follow from the definition of L and A.

Weierstrass Preparation Theorem

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Then there exists a choice of coordinates, \mathbb{F}-analytic functions a_{k} and h, and $r>0$ such that on a ball about 0

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Then there exists a choice of coordinates, \mathbb{F}-analytic functions a_{k} and h, and $r>0$ such that on a ball about 0

$$
h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)=x_{n}^{q}+\sum_{k=0}^{q-1} a_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}
$$

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Then there exists a choice of coordinates, \mathbb{F}-analytic functions a_{k} and h, and $r>0$ such that on a ball about 0

$$
\begin{aligned}
& \quad h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)=x_{n}^{q}+\sum_{k=0}^{q-1} a_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}, \\
& h(0) \neq 0 \text { and } a_{k}(0)=0
\end{aligned}
$$

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Then there exists a choice of coordinates, \mathbb{F}-analytic functions a_{k} and h, and $r>0$ such that on a ball about 0

$$
h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)=x_{n}^{q}+\sum_{k=0}^{q-1} a_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}
$$

$h(0) \neq 0$ and $a_{k}(0)=0$
a_{k} and h are uniquely determined by f.

Weierstrass Preparation Theorem

Suppose f is \mathbb{F}-analytic and not identically zero in a ball about $0 \in \mathbb{F}^{n}$ and $f(0)=0$.

Then there exists a choice of coordinates, \mathbb{F}-analytic functions a_{k} and h, and $r>0$ such that on a ball about 0

$$
h\left(x_{1}, \cdots, x_{n}\right) f\left(x_{1}, \cdots, x_{n}\right)=x_{n}^{q}+\sum_{k=0}^{q-1} a_{k}\left(x_{1}, \cdots, x_{n-1}\right) x_{n}^{k}
$$

$h(0) \neq 0$ and $a_{k}(0)=0$
a_{k} and h are uniquely determined by f.
If $\mathbb{F}=\mathbb{C}^{n}$ and f is real-on-real, then h and a_{k} are real-on-real. Proof. Let $g(x)=x_{n}^{q}$ and then let $a_{k}=-h_{k}$.

Multiple Roots and the Discriminant

Multiple Roots and the Discriminant

A polynomial

$$
A=Z^{p}+\sum_{k=0}^{p-1} A_{k} Z^{k}, \quad Z \in \mathbb{C},
$$

can have multiple roots.

Multiple Roots and the Discriminant

A polynomial

$$
A=Z^{p}+\sum_{k=0}^{p-1} A_{k} Z^{k}, \quad Z \in \mathbb{C}
$$

can have multiple roots.
However there exists a polynomial function $D\left(A_{0}, \cdots, A_{p-1}\right)$, the discriminant, such that A has simple roots when $D\left(A_{0}, \cdots, A_{p-1}\right) \neq 0$.

Multiple Roots and the Discriminant

A polynomial

$$
A=Z^{p}+\sum_{k=0}^{p-1} A_{k} Z^{k}, \quad Z \in \mathbb{C}
$$

can have multiple roots.
However there exists a polynomial function $D\left(A_{0}, \cdots, A_{p-1}\right)$, the discriminant, such that A has simple roots when $D\left(A_{0}, \cdots, A_{p-1}\right) \neq 0$.
Let $\xi=\left(z_{1}, \cdots, z_{m}\right) \in \mathbb{C}^{m}$ If $A_{k}=a_{k}(\xi)$ where the a_{k} are \mathbb{C}-analytic the discriminant

$$
D(\xi):=D\left(a_{1}(\xi), \cdots, a_{p-1}(\xi)\right)
$$

is a \mathbb{C}-analytic function of ξ and the A has simple roots when $D(\xi) \neq 0$.

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,
- $e_{q} \equiv 1$,

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,
- $e_{q} \equiv 1$,
- $E(Z ; \xi)$ has the same roots as $A(Z ; \xi)$

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,
- $e_{q} \equiv 1$,
- $E(Z ; \xi)$ has the same roots as $A(Z ; \xi)$
- $D\left(e_{0}, \cdots, e_{m-1}, 1\right) \not \equiv 0$ on V

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,
- $e_{q} \equiv 1$,
- $E(Z ; \xi)$ has the same roots as $A(Z ; \xi)$
- $D\left(e_{0}, \cdots, e_{m-1}, 1\right) \not \equiv 0$ on V
- For $\left(z_{1}, \cdots, z_{m}\right)$ in an open dense connected subset W of $V, E\left(Z ; z_{1}, \cdots, z_{m}\right)$ has no multiple roots.

Polynomial Simplification when $\mathbb{F}=\mathbb{C}$

Suppose $D\left(a_{0}, \cdots, a_{p-1}\right) \equiv 0$ on V (open)
Then there exists another polynomial $E(Z ; \xi)$ (the simplification of A with

- degree $E=q \leq p$,
- $e_{q} \equiv 1$,
- $E(Z ; \xi)$ has the same roots as $A(Z ; \xi)$
- $D\left(e_{0}, \cdots, e_{m-1}, 1\right) \not \equiv 0$ on V
- For $\left(z_{1}, \cdots, z_{m}\right)$ in an open dense connected subset W of $V, E\left(Z ; z_{1}, \cdots, z_{m}\right)$ has no multiple roots.
- If A is real-on-real, then so is E.

Weierstrass Polynomials
$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$

Weierstrass Polynomials
$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.
$D\left(a_{0}, \cdots, a_{p-1}, 1\right) \neq 0$ on a connected, open, dense subset of V.

