Real-Analytic Operator Equations

UK-Japan Winter School Nonlinear Analysis Royal Academy of Engineering London, 7-11 January 2013

Classical Setting for Bifurcation Theory

Krasnoselskii (1955), English translation 1964

All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Let $F : \mathbb{R} \times X \to X$ be a C^k mapping, $k \ge 2$, of the form

$$F(\lambda, x) = x - \lambda L x - R(\lambda, x)$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $||R(\lambda, x)||/||x|| \to 0$ as $||x|| \to 0$.

All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Let $F : \mathbb{R} \times X \to X$ be a C^k mapping, $k \ge 2$, of the form

$$F(\lambda, x) = x - \lambda L x - R(\lambda, x)$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $||R(\lambda, x)||/||x|| \to 0$ as $||x|| \to 0$. $F(\lambda, 0) = 0$ for all λ

All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Let $F : \mathbb{R} \times X \to X$ be a C^k mapping, $k \ge 2$, of the form

$$F(\lambda, x) = x - \lambda L x - R(\lambda, x)$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $||R(\lambda, x)||/||x|| \to 0$ as $||x|| \to 0$. $F(\lambda, 0) = 0$ for all λ

 $\{(\lambda, 0) : \lambda \in \mathbb{R}\}$ is called the *line of trivial solutions*

All spaces X, Y, Z etc. are real Banach spaces. and λ is a distinguished parameter.

Let $F : \mathbb{R} \times X \to X$ be a C^k mapping, $k \ge 2$, of the form

$$F(\lambda, x) = x - \lambda L x - R(\lambda, x)$$

where L is a compact linear operator R is compact (maps bounded sets into relatively compact sets) with $||R(\lambda, x)||/||x|| \to 0$ as $||x|| \to 0$. $F(\lambda, 0) = 0$ for all λ

 $\{(\lambda, 0) : \lambda \in \mathbb{R}\}$ is called the *line of trivial solutions*

Definition: λ_0 is a *bifurcation point* if a sequence $\{(\lambda_k, x_k)\}$ of non-trivial solutions exists with

 $F(\lambda_k, x_k) = 0, \quad \lambda_k \to \lambda_0, \quad x_k \to 0, \quad x_k \neq 0$

Which values of λ are bifurcation points?

Which values of λ are bifurcation points?

Since $\lambda_k \to \lambda_0$, L is compact, $||R(\lambda_k, x_k)|| / ||x_k|| \to 0$ and

$$\frac{x_k}{\|x_k\|} - \lambda_k L\left(\frac{x_k}{\|x_k\|}\right) - \frac{R(\lambda_k, x_k)}{\|x_k\|} = 0$$

and since L is compact, it follows that a subsequence of $\frac{x_k}{\|x_k\|}$ converges strongly to v where $\|v\| = 1$ is a characteristic vector of v with characteristic value λ_0

Which values of λ are bifurcation points?

Since $\lambda_k \to \lambda_0$, L is compact, $||R(\lambda_k, x_k)|| / ||x_k|| \to 0$ and

$$\frac{x_k}{\|x_k\|} - \lambda_k L\left(\frac{x_k}{\|x_k\|}\right) - \frac{R(\lambda_k, x_k)}{\|x_k\|} = 0$$

and since L is compact, it follows that a subsequence of $\frac{x_k}{\|x_k\|}$ converges strongly to v where $\|v\| = 1$ is a characteristic vector of v with characteristic value λ_0

All bifurcation points are characteristic values of L

Characteristic Values of a Compact Operator

▶ either λ is a characteristic value of L or $I - \lambda L$ is a homeomorphism on X

- ▶ either λ is a characteristic value of L or $I \lambda L$ is a homeomorphism on X
- characteristic values of L are *isolated* in \mathbb{R}

- either λ is a characteristic value of L or $I \lambda L$ is a homeomorphism on X
- characteristic values of L are *isolated* in \mathbb{R}
- ► the generalised kernel $\mathcal{N}(\lambda_0) = \bigcup_{n \in \mathbb{N}} \ker(\lambda I L)^n$ is finite dimensional its dimension equals the codimension of the generalised range $\mathcal{R}(\lambda_0) = \bigcap_{n \in \mathbb{N}} \operatorname{range}(\lambda I L)^n$ is called the *the multiplicity of* λ_0

- either λ is a characteristic value of L or $I \lambda L$ is a homeomorphism on X
- characteristic values of L are *isolated* in \mathbb{R}
- ► the generalised kernel $\mathcal{N}(\lambda_0) = \bigcup_{n \in \mathbb{N}} \ker(\lambda I L)^n$ is finite dimensional its dimension equals the codimension of the generalised range $\mathcal{R}(\lambda_0) = \bigcap_{n \in \mathbb{N}} \operatorname{range}(\lambda I L)^n$ is called the *the multiplicity of* λ_0
- a characteristic value is called *simple* if $\mathcal{N}(\lambda_0)$ is one-dimensional

Characteristic Values of a Compact Operator

- either λ is a characteristic value of L or $I \lambda L$ is a homeomorphism on X
- characteristic values of L are *isolated* in \mathbb{R}
- ► the generalised kernel $\mathcal{N}(\lambda_0) = \bigcup_{n \in \mathbb{N}} \ker(\lambda I L)^n$ is finite dimensional its dimension equals the codimension of the generalised range $\mathcal{R}(\lambda_0) = \bigcap_{n \in \mathbb{N}} \operatorname{range}(\lambda I L)^n$ is called the *the multiplicity of* λ_0
- a characteristic value is called *simple* if $\mathcal{N}(\lambda_0)$ is one-dimensional

Question: Which characteristic values are bifurcation points.

Simple Bifurcation

Special case of Crandall-Rabinowitz 1971

Simple Bifurcation

Special case of Crandall-Rabinowitz 1971

Every simple characteristic value of L is a bifurcation point.

Simple Bifurcation Special case of Crandall-Rabinowitz 1971

Every simple characteristic value of L is a bifurcation point. If λ_0 is simple with characteristic vector $\xi_0 \neq 0$ there exists a C^{k-1} -function $(\Lambda, \kappa) : (-\epsilon, \epsilon) \to \mathbb{R} \times X$ such that

$$F(\Lambda(s), \kappa(s)) = 0 \text{ for all } s \in (-\epsilon, \epsilon),$$

$$(\Lambda(0), \kappa(0)) = (\lambda_0, 0), \ \kappa'(0) = \xi_0$$

to finite dimensions

Let λ_0 be any characteristic value of L

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$ where

$$F(\lambda_0, 0) = 0$$

$$I - \lambda_0 L = \partial_x F[(\lambda_0, 0)] : X \to X,$$

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$ where

$$\blacktriangleright F(\lambda_0, 0) = 0$$

•
$$I - \lambda_0 L = \partial_x F[(\lambda_0, 0)] : X \to X,$$

ker(I − λ₀L) ≠ {0} and q ∈ N is the codimension of range (I − λ₀L).

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$ where

$$\blacktriangleright F(\lambda_0, 0) = 0$$

•
$$I - \lambda_0 L = \partial_x F[(\lambda_0, 0)] : X \to X,$$

ker(I − λ₀L) ≠ {0} and q ∈ N is the codimension of range (I − λ₀L).

Then there exist: open sets U and V with $(\lambda_0, 0) \in U \subset \mathbb{R} \times X, \ (\lambda_0, 0) \in V \subset \mathbb{R} \times \ker(L),$

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$ where

$$\blacktriangleright F(\lambda_0, 0) = 0$$

•
$$I - \lambda_0 L = \partial_x F[(\lambda_0, 0)] : X \to X,$$

ker(I − λ₀L) ≠ {0} and q ∈ N is the codimension of range (I − λ₀L).

Then there exist: open sets U and V with $(\lambda_0, 0) \in U \subset \mathbb{R} \times X, \ (\lambda_0, 0) \in V \subset \mathbb{R} \times \ker(L),$ mappings $\omega \in C^k(V, X)$ and $h \in C^k(V, \mathbb{R}^q)$ with $\omega(\lambda_0, 0) = 0$ and

to finite dimensions

Let λ_0 be any characteristic value of L The equation to be solved is $F(\lambda, x) = 0$ where

$$\blacktriangleright F(\lambda_0, 0) = 0$$

•
$$I - \lambda_0 L = \partial_x F[(\lambda_0, 0)] : X \to X,$$

► ker $(I - \lambda_0 L) \neq \{0\}$ and $q \in \mathbb{N}$ is the codimension of range $(I - \lambda_0 L)$.

