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All spaces X, Y, Z etc. are real Banach spaces. and λ is a
distinguished parameter.

Let F : R×X → X be a Ck mapping, k ≥ 2, of the form

F (λ, x) = x− λLx−R(λ, x)

where L is a compact linear operator R is compact (maps
bounded sets into relatively compact sets) with
‖R(λ, x)‖/‖x‖ → 0 as ‖x‖ → 0.

F (λ, 0) = 0 for all λ

{(λ, 0) : λ ∈ R} is called the line of trivial solutions

Definition: λ0 is a bifurcation point if a sequence {(λk, xk)} of
non-trivial solutions exists with

F (λk, xk) = 0, λk → λ0, xk → 0, xk 6= 0
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and since L is compact, it follows that a subsequence of xk

‖xk‖

converges strongly to v where ‖v‖ = 1 is a characteristic vector
of v with characteristic value λ0

All bifurcation points are characteristic values of L
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What does this tell us?
Characteristic Values of a Compact Operator

I either λ is a characteristic value of L or I − λL is a
homeomorphism on X

I characteristic values of L are isolated in R

I the generalised kernel N (λ0) =
⋃

n∈N ker(λI − L)n is finite
dimensional - its dimension equals the codimension of the
generalised range R(λ0) =

⋂

n∈N range(λI − L)n is called
the the multiplicity of λ0

I a characteristic value is called simple if N (λ0) is
one-dimensional

Question: Which characteristic values are bifurcation points.
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Every simple characteristic value of L is a bifurcation point.

If λ0 is simple with characteristic vector ξ0 6= 0 there exists a
Ck−1-function (Λ, κ) : (−ε, ε) → R×X such that

F (Λ(s), κ(s)) = 0 for all s ∈ (−ε, ε),

(Λ(0), κ(0)) = (λ0, 0), κ′(0) = ξ0
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Let λ0 be any characteristic value of L The equation to be

solved is F (λ, x) = 0 where

I F (λ0, 0) = 0

I I − λ0L = ∂xF [(λ0, 0)] : X → X,

I ker(I − λ0L) 6= {0} and q ∈ N is the codimension of

range (I − λ0L).

Then there exist: open sets U and V with

(λ0, 0) ∈ U ⊂ R×X, (λ0, 0) ∈ V ⊂ R× ker(L),
mappings ω ∈ Ck(V,X) and h ∈ Ck(V,Rq) with ω(λ0, 0) = 0
and

F (λ, x) = 0, (λ, x) ∈ U ⇔

ω(λ, ξ) = x where (λ, ξ) ∈ V and h(λ, ξ) = 0.
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When λ0 is simple
The infinite-dimensional problem

F (λ, x) = 0

has been reduced to an equivalent finite-dimensional problem

h(λ, ξ) = 0, (λ, ξ) ∈ V ⊂ R× ker(L)

When λ0 is simple, h : R2 → R and the occurrence of
bifurcation for h(λ, ξ) = 0 is almost trivial from the implicit
function theorem applied to

ξ−1h(λ, ξ) = 0, ξ 6= 0, λ ∈ R

(but note the consequential loss of one derivative):

there exists a Ck−1-function (Λ, κ) : (−ε, ε) → R×X with

F (Λ(s), κ(s)) = 0 for all s ∈ (−ε, ε),

(Λ(0), κ(0)) = (λ0, 0), κ′(0) = ξ0,

Note: the kernel being one-dimensional is not enough
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Topological Bifurcation Theorem
Proof by degree theory; Krasnoselskii (1955), English translation 1964

Characteristic values with odd multiplicity are bifurcation points

I Caveat: Nothing about a curve of solutions bifurcating

I Characteristic values of even multiplicity may not be
bifurcation points, even when operators are polynomials.
Here is an example:

λz − z − i|z|2z = 0 has no non-trivial solutions
(λ, z) ∈ R× C

2

Yet X = C is a real Banach space and 1 is a characteristic
value of L = I of multiplicity 2

I There are C∞ examples where non-simple characteristic
values are bifurcation points but no continuum bifurcates

I When X is a Hilbert space and F (λ, x) = ∇xΦ(λ, x),
L is self-adjoint and all characteristic values are bifurcation
points
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Let T = {(λ, x) : F (λ, x) = 0, x 6= 0}

Let λ0 be a characteristic value of L of odd multiplicity.