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.
$D\left(a_{0}, \cdots, a_{p-1}, 1\right) \neq 0$ on a connected, open, dense subset of V.
Note: If A is a Weierstrass polynomial except that $D \equiv 0$

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.
$D\left(a_{0}, \cdots, a_{p-1}, 1\right) \neq 0$ on a connected, open, dense subset of V.
Note: If A is a Weierstrass polynomial except that $D \equiv 0$

- its simplification E is a Weierstrass polynomial,

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.
$D\left(a_{0}, \cdots, a_{p-1}, 1\right) \neq 0$ on a connected, open, dense subset of V.
Note: If A is a Weierstrass polynomial except that $D \equiv 0$

- its simplification E is a Weierstrass polynomial,
- the roots of E and A coincide

Weierstrass Polynomials

$\mathbb{F}=\mathbb{C}, m \in \mathbb{N}_{0}, m \in \mathbb{N}$
Let V be a neighbourhood of $0 \in \mathbb{C}^{m}$.
A polynomial of the form, $\xi \in V, \quad Z \in \mathbb{C}$,

$$
A\left(Z ; z_{1}, \cdots, z_{m}\right)=Z^{p}+\sum_{k=0}^{p-1} a_{k}(\xi) Z^{k}, \quad p \in \mathbb{N}
$$

where $a_{0}(0)=\cdots=a_{p-1}(0)=0, D\left(a_{0}, \cdots, a_{p-1}, 1\right) \not \equiv 0$ on V is called a Weierstrass polynomial.
$D\left(a_{0}, \cdots, a_{p-1}, 1\right) \neq 0$ on a connected, open, dense subset of V.
Note: If A is a Weierstrass polynomial except that $D \equiv 0$

- its simplification E is a Weierstrass polynomial,
- the roots of E and A coincide
- the non-principal coefficients of E are zero at 0 .

Looking Forward

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$.

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$. For $k \in\{m+1, \cdots, n\}$ let

$$
h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right), \quad m \in\{1, \cdots, n-1\}
$$

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$. For $k \in\{m+1, \cdots, n\}$ let

$$
h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right), \quad m \in\{1, \cdots, n-1\}
$$

The solution set will equivalent to a set of the very special form

$$
\forall k \in\{m+1, \cdots, m\}, \quad h_{k}\left(z_{1}, \cdots, z_{n}\right)=0 \subset \mathbb{C}^{n}
$$

Analytic Varieties Germs

Germs and Varieties

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^{n}$ is open and G is a finite set of \mathbb{F}-analytic functions

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^{n}$ is open and G is a finite set of \mathbb{F}-analytic functions

$$
\operatorname{var}(U, G)=\{x \in U: g(x)=0 \text { for all } g \in G\}
$$

is the \mathbb{F}-analytic variety generated by G on U.

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^{n}$ is open and G is a finite set of \mathbb{F}-analytic functions

$$
\operatorname{var}(U, G)=\{x \in U: g(x)=0 \text { for all } g \in G\}
$$

is the \mathbb{F}-analytic variety generated by G on U.
The \mathbb{F}-analytic germs at $a, \gamma_{a}\left(\operatorname{var}(U, G)\right.$, are denoted by $\mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^{n}$ is open and G is a finite set of \mathbb{F}-analytic functions

$$
\operatorname{var}(U, G)=\{x \in U: g(x)=0 \text { for all } g \in G\}
$$

is the \mathbb{F}-analytic variety generated by G on U.
The \mathbb{F}-analytic germs at $a, \gamma_{a}\left(\operatorname{var}(U, G)\right.$, are denoted by $\mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$
If $\alpha, \beta \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$, then both $\alpha \cap \beta$ and $\alpha \cup \beta$ are in $\mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$, but in general $\alpha \backslash \beta \notin \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.

Germs and Varieties

Sets S and T are equivalent at $a \in \mathbb{F}^{n}$ if $O \cap S=O \cap T$ for some open $O \ni a$.
The equivalence class $\gamma_{a}(S)$ is the germ of S at a
The set of germs is closed under finite unions, intersections and complements
If $\emptyset \neq U \subset \mathbb{F}^{n}$ is open and G is a finite set of \mathbb{F}-analytic functions

$$
\operatorname{var}(U, G)=\{x \in U: g(x)=0 \text { for all } g \in G\}
$$

is the \mathbb{F}-analytic variety generated by G on U.
The \mathbb{F}-analytic germs at $a, \gamma_{a}\left(\operatorname{var}(U, G)\right.$, are denoted by $\mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$
If $\alpha, \beta \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$, then both $\alpha \cap \beta$ and $\alpha \cup \beta$ are in $\mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$, but in general $\alpha \backslash \beta \notin \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
If $U \subset \mathbb{C}^{n}$ and the elements of G are real-on-real, $\operatorname{var}(U, G)$ is real-on-real

Varieties and Manifolds

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
A point of α is called ℓ-regular if α is an ℓ-dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ-regular points

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
A point of α is called ℓ-regular if α is an ℓ-dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ-regular points

If $a \in M$ and $\operatorname{var}(U, G)$ is an \mathbb{F}-analytic variety, there is an open neighbourhood W of a in M such that $W \backslash \operatorname{var}(U, G)$ is either empty or dense in W.

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
A point of α is called ℓ-regular if α is an ℓ-dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ-regular points

If $a \in M$ and $\operatorname{var}(U, G)$ is an \mathbb{F}-analytic variety, there is an open neighbourhood W of a in M such that $W \backslash \operatorname{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \operatorname{var}(U, G)$ has non-empty interior relative to M, then $M \subset \operatorname{var}(U, G)$.

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
A point of α is called ℓ-regular if α is an ℓ-dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ-regular points

If $a \in M$ and $\operatorname{var}(U, G)$ is an \mathbb{F}-analytic variety, there is an open neighbourhood W of a in M such that $W \backslash \operatorname{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \operatorname{var}(U, G)$ has non-empty interior relative to M, then $M \subset \operatorname{var}(U, G)$. $\alpha \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$ is irreducible if
$\alpha=\alpha_{1} \cup \alpha_{2}, \quad \alpha_{1}, \alpha_{2} \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$ implies that $\alpha=\alpha_{1}$ or $\alpha=\alpha_{2}$.

Varieties and Manifolds

If $a \in M$, an analytic manifold, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$.
A point of α is called ℓ-regular if α is an ℓ-dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ-regular points

If $a \in M$ and $\operatorname{var}(U, G)$ is an \mathbb{F}-analytic variety, there is an open neighbourhood W of a in M such that $W \backslash \operatorname{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \operatorname{var}(U, G)$ has non-empty interior relative to M, then $M \subset \operatorname{var}(U, G)$.
$\alpha \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$ is irreducible if
$\alpha=\alpha_{1} \cup \alpha_{2}, \quad \alpha_{1}, \alpha_{2} \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$ implies that $\alpha=\alpha_{1}$ or $\alpha=\alpha_{2}$.