Then there exist: open sets U and V with $(\lambda_0, 0) \in U \subset \mathbb{R} \times X, \ (\lambda_0, 0) \in V \subset \mathbb{R} \times \ker(L),$ mappings $\omega \in C^k(V, X)$ and $h \in C^k(V, \mathbb{R}^q)$ with $\omega(\lambda_0, 0) = 0$ and

$$\begin{split} F(\lambda, x) &= 0, \ (\lambda, x) \in U \Leftrightarrow \\ \omega(\lambda, \xi) &= x \ where \ (\lambda, \xi) \in V \ and \ h(\lambda, \xi) = 0. \end{split}$$

The infinite-dimensional problem

 $F(\lambda, x) = 0$

has been reduced to an equivalent finite-dimensional problem

$$h(\lambda,\xi) = 0, \quad (\lambda,\xi) \in V \subset \mathbb{R} \times \ker(L)$$

The infinite-dimensional problem

$$F(\lambda, x) = 0$$

has been reduced to an equivalent finite-dimensional problem

$$h(\lambda,\xi) = 0, \quad (\lambda,\xi) \in V \subset \mathbb{R} \times \ker(L)$$

When λ_0 is simple, $h : \mathbb{R}^2 \to \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi) = 0$ is almost trivial from the implicit function theorem applied to

$$\xi^{-1}h(\lambda,\xi) = 0, \quad \xi \neq 0, \ \lambda \in \mathbb{R}$$

(but note the consequential loss of one derivative):

The infinite-dimensional problem

$$F(\lambda, x) = 0$$

has been reduced to an equivalent finite-dimensional problem

$$h(\lambda,\xi) = 0, \quad (\lambda,\xi) \in V \subset \mathbb{R} \times \ker(L)$$

When λ_0 is simple, $h : \mathbb{R}^2 \to \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi) = 0$ is almost trivial from the implicit function theorem applied to

$$\xi^{-1}h(\lambda,\xi) = 0, \quad \xi \neq 0, \ \lambda \in \mathbb{R}$$

(but note the consequential loss of one derivative):

there exists a $C^{k-1}\text{-function }(\Lambda,\kappa):(-\epsilon,\epsilon)\to\mathbb{R}\times X$ with

$$F(\Lambda(s), \kappa(s)) = 0 \text{ for all } s \in (-\epsilon, \epsilon),$$

$$(\Lambda(0), \kappa(0)) = (\lambda_0, 0), \ \kappa'(0) = \xi_0,$$

The infinite-dimensional problem

$$F(\lambda, x) = 0$$

has been reduced to an equivalent finite-dimensional problem

$$h(\lambda,\xi) = 0, \quad (\lambda,\xi) \in V \subset \mathbb{R} \times \ker(L)$$

When λ_0 is simple, $h : \mathbb{R}^2 \to \mathbb{R}$ and the occurrence of bifurcation for $h(\lambda, \xi) = 0$ is almost trivial from the implicit function theorem applied to

$$\xi^{-1}h(\lambda,\xi) = 0, \quad \xi \neq 0, \ \lambda \in \mathbb{R}$$

(but note the consequential loss of one derivative):

there exists a $C^{k-1}\text{-function }(\Lambda,\kappa):(-\epsilon,\epsilon)\to\mathbb{R}\times X$ with

$$F(\Lambda(s), \kappa(s)) = 0 \text{ for all } s \in (-\epsilon, \epsilon),$$

$$(\Lambda(0), \kappa(0)) = (\lambda_0, 0), \ \kappa'(0) = \xi_0,$$

Note: the kernel being one-dimensional is not enough

Proof by degree theory; Krasnoselskii (1955), English translation 1964

Proof by degree theory; Krasnoselskii (1955), English translation 1964 Characteristic values with odd multiplicity are bifurcation points

Proof by degree theory; Krasnoselskii (1955), English translation 1964 Characteristic values with odd multiplicity are bifurcation points

 \blacktriangleright Caveat: Nothing about a curve of solutions bifurcating

Proof by degree theory; Krasnoselskii (1955), English translation 1964 Characteristic values with odd multiplicity are bifurcation points

- ▶ Caveat: Nothing about a *curve* of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:

 $\lambda z - z - i|z|^2 z = 0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^2$ Yet $X = \mathbb{C}$ is a real Banach space and 1 is a characteristic value of L = I of multiplicity 2

Proof by degree theory; Krasnoselskii (1955), English translation 1964 Characteristic values with odd multiplicity are bifurcation points

- ▶ Caveat: Nothing about a *curve* of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:

 $\lambda z - z - i|z|^2 z = 0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^2$ Yet $X = \mathbb{C}$ is a real Banach space and 1 is a characteristic value of L = I of multiplicity 2

▶ There are C^{∞} examples where non-simple characteristic values are bifurcation points but no continuum bifurcates

Topological Bifurcation Theorem

Proof by degree theory; Krasnoselskii (1955), English translation 1964 Characteristic values with odd multiplicity are bifurcation points

- ▶ Caveat: Nothing about a *curve* of solutions bifurcating
- Characteristic values of even multiplicity may not be bifurcation points, even when operators are polynomials. Here is an example:

 $\lambda z - z - i|z|^2 z = 0$ has no non-trivial solutions $(\lambda, z) \in \mathbb{R} \times \mathbb{C}^2$ Yet $X = \mathbb{C}$ is a real Banach space and 1 is a characteristic value of L = I of multiplicity 2

- ▶ There are C^{∞} examples where non-simple characteristic values are bifurcation points but no continuum bifurcates
- When X is a Hilbert space and F(λ, x) = ∇_xΦ(λ, x), L is self-adjoint and all characteristic values are bifurcation points

Let
$$\mathcal{T} = \{(\lambda, x) : F(\lambda, x) = 0, x \neq 0\}$$

Let
$$\mathcal{T} = \{(\lambda, x) : F(\lambda, x) = 0, x \neq 0\}$$

Let λ_0 be a characteristic value of L of odd multiplicity.

Let
$$\mathcal{T} = \{(\lambda, x) : F(\lambda, x) = 0, x \neq 0\}$$

Let λ_0 be a characteristic value of L of odd multiplicity.

Then there exists a continuum C_0 in \mathcal{T} with $(\lambda_0, 0) \in \overline{C}_0$ and at least one of the following holds.

Let
$$\mathcal{T} = \{(\lambda, x) : F(\lambda, x) = 0, x \neq 0\}$$

Let λ_0 be a characteristic value of L of odd multiplicity.

Then there exists a continuum C_0 in \mathcal{T} with $(\lambda_0, 0) \in \overline{C}_0$ and at least one of the following holds.

• C_0 is unbounded;

Let
$$\mathcal{T} = \{(\lambda, x) : F(\lambda, x) = 0, x \neq 0\}$$

Let λ_0 be a characteristic value of L of odd multiplicity.

Then there exists a continuum C_0 in \mathcal{T} with $(\lambda_0, 0) \in \overline{C}_0$ and at least one of the following holds.

- C_0 is unbounded;
- ▶ $(\lambda^*, 0) \in \overline{\mathcal{C}}_0$ for some characteristic value $\lambda^* \neq \lambda_0$ with odd multiplicity

Questions:

Questions:

Is it *path-connected?*

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Questions:

Is it *path-connected*?

Is it in any sense smooth when F is smooth?

Answer to both: No

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Let E be any closed subset of $\{(\lambda, x) : |x| \ge 1\}$

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Let E be any closed subset of $\{(\lambda, x) : |x| \ge 1\}$

Let χ_{ϵ} be the ϵ -mollification of the characteristic function of an ϵ neighbourhood of E.

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Let *E* be *any closed subset* of $\{(\lambda, x) : |x| \ge 1\}$

Let χ_{ϵ} be the ϵ -mollification of the characteristic function of an ϵ neighbourhood of E.