Then there exists a continuum C0 in T with (λ0, 0) ∈ C0 and at
least one of the following holds.

I C0 is unbounded;

I (λ∗, 0) ∈ C0 for some characteristic value λ∗ 6= λ0 with odd
multiplicity
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Can more be said about the global continuum C0?
For example when F is smooth and λ0 is simple?

Questions:

Is it path-connected?

Is it in any sense smooth when F is smooth?

Answer to both: No

Example: R×X = R× R

Let E be any closed subset of {(λ, x) : |x| ≥ 1}

Let χε be the ε-mollification of the characteristic function of an
ε neighbourhood of E.

Let h(λ, x) =
∑

2−n(1− χ1/n(λ, x))

Then 0 ≤ h ≤ 1 is a C∞ function whose zero set is E.

Now let F (λ, x) = h(λ, x)(x − λLx) for any compact linear L



From MathSciNet:

MR0375019 (51 #11215) Dancer, E. N. Global structure of

the solutions of non-linear real analytic eigenvalue

problems. Proc. London Math. Soc. (3) 27 (1973), 747765.

Let E and G be real Banach spaces. Suppose that F : E ×R → G is a

real analytic and Fredholm mapping. The author considers the

equation F (x, λ) = 0 and, proving some results on

finite-dimensional real analytic germs, he obtains results on

the local and global structure of solutions, i.e., results on the

properties of the set D = {(x, λ) : E × (−∞,∞) : F (x, λ) = 0} (e.g.,

D is locally compact, σ-compact, locally path-connected and closed).

Under the assumption that F is real analytic, the set D has a number

of rather nice properties (it is impossible to present briefly
here these properties); this result complements earlier results.

[see, e.g., P. H. Rabinowitz, J. Functional Analysis 7 (1971), 487513]
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F is real-analytic – in other words it is C∞ from R×X into X
and equals the sum of its Taylor series

Let
S = {(λ, x) : F (λ, x) = 0}: all solutions

T = {(λ, x) ∈ S : x 6= 0}: all non-trivial solutions

N = {(λ, x) ∈ S : ker
(

∂xF [(λ, x)]
)

= {0}}: all non-singular solutions

The bifurcating branch {(Λ(s), κ(s)) : s ∈ (−ε, ε)} in the local
theory has λ and κ real-analytic.

Suppose Λ′ 6≡ 0 on (−ε, ε) and

Then, by analyticity of Λ′ and κ′, chose ε > 0 such that

Λ′(s) 6= 0 for s ∈ (0, ε), κ′(s) 6= 0 for s ∈ (−ε, ε),

R+ := {(Λ(s), κ(s)) : s ∈ (0, ε)} ⊂ T ∩N.
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Unique Global Extension of R+

There exists a continuous curve R which extends R+ as follows.

(a) R = {(Λ(s), κ(s)) : s ∈ [0,∞)}
where (Λ, κ) : [0,∞) → R×X is continuous

(b) R+ ⊂ R ⊂ S and in a right neighbourhood of s = 0, R and
R+ coincide.

(c)
{

s ≥ 0 : (Λ(s), κ(s)) /∈ N
}

has no accumulation points.

(d) At each point, R has a local analytic re-parameterization:

I For s∗ ∈ (0,∞) ∃ ρ∗ : (−1, 1) → R which is continuous,
injective, ρ∗(0) = s∗, and
t 7→ σ∗(t) := (Λ(ρ∗(t)), κ(ρ∗(t))) is analytic on (−1, 1)

I Λ is injective on a right neighbourhood of 0

I For s∗ > 0 Λ is injective on [s∗, s∗ + ε∗] and
[s∗ − ε∗, s∗], ε∗ > 0
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(e) One of the following occurs:

(i) ‖(Λ(s), κ(s))‖ → ∞ as s → ∞;

(ii) R is a closed loop, R = {(Λ(s), κ(s)) : 0 ≤ s ≤ T} and
(Λ(T ), κ(T )) = (λ0, 0) for some T > 0 .

Let T > 0 is the smallest such T and that
(λ(s + T ), κ(s + T )) = (Λ(s), κ(s)) for all s ≥ 0.

(f) If (Λ(s1), κ(s1)) = (Λ(s2), κ(s2)) ∈ N, s1 6= s2, then (e)(ii)
occurs and |s1 − s2| is an integer multiple of T .