If M is an analytic manifold and $a \in M$, then $\gamma_{a}(M) \in \mathcal{V}_{a}\left(\mathbb{F}^{n}\right)$ is irreducible.

Weierstrass Analytic Varieties on \mathbb{C}^{n}

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$

$$
H=\left\{h_{m+1}, \cdots, h_{n}\right\} \text { where } h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)
$$

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$
$H=\left\{h_{m+1}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)$

A Weierstrass analytic variety is a set of the form $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \subset \mathbb{C}^{n}$.

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$
$H=\left\{h_{m+1}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)$

A Weierstrass analytic variety is a set of the form $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \subset \mathbb{C}^{n}$.
Its discriminant $D(H): V \rightarrow \mathbb{C}$ is the product of the discriminants of the $A_{k} \mathrm{~s}$

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$
$H=\left\{h_{m+1}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)$

A Weierstrass analytic variety is a set of the form $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \subset \mathbb{C}^{n}$.
Its discriminant $D(H): V \rightarrow \mathbb{C}$ is the product of the discriminants of the $A_{k} \mathrm{~s}$

Its branches are the connected components of

$$
\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \backslash\left(\operatorname{var}(V, D(H)) \times \mathbb{C}^{n-m}\right)
$$

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$
$H=\left\{h_{m+1}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)$

A Weierstrass analytic variety is a set of the form $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \subset \mathbb{C}^{n}$.
Its discriminant $D(H): V \rightarrow \mathbb{C}$ is the product of the discriminants of the A_{k} s

Its branches are the connected components of

$$
\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \backslash\left(\operatorname{var}(V, D(H)) \times \mathbb{C}^{n-m}\right)
$$

Each branch is a connected \mathbb{C}-analytic manifold of dimension m which projects onto the connected set $V \backslash \operatorname{var}(V,\{D(H)\})$.

Weierstrass Analytic Varieties on \mathbb{C}^{n}

For Weierstrass polynomials $\left\{A_{m+1}, \cdots, A_{n}\right\}$ on $V \subset \mathbb{C}^{m}$
$H=\left\{h_{m+1}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}, \cdots, z_{m}\right)$

A Weierstrass analytic variety is a set of the form $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \subset \mathbb{C}^{n}$.
Its discriminant $D(H): V \rightarrow \mathbb{C}$ is the product of the discriminants of the $A_{k} \mathrm{~s}$

Its branches are the connected components of

$$
\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \backslash\left(\operatorname{var}(V, D(H)) \times \mathbb{C}^{n-m}\right)
$$

Each branch is a connected \mathbb{C}-analytic manifold of dimension m which projects onto the connected set $V \backslash \operatorname{var}(V,\{D(H)\})$.
Globally, z_{m+1}, \cdots, z_{n} are not analytic functions on $V \backslash \operatorname{var}(V,\{D(H)\})$ if the latter set is multiply connected

Example

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

Example

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

This may give a sense of the following result

Example

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

This may give a sense of the following result Think about its structure in this simple case

Example

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

This may give a sense of the following result Think about its structure in this simple case

When $m=1$ a variety is the union of its branches:

$$
\alpha=\gamma_{0}\left(\bigcup_{\alpha \cap \gamma_{0}(B) \neq\{0\}} B \cup\{0\}\right)
$$

One-dimensional Branches $m=1$

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E=\operatorname{var}\left(V \times \mathbb{C}^{n-1}, H\right)$ and $D(H)$ is non-zero on $V \backslash\{0\}$.

One-dimensional Branches $m=1$

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E=\operatorname{var}\left(V \times \mathbb{C}^{n-1}, H\right)$ and $D(H)$ is non-zero on $V \backslash\{0\}$.
Then there exist $K \in \mathbb{N}, \delta>0$ and $a \mathbb{C}$-analytic function

$$
\psi:\left\{z \in \mathbb{C}:|z|^{K}<\delta\right\} \rightarrow \mathbb{C}^{n-1}
$$

One-dimensional Branches $m=1$

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E=\operatorname{var}\left(V \times \mathbb{C}^{n-1}, H\right)$ and $D(H)$ is non-zero on $V \backslash\{0\}$.
Then there exist $K \in \mathbb{N}, \delta>0$ and $a \mathbb{C}$-analytic function

$$
\psi:\left\{z \in \mathbb{C}:|z|^{K}<\delta\right\} \rightarrow \mathbb{C}^{n-1}
$$

such that the mapping $z \mapsto\left(z^{K}, \psi(z)\right)$ is injective, $\psi(0)=0$ and

$$
\{0\} \cup B=\bar{B} \cap\left(V \times \mathbb{C}^{n-1}\right)=\left\{\left(z^{K}, \psi(z)\right):|z|^{K}<\delta\right\}
$$

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial.

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$.

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$.
Then the result holds with

$$
K=1 \text { and } \psi\left(z_{1}\right)=\left(a_{2}\left(z_{1}\right), a_{3}\left(z_{1}\right), \cdots, a_{n}\left(z_{1}\right)\right), \quad z_{1} \in V .
$$

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$. Then the result holds with

$$
K=1 \text { and } \psi\left(z_{1}\right)=\left(a_{2}\left(z_{1}\right), a_{3}\left(z_{1}\right), \cdots, a_{n}\left(z_{1}\right)\right), \quad z_{1} \in V .
$$

When $D(H)$ is zero at 0 , each of the polynomials $A_{k}\left(Z ; z_{1}\right)$ has only simple roots for $z_{1} \in V \backslash\{0\}$.