Let
$$h(\lambda, x) = \sum 2^{-n} (1 - \chi_{1/n}(\lambda, x))$$

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Let E be any closed subset of $\{(\lambda, x) : |x| \ge 1\}$

Let χ_{ϵ} be the ϵ -mollification of the characteristic function of an ϵ neighbourhood of E.

Let
$$h(\lambda, x) = \sum 2^{-n} (1 - \chi_{1/n}(\lambda, x))$$

Then $0 \le h \le 1$ is a C^{∞} function whose zero set is E.

Questions:

Is it *path-connected*?

Is it in any sense *smooth* when F is smooth?

Answer to both: No

Example: $\mathbb{R} \times X = \mathbb{R} \times \mathbb{R}$

Let E be any closed subset of $\{(\lambda, x) : |x| \ge 1\}$

Let χ_{ϵ} be the ϵ -mollification of the characteristic function of an ϵ neighbourhood of E.

Let
$$h(\lambda, x) = \sum 2^{-n} (1 - \chi_{1/n}(\lambda, x))$$

Then $0 \le h \le 1$ is a C^{∞} function whose zero set is E.

Now let $F(\lambda, x) = h(\lambda, x)(x - \lambda Lx)$ for any compact linear L

From MathSciNet:

MR0375019 (51 #11215) Dancer, E. N. Global structure of the solutions of non-linear real analytic eigenvalue problems. Proc. London Math. Soc. (3) 27 (1973), 747765.

Let E and G be real Banach spaces. Suppose that $F: E \times \mathbb{R} \to G$ is a real analytic and Fredholm mapping. The author considers the equation $F(x, \lambda) = 0$ and, proving some results on finite-dimensional real analytic germs, he obtains results on the local and global structure of solutions, i.e., results on the properties of the set $D = \{(x, \lambda) : E \times (-\infty, \infty) : F(x, \lambda) = 0\}$ (e.g., D is locally compact, σ -compact, locally path-connected and closed). Under the assumption that F is real analytic, the set D has a number of rather nice properties (it is impossible to present briefly here these properties); this result complements earlier results. [see, e.g., P. H. Rabinowitz, J. Functional Analysis 7 (1971), 487513]

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into Xand equals the sum of its Taylor series

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into Xand equals the sum of its Taylor series

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}: \text{ all solutions}$$
$$\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}: \text{ all non-trivial solutions}$$
$$\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$$

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}: \text{ all solutions}$$
$$\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}: \text{ all non-trivial solutions}$$
$$\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$$

The bifurcating branch $\{(\Lambda(s), \kappa(s)) : s \in (-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}: \text{ all solutions}$$
$$\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}: \text{ all non-trivial solutions}$$
$$\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$$

The bifurcating branch $\{(\Lambda(s), \kappa(s)) : s \in (-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda' \not\equiv 0$ on $(-\epsilon, \epsilon)$ and

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into Xand equals the sum of its Taylor series

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}: \text{ all solutions}$$
$$\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}: \text{ all non-trivial solutions}$$
$$\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$$

The bifurcating branch $\{(\Lambda(s), \kappa(s)) : s \in (-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda' \not\equiv 0$ on $(-\epsilon, \epsilon)$ and

Then, by analyticity of Λ' and κ' , chose $\epsilon > 0$ such that

F is real-analytic – in other words it is C^{∞} from $\mathbb{R} \times X$ into X and equals the sum of its Taylor series

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}: \text{ all solutions}$$
$$\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}: \text{ all non-trivial solutions}$$
$$\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$$

The bifurcating branch $\{(\Lambda(s), \kappa(s)) : s \in (-\epsilon, \epsilon)\}$ in the local theory has λ and κ real-analytic.

Suppose $\Lambda' \not\equiv 0$ on $(-\epsilon, \epsilon)$ and

Then, by analyticity of Λ' and κ' , chose $\epsilon > 0$ such that

$$\begin{split} \Lambda'(s) &\neq 0 \text{ for } s \in (0,\epsilon), \quad \kappa'(s) \neq 0 \text{ for } s \in (-\epsilon,\epsilon), \\ \mathcal{R}^+ &:= \{ (\Lambda(s),\kappa(s)) : s \in (0,\epsilon) \} \subset \mathcal{T} \cap \mathfrak{N}. \end{split}$$

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

(c) $\{s \ge 0 : (\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

(c) $\{s \ge 0 : (\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

(d) At each point, \mathfrak{R} has a *local analytic re-parameterization*:

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

(c) $\{s \ge 0 : (\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

(d) At each point, \mathfrak{R} has a *local analytic re-parameterization*:

► For $s^* \in (0, \infty) \exists \rho^* : (-1, 1) \to \mathbb{R}$ which is continuous, injective, $\rho^*(0) = s^*$, and $t \mapsto \sigma^*(t) := (\Lambda(\rho^*(t)), \kappa(\rho^*(t)))$ is analytic on (-1, 1)

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

(c) $\{s \ge 0 : (\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

(d) At each point, \mathfrak{R} has a *local analytic re-parameterization*:

- ► For $s^* \in (0, \infty) \exists \rho^* : (-1, 1) \to \mathbb{R}$ which is continuous, injective, $\rho^*(0) = s^*$, and $t \mapsto \sigma^*(t) := (\Lambda(\rho^*(t)), \kappa(\rho^*(t)))$ is analytic on (-1, 1)
- Λ is injective on a right neighbourhood of 0

There exists a continuous curve \mathfrak{R} which extends \mathcal{R}^+ as follows.

(a) $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : s \in [0, \infty)\}$ where $(\Lambda, \kappa) : [0, \infty) \to \mathbb{R} \times X$ is continuous

(b) $\mathcal{R}^+ \subset \mathfrak{R} \subset \mathcal{S}$ and in a right neighbourhood of $s = 0, \mathfrak{R}$ and \mathcal{R}^+ coincide.

(c) $\{s \ge 0 : (\Lambda(s), \kappa(s)) \notin \mathfrak{N}\}$ has no accumulation points.

(d) At each point, \mathfrak{R} has a *local analytic re-parameterization*:

- ► For $s^* \in (0, \infty) \exists \rho^* : (-1, 1) \to \mathbb{R}$ which is continuous, injective, $\rho^*(0) = s^*$, and $t \mapsto \sigma^*(t) := (\Lambda(\rho^*(t)), \kappa(\rho^*(t)))$ is analytic on (-1, 1)
- Λ is injective on a right neighbourhood of 0
- For $s^* > 0$ Λ is injective on $[s^*, s^* + \epsilon^*]$ and $[s^* \epsilon^*, s^*], \ \epsilon^* > 0$

Unique Global Continuation – Continued

Unique Global Continuation – Continued

(e) One of the following occurs:

(e) One of the following occurs:

(i) $\|(\Lambda(s),\kappa(s))\| \to \infty \text{ as } s \to \infty;$

(e) One of the following occurs:

- (i) $\|(\Lambda(s),\kappa(s))\| \to \infty \text{ as } s \to \infty;$
- (ii) \mathfrak{R} is a closed loop, $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : 0 \le s \le T\}$ and $(\Lambda(T), \kappa(T)) = (\lambda_0, 0)$ for some T > 0.

(e) One of the following occurs:

(i) $\|(\Lambda(s),\kappa(s))\| \to \infty \text{ as } s \to \infty;$

(ii) \mathfrak{R} is a closed loop, $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : 0 \le s \le T\}$ and $(\Lambda(T), \kappa(T)) = (\lambda_0, 0)$ for some T > 0.

Let T > 0 is the smallest such T and that $(\lambda(s+T), \kappa(s+T)) = (\Lambda(s), \kappa(s))$ for all $s \ge 0$.

(e) One of the following occurs:

(i) $\|(\Lambda(s),\kappa(s))\| \to \infty \text{ as } s \to \infty;$

(ii) \mathfrak{R} is a closed loop, $\mathfrak{R} = \{(\Lambda(s), \kappa(s)) : 0 \le s \le T\}$ and $(\Lambda(T), \kappa(T)) = (\lambda_0, 0)$ for some T > 0.

Let T > 0 is the smallest such T and that $(\lambda(s+T), \kappa(s+T)) = (\Lambda(s), \kappa(s))$ for all $s \ge 0$.