In particular, (Λ, κ) : [0,∞) → S is locally injective.
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Cautionary Remarks

I R may not be maximal: Other curves or manifolds in S
may intersect R.

I R may self-intersect in the sense that while s 7→ (Λ(s), κ(s))
is locally injective, it need not be globally injective.

I R may not be smooth where σ∗′(0) = 0 even though R has
a local analytic parameterization at every point.
{(t2, t3) : t ∈ (−1, 1)} has a cusp at t = 0, even though its
parametrization is real-analytic.

I (e)(i) is stronger than saying R is unbounded in R×X.
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of distinguished arcs and a set
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By Zorn’s Lemma there exists a maximal route of length
N ∈ N ∪ {∞} which we denote by

{An, (λn, xn)} : 0 ≤ n < N}, A := ∪An.

The problem is to show that

if A is unbounded it has a parametrization which tends to
infinity as s → ∞

and

if A is bounded then N must be finite and (λn, xn) = (λ0, x0)

To show this we use the local properties of equations with
analytic operators in an essential way

Once we understand that structure, the global unique
continuation result is more-or-less obvious



The Story So Far



The equation: F (λ, x) = 0 where F is R-analytic



The equation: F (λ, x) = 0 where F is R-analytic

Let
S = {(λ, x) : F (λ, x) = 0}: all solutions



The equation: F (λ, x) = 0 where F is R-analytic

Let
S = {(λ, x) : F (λ, x) = 0}: all solutions

T = {(λ, x) ∈ S : x 6= 0}: all non-trivial solutions



The equation: F (λ, x) = 0 where F is R-analytic

Let
S = {(λ, x) : F (λ, x) = 0}: all solutions

T = {(λ, x) ∈ S : x 6= 0}: all non-trivial solutions

N = {(λ, x) ∈ S : ker
(
∂xF [(λ, x)]

)
= {0}}: all non-singular solutions



The equation: F (λ, x) = 0 where F is R-analytic

Let
S = {(λ, x) : F (λ, x) = 0}: all solutions

T = {(λ, x) ∈ S : x 6= 0}: all non-trivial solutions

N = {(λ, x) ∈ S : ker
(
∂xF [(λ, x)]

)
= {0}}: all non-singular solutions

Points of N lie on one-dimensional branches parametrised by
the distinguished parameter λ
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F is the field R or C and X, Y are Banach spaces over F.

Let F : U → Y is C∞ where U is open in X.

Definition (F -analyticity is a local property.)

F : U → Y is F- analytic at x0 ∈ U if at each point of a ball B
about x0 in X, it is the sum of its Taylor series:

F (x) =
∞∑

k=0

1

k!
dkF [x0](x− x0)

k, x ∈ B

F is analytic on U if it is analytic at each point of U .

Theorem. F is analytic on U if and only if for each x0 ∈ U

there exist constants r, C, R > 0, depending on x0, such that

∥∥dkF [x]
∥∥ ≤

C k!

Rk
for all x ∈ U with ‖x− x0‖ < r.
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The map x+ iy 7→ x− iy is linear from the real linear space C

to itself. Therefore it is R-analytic.

It is not linear on the complex linear space C. In fact it is not
even differentiable and is therefore not C analytic.

f(x, y) = (xy, xy) is R-analytic from R
2 into itself.

However it is zero on both axes. Hence non-trivial R-analytic
functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically
zero:

Theorem Suppose that that U ⊂ X is an open connected set
and that F : U → Y is F-analytic. Suppose also that F ≡ 0 on a
non-empty open set W ⊂ U . Then F is identically zero on U .
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More on R- and C-Analyticity

Suppose that U ⊂ F
n is open and connected

gk : U → F is F-analytic, 1 ≤ k ≤ m.

E = {x ∈ U : gk(x) = 0 ∈ F, 1 ≤ k ≤ m} an analytic variety

If E 6= U , then U \ E is dense in U .

If F = C, then U \E is also connected.

(Riemann Extension Theorem) If f is C-analytic on U \E and
sup{|f(x)| : x ∈ U \ E} < ∞, there exists a C-analytic function
f̃ on U with f = f̃ on U \ E.
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F : U → Z analytic and ∂xF [(x0, y0)] ∈ L(X,Z) bijective.