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$.
Then the result holds with

$$
K=1 \text { and } \psi\left(z_{1}\right)=\left(a_{2}\left(z_{1}\right), a_{3}\left(z_{1}\right), \cdots, a_{n}\left(z_{1}\right)\right), \quad z_{1} \in V .
$$

When $D(H)$ is zero at 0 , each of the polynomials $A_{k}\left(Z ; z_{1}\right)$ has only simple roots for $z_{1} \in V \backslash\{0\}$.
Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$
\begin{gathered}
\widehat{V}=\{z \in \mathbb{C}: z=\rho+i \theta,-\infty<\rho<\log \delta, \theta \in \mathbb{R}\}, \\
\widehat{h}_{k}\left(z, z_{k}\right)=A_{k}\left(z_{k} ; e^{z}\right), \quad z \in \widehat{V}, z_{k} \in \mathbb{C} .
\end{gathered}
$$

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$.
Then the result holds with

$$
K=1 \text { and } \psi\left(z_{1}\right)=\left(a_{2}\left(z_{1}\right), a_{3}\left(z_{1}\right), \cdots, a_{n}\left(z_{1}\right)\right), \quad z_{1} \in V .
$$

When $D(H)$ is zero at 0 , each of the polynomials $A_{k}\left(Z ; z_{1}\right)$ has only simple roots for $z_{1} \in V \backslash\{0\}$.
Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$
\begin{gathered}
\widehat{V}=\{z \in \mathbb{C}: z=\rho+i \theta,-\infty<\rho<\log \delta, \theta \in \mathbb{R}\}, \\
\widehat{h}_{k}\left(z, z_{k}\right)=A_{k}\left(z_{k} ; e^{z}\right), \quad z \in \widehat{V}, z_{k} \in \mathbb{C} .
\end{gathered}
$$

Let

$$
\widehat{H}=\left\{\widehat{h}_{2}, \cdots, \widehat{h}_{n}\right\} \text { and } \widehat{E}=\operatorname{var}\left(\widehat{V} \times \mathbb{C}^{n-1}, \widehat{H}\right)
$$

Proof.

Let $H=\left\{h_{2}, \cdots, h_{n}\right\}$ where $h_{k}\left(z_{1}, \cdots, z_{n}\right)=A_{k}\left(z_{k} ; z_{1}\right)$, and each A_{k} is a Weierstrass polynomial. If the discriminant $D(H)$ is not zero at $z_{1}=0$, then $A_{k}\left(Z ; z_{1}\right)=Z-a_{k}\left(z_{1}\right)$.
Then the result holds with

$$
K=1 \text { and } \psi\left(z_{1}\right)=\left(a_{2}\left(z_{1}\right), a_{3}\left(z_{1}\right), \cdots, a_{n}\left(z_{1}\right)\right), \quad z_{1} \in V .
$$

When $D(H)$ is zero at 0 , each of the polynomials $A_{k}\left(Z ; z_{1}\right)$ has only simple roots for $z_{1} \in V \backslash\{0\}$.
Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$
\begin{gathered}
\widehat{V}=\{z \in \mathbb{C}: z=\rho+i \theta,-\infty<\rho<\log \delta, \theta \in \mathbb{R}\}, \\
\widehat{h}_{k}\left(z, z_{k}\right)=A_{k}\left(z_{k} ; e^{z}\right), \quad z \in \widehat{V}, z_{k} \in \mathbb{C} .
\end{gathered}
$$

Let

$$
\widehat{H}=\left\{\widehat{h}_{2}, \cdots, \widehat{h}_{n}\right\} \text { and } \widehat{E}=\operatorname{var}\left(\widehat{V} \times \mathbb{C}^{n-1}, \widehat{H}\right)
$$

B is a branch of E if and only if \widehat{B} is a branch of \widehat{E}, where

$$
B=\left\{\left(e^{z}, \xi\right):(z, \xi) \in \widehat{B}\right\}, \quad \xi \in \mathbb{C}^{n-1}
$$

Since $D(H)$ is nowhere zero on $V \backslash\{0\}, D(\widehat{H})$ is nowhere zero on \widehat{V} and every point of \widehat{E} is 1-regular and

$$
\left(\{z\} \times \mathbb{C}^{n-1}\right) \cap \widehat{E}=\left\{\left(z, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

where $p=\prod_{k=2}^{n} p_{k}$.

Since $D(H)$ is nowhere zero on $V \backslash\{0\}, D(\widehat{H})$ is nowhere zero on \widehat{V} and every point of \widehat{E} is 1-regular and

$$
\left(\{z\} \times \mathbb{C}^{n-1}\right) \cap \widehat{E}=\left\{\left(z, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

where $p=\prod_{k=2}^{n} p_{k}$.
By the Analytic Implicit Function Theorem, each ξ_{q} is defined locally on \widehat{V} as a \mathbb{C}-analytic function with values in \mathbb{C}^{n-1}

Since $D(H)$ is nowhere zero on $V \backslash\{0\}, D(\widehat{H})$ is nowhere zero on \widehat{V} and every point of \widehat{E} is 1-regular and

$$
\left(\{z\} \times \mathbb{C}^{n-1}\right) \cap \widehat{E}=\left\{\left(z, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

where $p=\prod_{k=2}^{n} p_{k}$.
By the Analytic Implicit Function Theorem, each ξ_{q} is defined locally on \widehat{V} as a \mathbb{C}-analytic function with values in \mathbb{C}^{n-1}
Since \widehat{V} is simply connected, they define analytic functions on \widehat{V}. Thus \widehat{E} is the union of the disjoint graphs of the functions $\xi_{q}: \widehat{V} \rightarrow \mathbb{C}^{n-1}, 1 \leq q \leq p$.

Since $D(H)$ is nowhere zero on $V \backslash\{0\}, D(\widehat{H})$ is nowhere zero on \widehat{V} and every point of \widehat{E} is 1-regular and

$$
\left(\{z\} \times \mathbb{C}^{n-1}\right) \cap \widehat{E}=\left\{\left(z, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

where $p=\prod_{k=2}^{n} p_{k}$.
By the Analytic Implicit Function Theorem, each ξ_{q} is defined locally on \widehat{V} as a \mathbb{C}-analytic function with values in \mathbb{C}^{n-1}
Since \widehat{V} is simply connected, they define analytic functions on \widehat{V}. Thus \widehat{E} is the union of the disjoint graphs of the functions $\xi_{q}: \widehat{V} \rightarrow \mathbb{C}^{n-1}, 1 \leq q \leq p$.
Recall that, for $z \in \widehat{V}$, each component of $\xi_{q}(z) \in \mathbb{C}^{n-1}$ is a simple root of a polynomial $A_{k}\left(Z ; e^{z}\right), 2 \leq k \leq n$.