(f) If $(\Lambda(s_1), \kappa(s_1)) = (\Lambda(s_2), \kappa(s_2)) \in \mathfrak{N}$, $s_1 \neq s_2$, then (e)(ii) occurs and $|s_1 - s_2|$ is an integer multiple of T.

In particular, $(\Lambda, \kappa) : [0, \infty) \to S$ is locally injective.

▶ ℜ may not be maximal: Other curves or manifolds in S may intersect ℜ.

- ▶ ℜ may not be maximal: Other curves or manifolds in S may intersect ℜ.
- ▶ \Re may self-intersect in the sense that while $s \mapsto (\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.

- ▶ ℜ may not be maximal: Other curves or manifolds in S may intersect ℜ.
- ▶ \Re may self-intersect in the sense that while $s \mapsto (\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- ▶ \Re may not be smooth where $\sigma^{*'}(0) = 0$ even though \Re has a local analytic parameterization at every point.

- ▶ ℜ may not be maximal: Other curves or manifolds in S may intersect ℜ.
- ▶ \Re may self-intersect in the sense that while $s \mapsto (\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- ℜ may not be smooth where σ^{*'}(0) = 0 even though ℜ has a local analytic parameterization at every point. {(t², t³) : t ∈ (−1, 1)} has a cusp at t = 0, even though its parametrization is real-analytic.

- ▶ ℜ may not be maximal: Other curves or manifolds in S may intersect ℜ.
- ▶ \Re may self-intersect in the sense that while $s \mapsto (\Lambda(s), \kappa(s))$ is locally injective, it need not be globally injective.
- ℜ may not be smooth where σ^{*'}(0) = 0 even though ℜ has a local analytic parameterization at every point. {(t², t³) : t ∈ (−1, 1)} has a cusp at t = 0, even though its parametrization is real-analytic.
- (e)(i) is stronger than saying \mathfrak{R} is unbounded in $\mathbb{R} \times X$.

• A *distinguished arc* is a maximal connected subset of \mathfrak{N} .

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that: (1) (1) (1) (1) (1)point:

•
$$(\lambda_0, x_0) = (\lambda_0, 0)$$
 is the bifurcation

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

• The mapping $n \mapsto \mathcal{A}_n$ is injective.

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

•
$$\mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

• The mapping $n \mapsto \mathcal{A}_n$ is injective.

 $\{\mathcal{A}_0\}, \{(\lambda_0, 0)\}$ is a route of length 1 with $(\lambda_0, 0) \in \partial \mathcal{A}_0$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

To show this we use the local properties of equations with analytic operators in an essential way

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

To show this we use the local properties of equations with analytic operators in an essential way

Once we understand that structure, the global unique continuation result is more-or-less obvious

The Story So Far

Let

$$S = \{(\lambda, x) : F(\lambda, x) = 0\}$$
: all solutions

Let

$$S = \{(\lambda, x) : F(\lambda, x) = 0\}$$
: all solutions

 $\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}$: all non-trivial solutions

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}$$
: all solutions

 $\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}$: all non-trivial solutions

 $\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$

Let

$$\mathcal{S} = \{(\lambda, x) : F(\lambda, x) = 0\}$$
: all solutions

 $\mathcal{T} = \{(\lambda, x) \in \mathcal{S} : x \neq 0\}$: all non-trivial solutions

 $\mathfrak{N} = \{(\lambda, x) \in \mathcal{S} : \ker \left(\partial_x F[(\lambda, x)]\right) = \{0\}\}: \text{ all non-singular solutions}$

Points of $\mathfrak N$ lie on one-dimensional branches parametrised by the distinguished parameter λ

• A *distinguished arc* is a maximal connected subset of \mathfrak{N} .

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set

 $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

By Zorn's Lemma there exists a *maximal route* of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set

 $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

By Zorn's Lemma there exists a *maximal route* of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\} : 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$$

Problem: show that if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \to \infty$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set

 $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \ \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

By Zorn's Lemma there exists a *maximal route* of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

Problem: show that if \mathcal{A} is unbounded it has a parametrization which tends to infinity as $s \to \infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

Analyticity: Tools of the Trade \mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F} .

Analyticity: Tools of the Trade

 \mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F} .

Let $F: U \to Y$ is C^{∞} where U is open in X.

Analyticity: Tools of the Trade

 \mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F} .

Let $F: U \to Y$ is C^{∞} where U is open in X.

Definition (\mathbb{F} -analyticity is a local property.)

 $F: U \to Y$ is \mathbb{F} - analytic at $x_0 \in U$ if at each point of a ball B about x_0 in X, it is the sum of its Taylor series:

$$F(x) = \sum_{k=0}^{\infty} \frac{1}{k!} d^k F[x_0] (x - x_0)^k, \quad x \in B$$

F is analytic on U if it is analytic at each point of U.

Analyticity: Tools of the Trade

 \mathbb{F} is the field \mathbb{R} or \mathbb{C} and X, Y are Banach spaces over \mathbb{F} .

Let $F: U \to Y$ is C^{∞} where U is open in X.

Definition (\mathbb{F} -analyticity is a local property.)

 $F: U \to Y$ is \mathbb{F} - analytic at $x_0 \in U$ if at each point of a ball B about x_0 in X, it is the sum of its Taylor series:

$$F(x) = \sum_{k=0}^{\infty} \frac{1}{k!} d^k F[x_0] (x - x_0)^k, \quad x \in B$$

F is analytic on U if it is analytic at each point of U.

Theorem. F is analytic on U if and only if for each $x_0 \in U$ there exist constants r, C, R > 0, depending on x_0 , such that

$$\left\| d^k F[x] \right\| \le \frac{C \, k!}{R^k}$$
 for all $x \in U$ with $\|x - x_0\| < r$.

The map $x + iy \mapsto x - iy$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R} -analytic.

The map $x + iy \mapsto x - iy$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R} -analytic.

It is not linear on the complex linear space \mathbb{C} . In fact it is not even differentiable and is therefore not \mathbb{C} analytic.

The map $x + iy \mapsto x - iy$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R} -analytic.

It is not linear on the complex linear space \mathbb{C} . In fact it is not even differentiable and is therefore not \mathbb{C} analytic.

f(x,y) = (xy, xy) is \mathbb{R} -analytic from \mathbb{R}^2 into itself. However it is zero on both axes. Hence non-trivial \mathbb{R} -analytic functions can have cluster points of zeros.

The map $x + iy \mapsto x - iy$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R} -analytic.

It is not linear on the complex linear space \mathbb{C} . In fact it is not even differentiable and is therefore not \mathbb{C} analytic.

f(x,y) = (xy, xy) is \mathbb{R} -analytic from \mathbb{R}^2 into itself. However it is zero on both axes. Hence non-trivial \mathbb{R} -analytic functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically zero:

The map $x + iy \mapsto x - iy$ is linear from the real linear space \mathbb{C} to itself. Therefore it is \mathbb{R} -analytic.

It is not linear on the complex linear space \mathbb{C} . In fact it is not even differentiable and is therefore not \mathbb{C} analytic.

f(x,y) = (xy, xy) is \mathbb{R} -analytic from \mathbb{R}^2 into itself. However it is zero on both axes. Hence non-trivial \mathbb{R} -analytic functions can have cluster points of zeros.

However it cannot have open sets of zeros if it is not identically zero:

Theorem Suppose that that $U \subset X$ is an open connected set and that $F: U \to Y$ is \mathbb{F} -analytic. Suppose also that $F \equiv 0$ on a non-empty open set $W \subset U$. Then F is identically zero on U.

Suppose that $U \subset \mathbb{F}^n$ is open and connected

Suppose that $U \subset \mathbb{F}^n$ is open and connected $g_k : U \to \mathbb{F}$ is \mathbb{F} -analytic, $1 \le k \le m$.

Suppose that $U\subset \mathbb{F}^n$ is open and connected

 $g_k: U \to \mathbb{F}$ is \mathbb{F} -analytic, $1 \le k \le m$.