Then y0 ∈ V (open) ⊂ Y , (x0, y0) ∈ W (open) ⊂ U and an
F-analytic mapping φ : V → X such that φ(y0) = x0 and

F−1(z0) ∩W = {(φ(y), y) : y ∈ V }.

Simple Analytic Local Bifurcation
The R-analytic implicit function theorem leads to an R-analytic
version of Lyapunov-Schmidt Reduction and hence to
R-analyticity of the branch which bifurcates locally from a
simple characteristic value:

If F : R×X → X is R-analytic and λ0 is a simple characteristic
value of L with characteristic vector ξ0 6= 0. Then there exists
an R-analytic function (Λ, κ) : (−ε, ε) → R×X such that

F (Λ(s), κ(s)) = 0 for all s ∈ (−ε, ε),

(Λ(0), κ(0)) = (λ0, 0), κ′(0) = ξ0
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x0 ∈ U(open) ⊂ F
n and f : U → F an F-analytic function.

Then f(x) =
∑

p∈Nn

0

fp x
p where fp =

1

p!

∂pf

∂xp
(x0) and

∑

p∈Nn

0

r|p||fp| < ∞ for some r > 0

A function so defined is analytic at x0 in F
n.

If U(open) ⊂ C
n and f : U → C is C-analytic and f(x) ∈ R for

all x ∈ U ∩ R
n we say that f is real-on-real.

This means that when x0 ∈ U ∩ R
n the coefficients fp are real.
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Many different norms can be defined on functions f : Fn → F

which have f(0) = 0 and are F-analytic at 0

For example: q ∈ N and r > 0,

0 ∈ Bq
r :=

(
Brq+1(F)

)n−1
×Br(F) ⊂ F

n(open)

Let Cq
r denote the space of F-valued F-analytic functions u on

Bq
r with u(0) = 0 of the form

u(x) =
∑

p∈Nn

0
, p 6=0

up x
p

∑

p∈Nn

0
, p 6=0

|up|r
(q+1)|p|−qpn =: ‖u‖r,q < ∞.

(
C

q
r , ‖ · ‖r,q

)
is a Banach algebra since it is complete and closed

under multiplication with ‖uv‖r,q ≤ ‖u‖r,q‖v‖r,q

For given q, any function which is analytic at 0 is on one of
these classes for some choice of r sufficiently small.



Weierstrass Division Theorem



Weierstrass Division Theorem

Suppose 0 ∈ U (open) ⊂ F
n, f : U → F is analytic,

f(0) = 0 and, for (0, · · · , 0, xn) ∈ U ,

f(0, · · · , 0, xn) = xqnv(xn) where v(0) 6= 0 and q ≥ 1.



Weierstrass Division Theorem

Suppose 0 ∈ U (open) ⊂ F
n, f : U → F is analytic,

f(0) = 0 and, for (0, · · · , 0, xn) ∈ U ,

f(0, · · · , 0, xn) = xqnv(xn) where v(0) 6= 0 and q ≥ 1.

Let g : U → F be any F-analytic function with g(0) = 0.



Weierstrass Division Theorem

Suppose 0 ∈ U (open) ⊂ F
n, f : U → F is analytic,

f(0) = 0 and, for (0, · · · , 0, xn) ∈ U ,

f(0, · · · , 0, xn) = xqnv(xn) where v(0) 6= 0 and q ≥ 1.

Let g : U → F be any F-analytic function with g(0) = 0.

Then for some r > 0,

g(x1, · · · , xn) = h(x1, · · · , xn)f(x1, · · · , xn)+

q−1∑

k=0

hk(x1, · · · , xn−1)x
k
n

for all (x1, · · · , xn) ∈ U0 = Bq
r, where h is analytic on U0 and

hk is analytic on V =
(
Brq+1(F)

)n−1
.



Weierstrass Division Theorem

Suppose 0 ∈ U (open) ⊂ F
n, f : U → F is analytic,

f(0) = 0 and, for (0, · · · , 0, xn) ∈ U ,

f(0, · · · , 0, xn) = xqnv(xn) where v(0) 6= 0 and q ≥ 1.

Let g : U → F be any F-analytic function with g(0) = 0.

Then for some r > 0,

g(x1, · · · , xn) = h(x1, · · · , xn)f(x1, · · · , xn)+

q−1∑

k=0

hk(x1, · · · , xn−1)x
k
n

for all (x1, · · · , xn) ∈ U0 = Bq
r, where h is analytic on U0 and

hk is analytic on V =
(
Brq+1(F)

)n−1
.