Therefore

$$
z \mapsto\left\{\left(e^{z}, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

is a $2 \pi i$-periodic set-valued map on \widehat{V}.

Therefore

$$
z \mapsto\left\{\left(e^{z}, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

is a $2 \pi i$-periodic set-valued map on \widehat{V}.
Moreover if, for some $\widehat{z} \in \widehat{V}$ and some $m \in \mathbb{Z}$,

$$
\xi_{q_{1}}(\widehat{z})=\xi_{q_{2}}(\widehat{z}+2 \pi m i), \quad q_{1}, q_{2} \in\{1, \cdots p\}
$$

then

$$
\xi_{q_{1}}(z)=\xi_{q_{2}}(z+2 \pi m i) \text { for all } z \in \widehat{V}
$$

by the Analytic Implicit Function Theorem and analytic continuation.

Therefore

$$
z \mapsto\left\{\left(e^{z}, \xi_{q}(z)\right): 1 \leq q \leq p\right\}
$$

is a $2 \pi i$-periodic set-valued map on \widehat{V}.
Moreover if, for some $\widehat{z} \in \widehat{V}$ and some $m \in \mathbb{Z}$,

$$
\xi_{q_{1}}(\widehat{z})=\xi_{q_{2}}(\widehat{z}+2 \pi m i), \quad q_{1}, q_{2} \in\{1, \cdots p\}
$$

then

$$
\xi_{q_{1}}(z)=\xi_{q_{2}}(z+2 \pi m i) \text { for all } z \in \widehat{V}
$$

by the Analytic Implicit Function Theorem and analytic continuation.

Hence, for $q \in\{1, \cdots, p\}$, the mapping

$$
\begin{equation*}
z \mapsto\left(e^{z}, \xi_{q}(z)\right) \in E, z \in \widehat{V} \tag{1}
\end{equation*}
$$

is periodic with period $2 \pi K_{q} i$ and is injective on the set $V_{q}=\left\{z=\rho+i \theta \in \widehat{V}: 0<\theta \leq 2 \pi K_{q}\right\}, K_{q} \in\{1, \cdots, p\}$.

This is a branch of the variety E where $m=1$:

$$
B=\left\{\left(e^{z}, \xi_{q}(z)\right): z \in V_{q}\right\}
$$

is an injective parameterization of B. Since $z \mapsto \xi_{q}\left(K_{q} z\right)$ has period (not necessarily minimal) $2 \pi i$, we can define an analytic function $\widetilde{\psi}:\left\{z: 0<|z|<\delta^{1 / K_{q}}\right\} \rightarrow \mathbb{C}$ by

$$
\widetilde{\psi}(z)=\xi_{q}\left(K_{q} \log z\right)
$$

This is a branch of the variety E where $m=1$:

$$
B=\left\{\left(e^{z}, \xi_{q}(z)\right): z \in V_{q}\right\}
$$

is an injective parameterization of B. Since $z \mapsto \xi_{q}\left(K_{q} z\right)$ has period (not necessarily minimal) $2 \pi i$, we can define an analytic function $\widetilde{\psi}:\left\{z: 0<|z|<\delta^{1 / K_{q}}\right\} \rightarrow \mathbb{C}$ by

$$
\widetilde{\psi}(z)=\xi_{q}\left(K_{q} \log z\right)
$$

This gives a new injective parameterization of B, namely

$$
B=\left\{\left(z^{K_{q}}, \widetilde{\psi}(z)\right): 0<|z|<\delta^{1 / K_{q}}\right\},
$$

where ψ is analytic and $\lim _{z_{1} \rightarrow 0} \widetilde{\psi}\left(z_{1}\right)=0$.

This is a branch of the variety E where $m=1$:

$$
B=\left\{\left(e^{z}, \xi_{q}(z)\right): z \in V_{q}\right\}
$$

is an injective parameterization of B. Since $z \mapsto \xi_{q}\left(K_{q} z\right)$ has period (not necessarily minimal) $2 \pi i$, we can define an analytic function $\widetilde{\psi}:\left\{z: 0<|z|<\delta^{1 / K_{q}}\right\} \rightarrow \mathbb{C}$ by

$$
\widetilde{\psi}(z)=\xi_{q}\left(K_{q} \log z\right)
$$

This gives a new injective parameterization of B, namely

$$
B=\left\{\left(z^{K_{q}}, \widetilde{\psi}(z)\right): 0<|z|<\delta^{1 / K_{q}}\right\}
$$

where ψ is analytic and $\lim _{z_{1} \rightarrow 0} \widetilde{\psi}\left(z_{1}\right)=0$.
The Riemann Extension Theorem means that $\widetilde{\psi}$ has an analytic extension ψ defined on the ball $\left\{z_{1} \in \mathbb{C}:\left|z_{1}\right|<\delta^{1 / K_{q}}\right\}$ with $\psi(0)=0$. Let $K=K_{q}$ to complete the proof.

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\}
$$ and this parameterization is injective.

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\},
$$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\},
$$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

(a) How many branches are there?

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\}
$$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

(a) How many branches are there?
(b) What is K for each branch?

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\},
$$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

(a) How many branches are there?
(b) What is K for each branch?
(c) Do any of the branches intersect \mathbb{R}^{4} ?

Real One-Dimensional Branches

If $\gamma_{0}\left(B \cap \mathbb{R}^{n}\right) \notin\{\emptyset,\{0\}\}$ there exists $k \in \mathbb{N}_{0}$ with $0 \leq k \leq 2 K-1$ such that

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\},
$$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$
Z^{2}-z_{1} ; \quad Z^{3}-z_{1}^{2}, \quad Z^{4}-z_{1}^{3}
$$

define an analytic variety in \mathbb{C}^{4} as follows:

$$
z_{2}^{2}-z_{1}=0 ; \quad z_{3}^{3}-z_{1}^{2}=0, \quad z_{4}^{4}-z_{1}^{3}=0
$$

(a) How many branches are there?
(b) What is K for each branch?
(c) Do any of the branches intersect \mathbb{R}^{4} ?