 $E = \{x \in U : g_k(x) = 0 \in \mathbb{F}, \ 1 \le k \le m\}$ an analytic variety

Suppose that $U\subset \mathbb{F}^n$ is open and connected

 $g_k: U \to \mathbb{F}$ is \mathbb{F} -analytic, $1 \le k \le m$.

 $E = \{x \in U : g_k(x) = 0 \in \mathbb{F}, \ 1 \le k \le m\}$ an analytic variety

If $E \neq U$, then $U \setminus E$ is dense in U.

Suppose that $U\subset \mathbb{F}^n$ is open and connected

 $g_k: U \to \mathbb{F}$ is \mathbb{F} -analytic, $1 \le k \le m$.

 $E = \{x \in U : g_k(x) = 0 \in \mathbb{F}, 1 \le k \le m\}$ an analytic variety

If $E \neq U$, then $U \setminus E$ is dense in U.

If $\mathbb{F} = \mathbb{C}$, then $U \setminus E$ is also connected.

Suppose that $U \subset \mathbb{F}^n$ is open and connected

 $g_k: U \to \mathbb{F}$ is \mathbb{F} -analytic, $1 \le k \le m$.

 $E = \{x \in U : g_k(x) = 0 \in \mathbb{F}, 1 \le k \le m\}$ an analytic variety

If $E \neq U$, then $U \setminus E$ is dense in U.

If $\mathbb{F} = \mathbb{C}$, then $U \setminus E$ is also connected.

(*Riemann Extension Theorem*) If f is \mathbb{C} -analytic on $U \setminus E$ and $\sup\{|f(x)| : x \in U \setminus E\} < \infty$, there exists a \mathbb{C} -analytic function \tilde{f} on U with $f = \tilde{f}$ on $U \setminus E$.

X, Y, Z Banach spaces, $(x_0, y_0) \in U$ (open) $\subset X \times Y$, $F: U \to Z$ analytic and $\partial_x F[(x_0, y_0)] \in \mathcal{L}(X, Z)$ bijective.

Then $y_0 \in V(\text{open}) \subset Y$, $(x_0, y_0) \in W(\text{open}) \subset U$ and an \mathbb{F} -analytic mapping $\phi : V \to X$ such that $\phi(y_0) = x_0$ and

$$F^{-1}(z_0) \cap W = \{(\phi(y), y) : y \in V\}.$$

X, Y, Z Banach spaces, $(x_0, y_0) \in U$ (open) $\subset X \times Y$, $F: U \to Z$ analytic and $\partial_x F[(x_0, y_0)] \in \mathcal{L}(X, Z)$ bijective.

Then $y_0 \in V(\text{open}) \subset Y$, $(x_0, y_0) \in W(\text{open}) \subset U$ and an \mathbb{F} -analytic mapping $\phi : V \to X$ such that $\phi(y_0) = x_0$ and

$$F^{-1}(z_0) \cap W = \{(\phi(y), y) : y \in V\}.$$

Simple Analytic Local Bifurcation

X, Y, Z Banach spaces, $(x_0, y_0) \in U$ (open) $\subset X \times Y$, $F: U \to Z$ analytic and $\partial_x F[(x_0, y_0)] \in \mathcal{L}(X, Z)$ bijective.

Then $y_0 \in V(\text{open}) \subset Y$, $(x_0, y_0) \in W(\text{open}) \subset U$ and an \mathbb{F} -analytic mapping $\phi : V \to X$ such that $\phi(y_0) = x_0$ and

$$F^{-1}(z_0) \cap W = \{(\phi(y), y) : y \in V\}.$$

Simple Analytic Local Bifurcation

The \mathbb{R} -analytic implicit function theorem leads to an \mathbb{R} -analytic version of Lyapunov-Schmidt Reduction and hence to \mathbb{R} -analyticity of the branch which bifurcates locally from a simple characteristic value:

X, Y, Z Banach spaces, $(x_0, y_0) \in U$ (open) $\subset X \times Y$, $F: U \to Z$ analytic and $\partial_x F[(x_0, y_0)] \in \mathcal{L}(X, Z)$ bijective.

Then $y_0 \in V(\text{open}) \subset Y$, $(x_0, y_0) \in W(\text{open}) \subset U$ and an \mathbb{F} -analytic mapping $\phi : V \to X$ such that $\phi(y_0) = x_0$ and

$$F^{-1}(z_0) \cap W = \{(\phi(y), y) : y \in V\}.$$

Simple Analytic Local Bifurcation

The \mathbb{R} -analytic implicit function theorem leads to an \mathbb{R} -analytic version of Lyapunov-Schmidt Reduction and hence to \mathbb{R} -analyticity of the branch which bifurcates locally from a simple characteristic value:

If $F : \mathbb{R} \times X \to X$ is \mathbb{R} -analytic and λ_0 is a simple characteristic value of L with characteristic vector $\xi_0 \neq 0$. Then there exists an \mathbb{R} -analytic function $(\Lambda, \kappa) : (-\epsilon, \epsilon) \to \mathbb{R} \times X$ such that

$$F(\Lambda(s), \kappa(s)) = 0 \text{ for all } s \in (-\epsilon, \epsilon),$$

$$(\Lambda(0), \kappa(0)) = (\lambda_0, 0), \ \kappa'(0) = \xi_0$$

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}!p_{2}! \cdots p_{n}!,$$

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}! p_{2}! \cdots p_{n}!,$$
$$|x|^{2} = \sum_{j=1}^{n} |x_{j}|^{2}, \quad |p| = \sum_{j=1}^{n} p_{j}, \qquad \frac{\partial^{p} f}{\partial x^{p}} = \frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}$$

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}!p_{2}! \cdots p_{n}!,$$
$$|x|^{2} = \sum_{j=1}^{n} |x_{j}|^{2}, \quad |p| = \sum_{j=1}^{n} p_{j}, \qquad \frac{\partial^{p}f}{\partial x^{p}} = \frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}$$

 $x_0 \in U(\text{open}) \subset \mathbb{F}^n \text{ and } f: U \to \mathbb{F} \text{ an } \mathbb{F}\text{-analytic function.}$

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}!p_{2}! \cdots p_{n}!,$$
$$|x|^{2} = \sum_{j=1}^{n} |x_{j}|^{2}, \quad |p| = \sum_{j=1}^{n} p_{j}, \qquad \frac{\partial^{p}f}{\partial x^{p}} = \frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}$$

 $x_0 \in U(\text{open}) \subset \mathbb{F}^n \text{ and } f: U \to \mathbb{F} \text{ an } \mathbb{F}\text{-analytic function.}$

Then
$$f(x) = \sum_{p \in \mathbb{N}_0^n} f_p x^p$$
 where $f_p = \frac{1}{p!} \frac{\partial^p f}{\partial x^p}(x_0)$ and
 $\sum_{p \in \mathbb{N}_0^n} r^{|p|} |f_p| < \infty$ for some $r > 0$

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}!p_{2}! \cdots p_{n}!,$$
$$|x|^{2} = \sum_{j=1}^{n} |x_{j}|^{2}, \quad |p| = \sum_{j=1}^{n} p_{j}, \qquad \frac{\partial^{p}f}{\partial x^{p}} = \frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}$$

 $x_0 \in U(\text{open}) \subset \mathbb{F}^n$ and $f: U \to \mathbb{F}$ an \mathbb{F} -analytic function.

Then
$$f(x) = \sum_{p \in \mathbb{N}_0^n} f_p x^p$$
 where $f_p = \frac{1}{p!} \frac{\partial^p f}{\partial x^p}(x_0)$ and
 $\sum_{p \in \mathbb{N}_0^n} r^{|p|} |f_p| < \infty$ for some $r > 0$

A function so defined is analytic at x_0 in \mathbb{F}^n .

$$x^{p} = x_{1}^{p_{1}} \cdots x_{n}^{p_{n}}, \qquad p! = p_{1}!p_{2}! \cdots p_{n}!,$$
$$|x|^{2} = \sum_{j=1}^{n} |x_{j}|^{2}, \quad |p| = \sum_{j=1}^{n} p_{j}, \qquad \frac{\partial^{p}f}{\partial x^{p}} = \frac{\partial f^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \cdots \partial x_{n}^{p_{n}}}$$

 $x_0 \in U(\text{open}) \subset \mathbb{F}^n$ and $f: U \to \mathbb{F}$ an \mathbb{F} -analytic function.