The functions hk and h are uniquely determined by f and g.



Weierstrass Division Theorem

Suppose 0 ∈ U (open) ⊂ F
n, f : U → F is analytic,

f(0) = 0 and, for (0, · · · , 0, xn) ∈ U ,

f(0, · · · , 0, xn) = xqnv(xn) where v(0) 6= 0 and q ≥ 1.

Let g : U → F be any F-analytic function with g(0) = 0.

Then for some r > 0,

g(x1, · · · , xn) = h(x1, · · · , xn)f(x1, · · · , xn)+

q−1∑

k=0

hk(x1, · · · , xn−1)x
k
n

for all (x1, · · · , xn) ∈ U0 = Bq
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(
Brq+1(F)
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The functions hk and h are uniquely determined by f and g.
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It suffices therefore to show that, for r > 0 sufficiently small, a
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r is defined by
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Now it is not difficult to see that

‖(Γ− I)u‖r,q =≤ r−q‖u‖r,q
(
C(f)r1+q + rq‖1− v‖r,q

)
→ 0 as r → 0.

Hence Γ is a bijection on C
q
r and for g ∈ C

q
r there is a unique

u ∈ C
q
r with Γu = g. The uniqueness of h and hk follow from

the definition of L and A.
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Suppose f is F-analytic and not identically zero in a ball about
0 ∈ F

n and f(0) = 0.

Then there exists a choice of coordinates, F-analytic functions
ak and h, and r > 0 such that on a ball about 0

h(x1, · · · , xn)f(x1, · · · , xn) = xqn +

q−1∑

k=0

ak(x1, · · · , xn−1)x
k
n,

h(0) 6= 0 and ak(0) = 0

ak and h are uniquely determined by f .

If F = C
n and f is real-on-real, then h and ak are real-on-real.

Proof. Let g(x) = x
q
n and then let ak = −hk.
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Multiple Roots and the Discriminant

A polynomial

A = Zp +

p−1∑

k=0

AkZ
k, Z ∈ C,

can have multiple roots.

However there exists a polynomial function D(A0, · · · , Ap−1),
the discriminant, such that A has simple roots when
D(A0, · · · , Ap−1) 6= 0.

Let ξ = (z1, · · · , zm) ∈ C
m If Ak = ak(ξ) where the ak are

C-analytic the discriminant

D(ξ) := D(a1(ξ), · · · , ap−1(ξ))

is a C-analytic function of ξ and the A has simple roots when
D(ξ) 6= 0.
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Suppose D(a0, · · · , ap−1) ≡ 0 on V (open)

Then there exists another polynomial E(Z; ξ) (the
simplification of A with

I degree E = q ≤ p,

I eq ≡ 1,

I E(Z; ξ) has the same roots as A(Z; ξ)

I D(e0, · · · , em−1, 1) 6≡ 0 on V

I For (z1, · · · , zm) in an open dense connected subset W of
V , E(Z; z1, · · · , zm) has no multiple roots.

I If A is real-on-real, then so is E.
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F = C, m ∈ N0, m ∈ N

Let V be a neighbourhood of 0 ∈ C
m.

A polynomial of the form, ξ ∈ V, Z ∈ C,

A(Z; z1, · · · , zm) = Zp +

p−1∑

k=0

ak(ξ)Z
k, p ∈ N, (†)

where a0(0) = · · · = ap−1(0) = 0, D(a0, · · · , ap−1, 1) 6≡ 0 on V is
called a Weierstrass polynomial.

D(a0, · · · , ap−1, 1) 6= 0 on a connected, open, dense subset of V .

Note: If A is a Weierstrass polynomial except that D ≡ 0

I its simplification E is a Weierstrass polynomial,

I the roots of E and A coincide

I the non-principal coefficients of E are zero at 0.
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Looking Forward

We will end up having reduced our problem to a
finite-dimensional one for families of Weierstrass polynomials
{Am+1, · · · , An} on V ⊂ C

m. For k ∈ {m+ 1, · · · , n} let

hk(z1, · · · , zn) = Ak(zk; z1, · · · , zm), m ∈ {1, · · · , n− 1}

The solution set will equivalent to a set of the very special form

∀ k ∈ {m+ 1, · · · ,m}, hk(z1, · · · , zn) = 0 ⊂ C
n
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n), then both α ∩ β and α ∪ β are in Va(F

n), but
in general α \ β /∈ Va(F

n).