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$General Structure Theorem for \mathbb{C}-Analytic Germs $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$

Then there exist sets B_{1}, \cdots, B_{N}, such that

General Structure Theorem for \mathbb{C}-Analytic Germs $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$

Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.
(d) If $L \subset \mathbb{C}^{n}, \gamma_{0}(L) \neq \emptyset$, is a connected \mathbb{C}-analytic manifold of dimension $l \in\{1, \cdots, n\}$ the points of which are l-regular points of a representative of α, then there exists
$j \in\{1, \cdots, N\}$ such that $\gamma_{0}(L) \subset \gamma_{0}\left(\overline{B_{j}}\right)$ and $\operatorname{dim}_{\mathbb{C}} B_{j}=l$.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.
(d) If $L \subset \mathbb{C}^{n}, \gamma_{0}(L) \neq \emptyset$, is a connected \mathbb{C}-analytic manifold of dimension $l \in\{1, \cdots, n\}$ the points of which are l-regular points of a representative of α, then there exists
$j \in\{1, \cdots, N\}$ such that $\gamma_{0}(L) \subset \gamma_{0}\left(\overline{B_{j}}\right)$ and $\operatorname{dim}_{\mathbb{C}} B_{j}=l$.
(e) If α is real-on-real, then B_{j} with $B_{j} \cap \mathbb{R}^{n} \neq \emptyset$ is real-on-real.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.
(d) If $L \subset \mathbb{C}^{n}, \gamma_{0}(L) \neq \emptyset$, is a connected \mathbb{C}-analytic manifold of dimension $l \in\{1, \cdots, n\}$ the points of which are l-regular points of a representative of α, then there exists $j \in\{1, \cdots, N\}$ such that $\gamma_{0}(L) \subset \gamma_{0}\left(\overline{B_{j}}\right)$ and $\operatorname{dim}_{\mathbb{C}} B_{j}=l$.
(e) If α is real-on-real, then B_{j} with $B_{j} \cap \mathbb{R}^{n} \neq \emptyset$ is real-on-real.
(f) $\alpha \cap \gamma_{0}\left(\mathbb{R}^{n}\right)=\gamma_{0}\left(\widetilde{B}_{1} \cup \cdots \cup \widetilde{B}_{K} \cup\{0\}\right)$ where the \widetilde{B}_{j} denotes those branches which intersect \mathbb{R}^{n} non-trivially.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.
(d) If $L \subset \mathbb{C}^{n}, \gamma_{0}(L) \neq \emptyset$, is a connected \mathbb{C}-analytic manifold of dimension $l \in\{1, \cdots, n\}$ the points of which are l-regular points of a representative of α, then there exists $j \in\{1, \cdots, N\}$ such that $\gamma_{0}(L) \subset \gamma_{0}\left(\overline{B_{j}}\right)$ and $\operatorname{dim}_{\mathbb{C}} B_{j}=l$.
(e) If α is real-on-real, then B_{j} with $B_{j} \cap \mathbb{R}^{n} \neq \emptyset$ is real-on-real.
(f) $\alpha \cap \gamma_{0}\left(\mathbb{R}^{n}\right)=\gamma_{0}\left(\widetilde{B}_{1} \cup \cdots \cup \widetilde{B}_{K} \cup\{0\}\right)$ where the \widetilde{B}_{j} denotes those branches which intersect \mathbb{R}^{n} non-trivially.
(g) $\operatorname{dim}_{\mathbb{R}}\left(\alpha \cap \mathbb{R}^{n}\right)=\max _{1 \leq j \leq K} \operatorname{dim}_{\mathbb{R}}\left(\widetilde{B}_{j} \cap \mathbb{R}^{n}\right)$.

General Structure Theorem for \mathbb{C}-Analytic Germs

 $n \geq 2, \alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right) \backslash\{0\},\{0\} \subset \alpha \neq \gamma_{0}\left(\mathbb{C}^{n}\right)$Then there exist sets B_{1}, \cdots, B_{N}, such that
(a) $\alpha=\gamma_{0}\left(B_{1} \cup \cdots \cup B_{N} \cup\{0\}\right)$.
(b) Each $B_{j}, 1 \leq j \leq N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) $\operatorname{dim}_{\mathbb{C}} \alpha=\max _{1 \leq j \leq N}\left\{\operatorname{dim}_{\mathbb{C}} B_{j}\right\}$.
(d) If $L \subset \mathbb{C}^{n}, \gamma_{0}(L) \neq \emptyset$, is a connected \mathbb{C}-analytic manifold of dimension $l \in\{1, \cdots, n\}$ the points of which are l-regular points of a representative of α, then there exists $j \in\{1, \cdots, N\}$ such that $\gamma_{0}(L) \subset \gamma_{0}\left(\overline{B_{j}}\right)$ and $\operatorname{dim}_{\mathbb{C}} B_{j}=l$.
(e) If α is real-on-real, then B_{j} with $B_{j} \cap \mathbb{R}^{n} \neq \emptyset$ is real-on-real.
(f) $\alpha \cap \gamma_{0}\left(\mathbb{R}^{n}\right)=\gamma_{0}\left(\widetilde{B}_{1} \cup \cdots \cup \widetilde{B}_{K} \cup\{0\}\right)$ where the \widetilde{B}_{j} denotes those branches which intersect \mathbb{R}^{n} non-trivially.
(g) $\operatorname{dim}_{\mathbb{R}}\left(\alpha \cap \mathbb{R}^{n}\right)=\max _{1 \leq j \leq K} \operatorname{dim}_{\mathbb{R}}\left(\widetilde{B}_{j} \cap \mathbb{R}^{n}\right)$.
(h) If $\alpha \in \mathcal{V}_{0}\left(\mathbb{C}^{n}\right)$ is irreducible then $\alpha=\gamma_{0}(\bar{B})$ for some B. If α is real-on-real and $\alpha \cap \gamma_{0}\left(\mathbb{R}^{n}\right) \neq\{0\}$, then B is a branch of a real-on-real variety.