Then
$$f(x) = \sum_{p \in \mathbb{N}_0^n} f_p x^p$$
 where $f_p = \frac{1}{p!} \frac{\partial^p f}{\partial x^p}(x_0)$ and
 $\sum_{p \in \mathbb{N}_0^n} r^{|p|} |f_p| < \infty$ for some $r > 0$

A function so defined is analytic at x_0 in \mathbb{F}^n .

If $U(\text{open}) \subset \mathbb{C}^n$ and $f: U \to \mathbb{C}$ is \mathbb{C} -analytic and $f(x) \in \mathbb{R}$ for all $x \in U \cap \mathbb{R}^n$ we say that f is *real-on-real*.

$$x^p = x_1^{p_1} \cdots x_n^{p_n}, \qquad p! = p_1! p_2! \cdots p_n!,$$
$$|x|^2 = \sum_{j=1}^n |x_j|^2, \quad |p| = \sum_{j=1}^n p_j, \qquad \frac{\partial^p f}{\partial x^p} = \frac{\partial f^{|p|}}{\partial x_1^{p_1} \partial x_2^{p_2} \cdots \partial x_n^{p_n}}$$

 $x_0 \in U(\text{open}) \subset \mathbb{F}^n$ and $f: U \to \mathbb{F}$ an \mathbb{F} -analytic function.

Then
$$f(x) = \sum_{p \in \mathbb{N}_0^n} f_p x^p$$
 where $f_p = \frac{1}{p!} \frac{\partial^p f}{\partial x^p}(x_0)$ and
 $\sum_{p \in \mathbb{N}_0^n} r^{|p|} |f_p| < \infty$ for some $r > 0$

A function so defined is analytic at x_0 in \mathbb{F}^n .

If $U(\text{open}) \subset \mathbb{C}^n$ and $f: U \to \mathbb{C}$ is \mathbb{C} -analytic and $f(x) \in \mathbb{R}$ for all $x \in U \cap \mathbb{R}^n$ we say that f is *real-on-real*.

This means that when $x_0 \in U \cap \mathbb{R}^n$ the coefficients f_p are real.

Banach Algebras for \mathbb{F} -analytic Functions at $0 \in \mathbb{F}^n$

Banach Algebras for \mathbb{F} -analytic Functions at $0 \in \mathbb{F}^n$

Many different norms can be defined on functions $f : \mathbb{F}^n \to \mathbb{F}$ which have f(0) = 0 and are \mathbb{F} -analytic at 0

For example: $q \in \mathbb{N}$ and r > 0,

$$0 \in \mathcal{B}_r^q := \left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_r(\mathbb{F}) \subset \mathbb{F}^n(\text{open})$$

For example: $q \in \mathbb{N}$ and r > 0,

$$0 \in \mathcal{B}_r^q := \left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_r(\mathbb{F}) \subset \mathbb{F}^n(\text{open})$$

Let C_r^q denote the space of \mathbb{F} -valued \mathbb{F} -analytic functions u on \mathcal{B}_r^q with u(0) = 0 of the form

For example: $q \in \mathbb{N}$ and r > 0,

$$0 \in \mathcal{B}_r^q := \left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_r(\mathbb{F}) \subset \mathbb{F}^n(\text{open})$$

Let C_r^q denote the space of \mathbb{F} -valued \mathbb{F} -analytic functions u on \mathcal{B}_r^q with u(0) = 0 of the form

$$u(x) = \sum_{p \in \mathbb{N}_0^n, \, p \neq 0} u_p \, x^p$$
$$\sum_{p \in \mathbb{N}_0^n, \, p \neq 0} |u_p| r^{(q+1)|p|-qp_n} =: ||u||_{r,q} < \infty.$$

For example: $q \in \mathbb{N}$ and r > 0,

$$0 \in \mathcal{B}_r^q := \left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_r(\mathbb{F}) \subset \mathbb{F}^n(\text{open})$$

Let C_r^q denote the space of \mathbb{F} -valued \mathbb{F} -analytic functions u on \mathcal{B}_r^q with u(0) = 0 of the form

$$u(x) = \sum_{p \in \mathbb{N}_0^n, \, p \neq 0} u_p \, x^p$$
$$\sum_{p \in \mathbb{N}_0^n, \, p \neq 0} |u_p| r^{(q+1)|p|-qp_n} =: ||u||_{r,q} < \infty.$$

 $(C_r^q, \|\cdot\|_{r,q})$ is a Banach algebra since it is complete and closed under multiplication with $\|uv\|_{r,q} \leq \|u\|_{r,q} \|v\|_{r,q}$

For example: $q \in \mathbb{N}$ and r > 0,

$$0 \in \mathcal{B}_r^q := \left(B_{r^{q+1}}(\mathbb{F})\right)^{n-1} \times B_r(\mathbb{F}) \subset \mathbb{F}^n(\text{open})$$

Let C_r^q denote the space of \mathbb{F} -valued \mathbb{F} -analytic functions u on \mathcal{B}_r^q with u(0) = 0 of the form

$$u(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \, p \neq 0}} u_p \, x^p$$
$$\sum_{\substack{p \in \mathbb{N}_0^n, \, p \neq 0}} |u_p| r^{(q+1)|p|-qp_n} =: ||u||_{r,q} < \infty.$$

 $(C_r^q, \|\cdot\|_{r,q})$ is a Banach algebra since it is complete and closed under multiplication with $\|uv\|_{r,q} \leq \|u\|_{r,q} \|v\|_{r,q}$

For given q, any function which is analytic at 0 is on one of these classes for some choice of r sufficiently small.

Suppose
$$0 \in U$$
 (open) $\subset \mathbb{F}^n$, $f: U \to \mathbb{F}$ is analytic,
 $f(0) = 0$ and, for $(0, \dots, 0, x_n) \in U$,

$$f(0, \cdots, 0, x_n) = x_n^q v(x_n)$$
 where $v(0) \neq 0$ and $q \geq 1$.

Suppose
$$0 \in U$$
 (open) $\subset \mathbb{F}^n$, $f: U \to \mathbb{F}$ is analytic,
 $f(0) = 0$ and, for $(0, \dots, 0, x_n) \in U$,
 $f(0, \dots, 0, x_n) = x_n^q v(x_n)$ where $v(0) \neq 0$ and $q \geq 1$.

Let $g: U \to \mathbb{F}$ be any \mathbb{F} -analytic function with g(0) = 0.

Suppose
$$0 \in U$$
 (open) $\subset \mathbb{F}^n$, $f: U \to \mathbb{F}$ is analytic,
 $f(0) = 0$ and, for $(0, \dots, 0, x_n) \in U$,
 $f(0, \dots, 0, x_n) = x_n^q v(x_n)$ where $v(0) \neq 0$ and $q \geq 1$.

Let $g: U \to \mathbb{F}$ be any \mathbb{F} -analytic function with g(0) = 0. Then for some r > 0,

$$g(x_1, \cdots, x_n) = h(x_1, \cdots, x_n) f(x_1, \cdots, x_n) + \sum_{k=0}^{q-1} h_k(x_1, \cdots, x_{n-1}) x_n^k$$

for all $(x_1, \dots, x_n) \in U_0 = \mathcal{B}_r^q$, where h is analytic on U_0 and h_k is analytic on $V = (B_{r^{q+1}}(\mathbb{F}))^{n-1}$.

Suppose
$$0 \in U$$
 (open) $\subset \mathbb{F}^n$, $f: U \to \mathbb{F}$ is analytic,
 $f(0) = 0$ and, for $(0, \dots, 0, x_n) \in U$,
 $f(0, \dots, 0, x_n) = x_n^q v(x_n)$ where $v(0) \neq 0$ and $q \ge 1$.

Let $g: U \to \mathbb{F}$ be any \mathbb{F} -analytic function with g(0) = 0. Then for some r > 0,

$$g(x_1, \cdots, x_n) = h(x_1, \cdots, x_n) f(x_1, \cdots, x_n) + \sum_{k=0}^{q-1} h_k(x_1, \cdots, x_{n-1}) x_n^k$$

for all $(x_1, \dots, x_n) \in U_0 = \mathcal{B}_r^q$, where h is analytic on U_0 and h_k is analytic on $V = (B_{r^{q+1}}(\mathbb{F}))^{n-1}$.