If U ⊂ C
n and the elements of G are real-on-real, var (U,G) is

real-on-real
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n).

A point of α is called `-regular if α is an `-dimensional manifold
in a neighbourhood of the point. The dimension of α is the
largest ` for which α has `-regular points

If a ∈M and var (U,G) is an F-analytic variety, there is an
open neighbourhood W of a in M such that W \ var (U,G) is
either empty or dense in W .

If M ⊂ U is a connected analytic manifold and M ∩ var (U,G)
has non-empty interior relative to M , then M ⊂ var (U,G).

α ∈ Va(F
n) is irreducible if

α = α1 ∪ α2, α1, α2 ∈ Va(F
n) implies that α = α1 or α = α2.

If M is an analytic manifold and a ∈M , then γa(M) ∈ Va(F
n)

is irreducible.
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m

H = {hm+1, · · · , hn} where hk(z1, · · · , zn) = Ak(zk; z1, · · · , zm)

A Weierstrass analytic variety is a set of the form
var

(
V × C

n−m,H
)
⊂ C

n.

Its discriminant D(H) : V → C is the product of the
discriminants of the Aks

Its branches are the connected components of

var
(
V × C

n−m,H
)
\
(
var (V,D(H)) × C

n−m
)
.

Each branch is a connected C-analytic manifold of dimension m
which projects onto the connected set V \ var

(
V, {D(H)}

)
.

Globally, zm+1, · · · , zn are not analytic functions on
V \ var (V, {D(H)}) if the latter set is multiply connected
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This may give a sense of the following result

Think about its structure in this simple case

When m = 1 a variety is the union of its branches:

α = γ0


 ⋃

α∩γ0(B)6={0}

B ∪ {0}
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Theorem. Suppose B is a branch of the Weierstrass analytic

variety E = var (V × C
n−1,H) and D(H) is non-zero on

V \ {0}.

Then there exist K ∈ N, δ > 0 and a C-analytic function

ψ : {z ∈ C : |z|K < δ} → C
n−1

such that the mapping z 7→ (zK , ψ(z)) is injective, ψ(0) = 0 and

{0} ∪B = B ∩ (V × C
n−1) = {(zK , ψ(z)) : |z|K < δ}.
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n−1, Ĥ).
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on V̂ and every point of Ê is 1-regular and
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V̂ . Thus Ê is the union of the disjoint graphs of the functions
ξq : V̂ → C

n−1, 1 ≤ q ≤ p.



Since D(H) is nowhere zero on V \ {0}, D(Ĥ) is nowhere zero
on V̂ and every point of Ê is 1-regular and
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{z} ×C
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where p =
∏n

k=2 pk.

By the Analytic Implicit Function Theorem, each ξq is defined

locally on V̂ as a C-analytic function with values in C
n−1

Since V̂ is simply connected, they define analytic functions on
V̂ . Thus Ê is the union of the disjoint graphs of the functions
ξq : V̂ → C

n−1, 1 ≤ q ≤ p.

Recall that, for z ∈ V̂ , each component of ξq(z) ∈ C
n−1 is a

simple root of a polynomial Ak(Z; e
z), 2 ≤ k ≤ n.
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Moreover if, for some ẑ ∈ V̂ and some m ∈ Z,

ξq1(ẑ) = ξq2(ẑ + 2πmi), q1, q2 ∈ {1, · · · p},

then
ξq1(z) = ξq2(z + 2πmi) for all z ∈ V̂ ,

by the Analytic Implicit Function Theorem and analytic
continuation.

Hence, for q ∈ {1, · · · , p}, the mapping

z 7→ (ez, ξq(z)) ∈ E, z ∈ V̂ , (1)

is periodic with period 2πKqi and is injective on the set

Vq = {z = ρ+ iθ ∈ V̂ : 0 < θ ≤ 2πKq}, Kq ∈ {1, · · · , p}.
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This is a branch of the variety E where m = 1:

B =
{
(ez , ξq(z)) : z ∈ Vq

}

is an injective parameterization of B. Since z 7→ ξq(Kqz) has
period (not necessarily minimal) 2πi, we can define an analytic
function ψ̃ : {z : 0 < |z| < δ1/Kq} → C by

ψ̃(z) = ξq(Kq log z)

This gives a new injective parameterization of B, namely

B =
{
(zKq , ψ̃(z)) : 0 < |z| < δ1/Kq

}
,

where ψ is analytic and limz1→0 ψ̃(z1) = 0.