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R}-analytic function h on a $(q+1)$-dimensional real vector space V into \mathbb{R}^{q}, its \mathbb{R}-analytic variety which contains and a 1 -dimensional manifold M, namely a \mathbb{R}-analytic distinguished arc:

$$
\begin{aligned}
A & =\operatorname{var}(V,\{h\})=\{(\lambda, \xi) \in V: h(\lambda, \xi)=0\} \\
M & =\{(\lambda, \xi) \in V:(\lambda, \psi(\lambda, \xi)) \in \mathfrak{N}\}
\end{aligned}
$$

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R}-analytic function h on a $(q+1)$-dimensional real vector space V into \mathbb{R}^{q}, its \mathbb{R}-analytic variety which contains and a 1 -dimensional manifold M, namely a \mathbb{R}-analytic distinguished arc:

$$
\begin{aligned}
A & =\operatorname{var}(V,\{h\})=\{(\lambda, \xi) \in V: h(\lambda, \xi)=0\} \\
M & =\{(\lambda, \xi) \in V:(\lambda, \psi(\lambda, \xi)) \in \mathfrak{N}\}
\end{aligned}
$$

Let $\left\{M_{j}: j \in J\right\}$ denote those non-empty connected components of M with $\gamma_{\left(\lambda_{*}, 0\right)}\left(M_{j}\right) \neq \emptyset$.

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R}-analytic function h on a $(q+1)$-dimensional real vector space V into \mathbb{R}^{q}, its \mathbb{R}-analytic variety which contains and a 1 -dimensional manifold M, namely a \mathbb{R}-analytic distinguished arc:

$$
\begin{aligned}
A & =\operatorname{var}(V,\{h\})=\{(\lambda, \xi) \in V: h(\lambda, \xi)=0\} \\
M & =\{(\lambda, \xi) \in V:(\lambda, \psi(\lambda, \xi)) \in \mathfrak{N}\}
\end{aligned}
$$

Let $\left\{M_{j}: j \in J\right\}$ denote those non-empty connected components of M with $\gamma_{\left(\lambda_{*}, 0\right)}\left(M_{j}\right) \neq \emptyset$.
The q components of $h(\lambda, \xi)$ are real functions defined locally in a neighbourhood of $\left(\lambda_{*}, 0\right) \in V$ by a Taylor series.

Complexifying

Replacing $\left(x_{1}, \cdots, x_{q+1}\right) \in \mathbb{R}^{q+1}$ with $\left(z_{1}, \cdots, z_{q+1}\right) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C}-analytic extension h^{c} of h in a complex neighbourhood V^{c} of $\left(\lambda_{*}, 0\right)$ and a corresponding \mathbb{C}-analytic variety.

Complexifying

Replacing $\left(x_{1}, \cdots, x_{q+1}\right) \in \mathbb{R}^{q+1}$ with $\left(z_{1}, \cdots, z_{q+1}\right) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C}-analytic extension h^{c} of h in a complex neighbourhood V^{c} of $\left(\lambda_{*}, 0\right)$ and a corresponding \mathbb{C}-analytic variety. Let

$$
\begin{aligned}
A^{c} & =\operatorname{var}\left(V^{c},\left\{h^{c}\right\}\right)=\left\{(\lambda, \xi) \in V^{c}: h^{c}(\lambda, \xi)=0\right\}, \\
M^{c} & =\left\{(\lambda, \xi) \in V^{c}: \operatorname{ker}\left(\partial_{\xi} h^{c}[(\lambda, \xi)]\right)=\{0\}\right\},
\end{aligned}
$$

and let $\left\{M_{j}^{c}: j \in J^{c}\right\}$ be the non-empty connected components of M^{c} with $\gamma_{\left(\lambda_{*}, 0\right)}\left(\mathbb{R}^{q+1} \cap M_{j}^{c}\right) \neq \emptyset$.

Complexifying

Replacing $\left(x_{1}, \cdots, x_{q+1}\right) \in \mathbb{R}^{q+1}$ with $\left(z_{1}, \cdots, z_{q+1}\right) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C}-analytic extension h^{c} of h in a complex neighbourhood V^{c} of $\left(\lambda_{*}, 0\right)$ and a corresponding \mathbb{C}-analytic variety. Let

$$
\begin{aligned}
A^{c} & =\operatorname{var}\left(V^{c},\left\{h^{c}\right\}\right)=\left\{(\lambda, \xi) \in V^{c}: h^{c}(\lambda, \xi)=0\right\} \\
M^{c} & =\left\{(\lambda, \xi) \in V^{c}: \operatorname{ker}\left(\partial_{\xi} h^{c}[(\lambda, \xi)]\right)=\{0\}\right\}
\end{aligned}
$$

and let $\left\{M_{j}^{c}: j \in J^{c}\right\}$ be the non-empty connected components of M^{c} with $\gamma_{\left(\lambda_{*}, 0\right)}\left(\mathbb{R}^{q+1} \cap M_{j}^{c}\right) \neq \emptyset$.

For each $j \in J$ there exists $\hat{j} \in J^{c}$ such that $M_{j} \subset M_{\hat{j}}^{c}$.

Complexifying

Replacing $\left(x_{1}, \cdots, x_{q+1}\right) \in \mathbb{R}^{q+1}$ with $\left(z_{1}, \cdots, z_{q+1}\right) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C}-analytic extension h^{c} of h in a complex neighbourhood V^{c} of $\left(\lambda_{*}, 0\right)$ and a corresponding \mathbb{C}-analytic variety. Let

$$
\begin{aligned}
A^{c} & =\operatorname{var}\left(V^{c},\left\{h^{c}\right\}\right)=\left\{(\lambda, \xi) \in V^{c}: h^{c}(\lambda, \xi)=0\right\}, \\
M^{c} & =\left\{(\lambda, \xi) \in V^{c}: \operatorname{ker}\left(\partial_{\xi} h^{c}[(\lambda, \xi)]\right)=\{0\}\right\},
\end{aligned}
$$

and let $\left\{M_{j}^{c}: j \in J^{c}\right\}$ be the non-empty connected components of M^{c} with $\gamma_{\left(\lambda_{*}, 0\right)}\left(\mathbb{R}^{q+1} \cap M_{j}^{c}\right) \neq \emptyset$.