The functions h_k and h are uniquely determined by f and g.

Suppose
$$0 \in U$$
 (open) $\subset \mathbb{F}^n$, $f: U \to \mathbb{F}$ is analytic,
 $f(0) = 0$ and, for $(0, \dots, 0, x_n) \in U$,
 $f(0, \dots, 0, x_n) = x_n^q v(x_n)$ where $v(0) \neq 0$ and $q \geq 1$.

Let $g: U \to \mathbb{F}$ be any \mathbb{F} -analytic function with g(0) = 0. Then for some r > 0,

$$g(x_1, \cdots, x_n) = h(x_1, \cdots, x_n) f(x_1, \cdots, x_n) + \sum_{k=0}^{q-1} h_k(x_1, \cdots, x_{n-1}) x_n^k$$

for all $(x_1, \dots, x_n) \in U_0 = \mathcal{B}_r^q$, where h is analytic on U_0 and h_k is analytic on $V = (B_{r^{q+1}}(\mathbb{F}))^{n-1}$.

The functions h_k and h are uniquely determined by f and g. If $\mathbb{F}^n = \mathbb{C}^n$ and f and g are real-on-real, then h_k and h are real-on-real.

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_k can be obtained by comparing coefficients.

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_k can be obtained by comparing coefficients.

It suffices therefore to show that, for r > 0 sufficiently small, a bijection $\Gamma: C_r^q \to C_r^q$ is defined by

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_k can be obtained by comparing coefficients.

It suffices therefore to show that, for r > 0 sufficiently small, a bijection $\Gamma: C_r^q \to C_r^q$ is defined by

$$\Gamma u(x) = f(x)Lu(x) + Au(x), \quad x \in \mathcal{B}_r^q,$$

where for $u \in C_r^q$ and $x \in \mathcal{B}_r^q$,

$$Au(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n < q}} u_p x^p, \quad Lu(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n \ge q}} u_p x_1^{p_1} \cdots x_{n-1}^{p_{n-1}} x_n^{p_n - q}$$

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_k can be obtained by comparing coefficients.

It suffices therefore to show that, for r > 0 sufficiently small, a bijection $\Gamma: C_r^q \to C_r^q$ is defined by

$$\Gamma u(x) = f(x)Lu(x) + Au(x), \quad x \in \mathcal{B}_r^q,$$

where for $u \in C_r^q$ and $x \in \mathcal{B}_r^q$,

$$Au(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n < q}} u_p x^p, \quad Lu(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n \ge q}} u_p x_1^{p_1} \cdots x_{n-1}^{p_{n-1}} x_n^{p_n - q}$$

Now it is not difficult to see that

$$\|(\Gamma - I)u\|_{r,q} = \leq r^{-q} \|u\|_{r,q} \left(C(f)r^{1+q} + r^q \|1 - v\|_{r,q} \right) \to 0 \text{ as } r \to 0.$$

Note that if the result is true for a given f and any g, then formally the coefficients of the functions h and h_k can be obtained by comparing coefficients.

It suffices therefore to show that, for r > 0 sufficiently small, a bijection $\Gamma: C_r^q \to C_r^q$ is defined by

$$\Gamma u(x) = f(x)Lu(x) + Au(x), \quad x \in \mathcal{B}_r^q,$$

where for $u \in C_r^q$ and $x \in \mathcal{B}_r^q$,

$$Au(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n < q}} u_p x^p, \quad Lu(x) = \sum_{\substack{p \in \mathbb{N}_0^n, \\ p_n \ge q}} u_p x_1^{p_1} \cdots x_{n-1}^{p_{n-1}} x_n^{p_n - q}$$

Now it is not difficult to see that

$$\|(\Gamma - I)u\|_{r,q} = \leq r^{-q} \|u\|_{r,q} (C(f)r^{1+q} + r^q \|1 - v\|_{r,q}) \to 0 \text{ as } r \to 0.$$

Hence Γ is a bijection on C_r^q and for $g \in C_r^q$ there is a unique $u \in C_r^q$ with $\Gamma u = g$. The uniqueness of h and h_k follow from the definition of L and A.

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Then there exists a choice of coordinates, \mathbb{F} -analytic functions a_k and h, and r > 0 such that on a ball about 0

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Then there exists a choice of coordinates, \mathbb{F} -analytic functions a_k and h, and r > 0 such that on a ball about 0

$$h(x_1, \cdots, x_n)f(x_1, \cdots, x_n) = x_n^q + \sum_{k=0}^{q-1} a_k(x_1, \cdots, x_{n-1})x_n^k,$$

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Then there exists a choice of coordinates, \mathbb{F} -analytic functions a_k and h, and r > 0 such that on a ball about 0

$$h(x_1, \cdots, x_n)f(x_1, \cdots, x_n) = x_n^q + \sum_{k=0}^{q-1} a_k(x_1, \cdots, x_{n-1})x_n^k,$$

 $h(0) \neq 0 \text{ and } a_k(0) = 0$

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Then there exists a choice of coordinates, \mathbb{F} -analytic functions a_k and h, and r > 0 such that on a ball about 0

$$h(x_1, \cdots, x_n)f(x_1, \cdots, x_n) = x_n^q + \sum_{k=0}^{q-1} a_k(x_1, \cdots, x_{n-1})x_n^k,$$

 $h(0) \neq 0$ and $a_k(0) = 0$ a_k and h are uniquely determined by f.

Suppose f is \mathbb{F} -analytic and not identically zero in a ball about $0 \in \mathbb{F}^n$ and f(0) = 0.

Then there exists a choice of coordinates, \mathbb{F} -analytic functions a_k and h, and r > 0 such that on a ball about 0

$$h(x_1, \cdots, x_n)f(x_1, \cdots, x_n) = x_n^q + \sum_{k=0}^{q-1} a_k(x_1, \cdots, x_{n-1})x_n^k,$$

 $h(0) \neq 0 \text{ and } a_k(0) = 0$

 a_k and h are uniquely determined by f.

If $\mathbb{F} = \mathbb{C}^n$ and f is real-on-real, then h and a_k are real-on-real. Proof. Let $g(x) = x_n^q$ and then let $a_k = -h_k$.

A polynomial

$$A = Z^p + \sum_{k=0}^{p-1} A_k Z^k, \quad Z \in \mathbb{C},$$

can have multiple roots.

A polynomial

$$A = Z^p + \sum_{k=0}^{p-1} A_k Z^k, \quad Z \in \mathbb{C},$$

can have multiple roots.

However there exists a polynomial function $D(A_0, \dots, A_{p-1})$, the discriminant, such that A has simple roots when $D(A_0, \dots, A_{p-1}) \neq 0$.

A polynomial

$$A = Z^p + \sum_{k=0}^{p-1} A_k Z^k, \quad Z \in \mathbb{C},$$

can have multiple roots.

However there exists a polynomial function $D(A_0, \dots, A_{p-1})$, the discriminant, such that A has simple roots when $D(A_0, \dots, A_{p-1}) \neq 0$.

Let $\xi = (z_1, \cdots, z_m) \in \mathbb{C}^m$ If $A_k = a_k(\xi)$ where the a_k are \mathbb{C} -analytic the discriminant

$$D(\xi) := D(a_1(\xi), \cdots, a_{p-1}(\xi))$$

is a \mathbb{C} -analytic function of ξ and the A has simple roots when $D(\xi) \neq 0$.