The Riemann Extension Theorem means that ψ̃ has an analytic
extension ψ defined on the ball {z1 ∈ C : |z1| < δ1/Kq} with
ψ(0) = 0. Let K = Kq to complete the proof.
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(h) If α ∈ V0(C
n) is irreducible then α = γ0(B) for some B. If

α is real-on-real and α ∩ γ0(R
n) 6= {0}, then B is a branch

of a real-on-real variety.
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M = {(λ, ξ) ∈ V : (λ, ψ(λ, ξ)) ∈ N}.

Let {Mj : j ∈ J} denote those non-empty connected
components of M with γ(λ∗,0)(Mj) 6= ∅.

The q components of h(λ, ξ) are real functions defined locally in
a neighbourhood of (λ∗, 0) ∈ V by a Taylor series.
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neighbourhood V c of (λ∗, 0) and a corresponding C-analytic
variety. Let

Ac = var (V c, {hc}) = {(λ, ξ) ∈ V c : hc(λ, ξ) = 0},

M c =
{
(λ, ξ) ∈ V c : ker(∂ξh

c[(λ, ξ)]) = {0}
}
,

and let {M c
j : j ∈ Jc} be the non-empty connected components

of M c with γ(λ∗,0)(R
q+1 ∩M c

j ) 6= ∅.

For each j ∈ J there exists ĵ ∈ Jc such that Mj ⊂M c
ĵ
.

The structure theorem when applied to Ac gives, for each
j ∈ Jc, the existence of a real-on-real branch Bj with

γ(λ∗,0)(M
c
j ) ⊂ γ(λ∗,0)(Bj), dimBj = 1 and Bj ⊂ Ac

with Bj \ {(λ∗, 0)} ⊂M c
j . There are finitely many branches and

hence finitely many M c
j and Mj.
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parameterization in a neighbourhood of (λ∗, 0).

In the setting of Rn, we obtain that M , locally near (λ∗, 0), is
the union of a finite number of curves which pass through (λ∗, 0)
in V , intersect one another only at (λ∗, 0) and are given by an
injective parameterization

R
n ∩B =

{(
(−1)krK , ψ(r exp(kπi/K))

)
: −δ1/K < r < δ1/K

}
,

Thus, in our previous notation each Mj, j ∈ J, is paired, in a

unique way with another Mj̃ , j̃ ∈ J , so that their union with
the point (λ∗, 0) forms one of these curves in V .

Thus curves in N cannot terminate when real-analytic
operators are involved.

This leads directly to the advertised properties of maximal
routes
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I A distinguished arc is a maximal connected subset of N.

I A route of length N ∈ N ∪ {∞} is a set {An : 0 ≤ n < N}
of distinguished arcs and a set
{(λn, xn) : 0 ≤ n < N} ⊂ R×X such that:

I (λ0, x0) = (λ0, 0) is the bifurcation point;
I R+ ⊂ A0;
I For N > 1 and 0 ≤ n < N − 1,

(λn+1, xn+1) ∈
(
∂An ∩ ∂An+1

)
\ {(λn, xn)}

and there exists an injective R-analytic map
ρ : (−1, 1) → An ∪ An+1 ∪ {(λn+1, xn+1)} with
ρ(0) = (λn+1, xn+1). Hence An+1 is uniquely determined by
An and vice versa.

I The mapping n 7→ An is injective.

{A0}, {(λ0, 0)} is a route of length 1 with (λ0, 0) ∈ ∂A0
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By Zorn’s Lemma there exists a maximal route of length
N ∈ N ∪ {∞} which we denote by

{An, (λn, xn)} : 0 ≤ n < N}, A := ∪An.

The problem is to show that

if A is unbounded it has a parametrization which tends to
infinity as s→ ∞

and

if A is bounded then N must be finite and (λn, xn) = (λ0, x0)

We have seen that a distinguished arc cannot terminate at a
singular point:

on the contrary it is paired canonically with another uniquely
determined distinguished arc

The global result follows easily from this and the local
compactness of solution sets.