For each $j \in J$ there exists $\hat{j} \in J^{c}$ such that $M_{j} \subset M_{\hat{j}}^{c}$.
The structure theorem when applied to A^{c} gives, for each $j \in J^{c}$, the existence of a real-on-real branch B_{j} with

$$
\gamma_{\left(\lambda_{*}, 0\right)}\left(M_{j}^{c}\right) \subset \gamma_{\left(\lambda_{*}, 0\right)}\left(\bar{B}_{j}\right), \quad \operatorname{dim} B_{j}=1 \text { and } B_{j} \subset A^{c}
$$

with $B_{j} \backslash\left\{\left(\lambda_{*}, 0\right)\right\} \subset M_{j}^{c}$. There are finitely many branches and hence finitely many M_{j}^{c} and M_{j}.

Real Branches

Each one-dimensional branches B_{j} has a \mathbb{C}-analytic parameterization in a neighbourhood of $\left(\lambda_{*}, 0\right)$.

Real Branches

Each one-dimensional branches B_{j} has a \mathbb{C}-analytic parameterization in a neighbourhood of $\left(\lambda_{*}, 0\right)$.
In the setting of \mathbb{R}^{n}, we obtain that \bar{M}, locally near $\left(\lambda_{*}, 0\right)$, is the union of a finite number of curves which pass through $\left(\lambda_{*}, 0\right)$ in V, intersect one another only at $\left(\lambda_{*}, 0\right)$ and are given by an injective parameterization

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\}
$$

Real Branches

Each one-dimensional branches B_{j} has a \mathbb{C}-analytic parameterization in a neighbourhood of $\left(\lambda_{*}, 0\right)$.
In the setting of \mathbb{R}^{n}, we obtain that \bar{M}, locally near $\left(\lambda_{*}, 0\right)$, is the union of a finite number of curves which pass through $\left(\lambda_{*}, 0\right)$ in V, intersect one another only at $\left(\lambda_{*}, 0\right)$ and are given by an injective parameterization

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\}
$$

Thus, in our previous notation each $M_{j}, j \in J$, is paired, in a unique way with another $M_{\tilde{j}}, \tilde{j} \in J$, so that their union with the point $\left(\lambda_{*}, 0\right)$ forms one of these curves in V.

Real Branches

Each one-dimensional branches B_{j} has a \mathbb{C}-analytic parameterization in a neighbourhood of $\left(\lambda_{*}, 0\right)$.
In the setting of \mathbb{R}^{n}, we obtain that \bar{M}, locally near $\left(\lambda_{*}, 0\right)$, is the union of a finite number of curves which pass through $\left(\lambda_{*}, 0\right)$ in V, intersect one another only at $\left(\lambda_{*}, 0\right)$ and are given by an injective parameterization

$$
\mathbb{R}^{n} \cap \bar{B}=\left\{\left((-1)^{k} r^{K}, \psi(r \exp (k \pi i / K))\right):-\delta^{1 / K}<r<\delta^{1 / K}\right\}
$$

Thus, in our previous notation each $M_{j}, j \in J$, is paired, in a unique way with another $M_{\tilde{j}}, \tilde{j} \in J$, so that their union with the point $\left(\lambda_{*}, 0\right)$ forms one of these curves in V.

Thus curves in \mathfrak{N} cannot terminate when real-analytic operators are involved.

This leads directly to the advertised properties of maximal routes

Recall once more how the proof goes

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map
$\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with
$\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by
\mathcal{A}_{n} and vice versa.

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map
$\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with
$\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by
\mathcal{A}_{n} and vice versa.

- The mapping $n \mapsto \mathcal{A}_{n}$ is injective.

Recall once more how the proof goes

- A distinguished arc is a maximal connected subset of \mathfrak{N}.
- A route of length $N \in \mathbb{N} \cup\{\infty\}$ is a set $\left\{\mathcal{A}_{n}: 0 \leq n<N\right\}$ of distinguished arcs and a set $\left\{\left(\lambda_{n}, x_{n}\right): 0 \leq n<N\right\} \subset \mathbb{R} \times X$ such that:
- $\left(\lambda_{0}, x_{0}\right)=\left(\lambda_{0}, 0\right)$ is the bifurcation point;
- $\mathcal{R}^{+} \subset \mathcal{A}_{0}$;
- For $N>1$ and $0 \leq n<N-1$,

$$
\left(\lambda_{n+1}, x_{n+1}\right) \in\left(\partial \mathcal{A}_{n} \cap \partial \mathcal{A}_{n+1}\right) \backslash\left\{\left(\lambda_{n}, x_{n}\right)\right\}
$$

and there exists an injective \mathbb{R}-analytic map $\rho:(-1,1) \rightarrow \mathcal{A}_{n} \cup \mathcal{A}_{n+1} \cup\left\{\left(\lambda_{n+1}, x_{n+1}\right)\right\}$ with $\rho(0)=\left(\lambda_{n+1}, x_{n+1}\right)$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_{n} and vice versa.

- The mapping $n \mapsto \mathcal{A}_{n}$ is injective.
$\left\{\mathcal{A}_{0}\right\},\left\{\left(\lambda_{0}, 0\right)\right\}$ is a route of length 1 with $\left(\lambda_{0}, 0\right) \in \partial \mathcal{A}_{0}$

Maximal Routes

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$ and

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$
and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$
We have seen that a distinguished arc cannot terminate at a singular point:

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$ and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$ We have seen that a distinguished arc cannot terminate at a singular point:
on the contrary it is paired canonically with another uniquely determined distinguished arc

Maximal Routes

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup\{\infty\}$ which we denote by

$$
\left.\left\{\mathcal{A}_{n},\left(\lambda_{n}, x_{n}\right)\right\}: 0 \leq n<N\right\}, \quad \mathcal{A}:=\cup \mathcal{A}_{n}
$$

The problem is to show that
if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \rightarrow \infty$ and
if \mathcal{A} is bounded then N must be finite and $\left(\lambda_{n}, x_{n}\right)=\left(\lambda_{0}, x_{0}\right)$
We have seen that a distinguished arc cannot terminate at a singular point:
on the contrary it is paired canonically with another uniquely determined distinguished arc

The global result follows easily from this and the local compactness of solution sets.