Suppose $D(a_0, \dots, a_{p-1}) \equiv 0$ on V (open)

Suppose $D(a_0, \dots, a_{p-1}) \equiv 0$ on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

Suppose $D(a_0, \dots, a_{p-1}) \equiv 0$ on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

• degree $E = q \leq p$,

Suppose
$$D(a_0, \dots, a_{p-1}) \equiv 0$$
 on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

• degree
$$E = q \leq p$$
,

►
$$e_q \equiv 1$$
,

Suppose
$$D(a_0, \dots, a_{p-1}) \equiv 0$$
 on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

• degree
$$E = q \leq p$$
,

•
$$e_q \equiv 1$$
,

•
$$E(Z;\xi)$$
 has the same roots as $A(Z;\xi)$

Suppose
$$D(a_0, \dots, a_{p-1}) \equiv 0$$
 on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

▶ degree
$$E = q \le p$$
,

$$\blacktriangleright e_q \equiv 1,$$

• $E(Z;\xi)$ has the same roots as $A(Z;\xi)$

$$\blacktriangleright D(e_0, \cdots, e_{m-1}, 1) \not\equiv 0 \text{ on } V$$

Suppose
$$D(a_0, \dots, a_{p-1}) \equiv 0$$
 on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

• degree
$$E = q \le p$$
,

- $\blacktriangleright e_q \equiv 1,$
- $E(Z;\xi)$ has the same roots as $A(Z;\xi)$

$$\blacktriangleright D(e_0, \cdots, e_{m-1}, 1) \not\equiv 0 \text{ on } V$$

▶ For (z₁, · · · , z_m) in an open dense connected subset W of V, E(Z; z₁, · · · , z_m) has no multiple roots.

Polynomial Simplification when $\mathbb{F} = \mathbb{C}$

Suppose
$$D(a_0, \dots, a_{p-1}) \equiv 0$$
 on V (open)

Then there exists another polynomial $E(Z;\xi)$ (the *simplification of* A with

• degree
$$E = q \leq p$$
,

- $\blacktriangleright e_q \equiv 1,$
- $E(Z;\xi)$ has the same roots as $A(Z;\xi)$

$$\blacktriangleright D(e_0, \cdots, e_{m-1}, 1) \not\equiv 0 \text{ on } V$$

- ▶ For (z₁, · · · , z_m) in an open dense connected subset W of V, E(Z; z₁, · · · , z_m) has no multiple roots.
- If A is real-on-real, then so is E.

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

 $D(a_0, \dots, a_{p-1}, 1) \neq 0$ on a connected, open, dense subset of V.

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

 $D(a_0, \dots, a_{p-1}, 1) \neq 0$ on a connected, open, dense subset of V. Note: If A is a Weierstrass polynomial except that $D \equiv 0$

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

 $D(a_0, \dots, a_{p-1}, 1) \neq 0$ on a connected, open, dense subset of V. Note: If A is a Weierstrass polynomial except that $D \equiv 0$

 \blacktriangleright its simplification E is a Weierstrass polynomial,

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

 $D(a_0, \dots, a_{p-1}, 1) \neq 0$ on a connected, open, dense subset of V. Note: If A is a Weierstrass polynomial except that $D \equiv 0$

- \blacktriangleright its simplification E is a Weierstrass polynomial,
- the roots of E and A coincide

Let V be a neighbourhood of $0 \in \mathbb{C}^m$.

A polynomial of the form, $\xi \in V$, $Z \in \mathbb{C}$,

$$A(Z; z_1, \cdots, z_m) = Z^p + \sum_{k=0}^{p-1} a_k(\xi) Z^k, \ p \in \mathbb{N},$$
 (†)

where $a_0(0) = \cdots = a_{p-1}(0) = 0$, $D(a_0, \cdots, a_{p-1}, 1) \neq 0$ on V is called a *Weierstrass polynomial*.

 $D(a_0, \dots, a_{p-1}, 1) \neq 0$ on a connected, open, dense subset of V. Note: If A is a Weierstrass polynomial except that $D \equiv 0$

- \blacktriangleright its simplification E is a Weierstrass polynomial,
- the roots of E and A coincide
- the non-principal coefficients of E are zero at 0.

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\{A_{m+1}, \dots, A_n\}$ on $V \subset \mathbb{C}^m$.

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\{A_{m+1}, \dots, A_n\}$ on $V \subset \mathbb{C}^m$. For $k \in \{m+1, \dots, n\}$ let

$$h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m), \quad m \in \{1, \cdots, n-1\}$$

Looking Forward

We will end up having reduced our problem to a finite-dimensional one for families of Weierstrass polynomials $\{A_{m+1}, \dots, A_n\}$ on $V \subset \mathbb{C}^m$. For $k \in \{m+1, \dots, n\}$ let

$$h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m), \quad m \in \{1, \cdots, n-1\}$$

The solution set will equivalent to a set of the very special form

$$\forall k \in \{m+1, \cdots, m\}, \quad h_k(z_1, \cdots, z_n) = 0 \subset \mathbb{C}^n$$

Analytic Varieties Germs

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^n$ is open and G is a finite set of $\mathbb{F}\text{-analytic functions}$

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^n$ is open and G is a finite set of $\mathbb{F}\text{-analytic functions}$

$$\operatorname{var}\left(U,G\right) = \left\{x \in U : g(x) = 0 \text{ for all } g \in G\right\}$$

is the \mathbb{F} -analytic variety generated by G on U.

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^n$ is open and G is a finite set of $\mathbb{F}\text{-analytic functions}$

$$\operatorname{var}\left(U,G\right) = \left\{x \in U : g(x) = 0 \text{ for all } g \in G\right\}$$

is the \mathbb{F} -analytic variety generated by G on U.

The \mathbb{F} -analytic germs at a, $\gamma_a(var(U,G))$, are denoted by $\mathcal{V}_a(\mathbb{F}^n)$

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^n$ is open and G is a finite set of $\mathbb{F}\text{-analytic functions}$

$$\operatorname{var}\left(U,G\right)=\left\{x\in U:g(x)=0 \text{ for all } g\in G\right\}$$

is the \mathbb{F} -analytic variety generated by G on U.

The \mathbb{F} -analytic germs at a, $\gamma_a(\text{var}(U, G))$, are denoted by $\mathcal{V}_a(\mathbb{F}^n)$ If $\alpha, \beta \in \mathcal{V}_a(\mathbb{F}^n)$, then both $\alpha \cap \beta$ and $\alpha \cup \beta$ are in $\mathcal{V}_a(\mathbb{F}^n)$, but in general $\alpha \setminus \beta \notin \mathcal{V}_a(\mathbb{F}^n)$.

Sets S and T are equivalent at $a \in \mathbb{F}^n$ if $O \cap S = O \cap T$ for some open $O \ni a$.

The equivalence class $\gamma_a(S)$ is the germ of S at a

The set of germs is closed under finite unions, intersections and complements

If $\emptyset \neq U \subset \mathbb{F}^n$ is open and G is a finite set of $\mathbb{F}\text{-analytic functions}$

$$\operatorname{var}\left(U,G\right)=\left\{x\in U:g(x)=0 \text{ for all } g\in G\right\}$$

is the \mathbb{F} -analytic variety generated by G on U.

The \mathbb{F} -analytic germs at a, $\gamma_a(\operatorname{var}(U, G))$, are denoted by $\mathcal{V}_a(\mathbb{F}^n)$ If $\alpha, \beta \in \mathcal{V}_a(\mathbb{F}^n)$, then both $\alpha \cap \beta$ and $\alpha \cup \beta$ are in $\mathcal{V}_a(\mathbb{F}^n)$, but in general $\alpha \setminus \beta \notin \mathcal{V}_a(\mathbb{F}^n)$.

If $U \subset \mathbb{C}^n$ and the elements of G are real-on-real, $\operatorname{var}(U, G)$ is real-on-real

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

A point of α is called ℓ -regular if α is an ℓ -dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ -regular points

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

A point of α is called ℓ -regular if α is an ℓ -dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ -regular points

If $a \in M$ and var (U, G) is an \mathbb{F} -analytic variety, there is an open neighbourhood W of a in M such that $W \setminus \text{var}(U, G)$ is either empty or dense in W.

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

A point of α is called ℓ -regular if α is an ℓ -dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ -regular points

If $a \in M$ and var (U, G) is an \mathbb{F} -analytic variety, there is an open neighbourhood W of a in M such that $W \setminus \text{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \text{var}(U, G)$ has non-empty interior relative to M, then $M \subset \text{var}(U, G)$.

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

A point of α is called ℓ -regular if α is an ℓ -dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ -regular points

If $a \in M$ and var (U, G) is an \mathbb{F} -analytic variety, there is an open neighbourhood W of a in M such that $W \setminus \text{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \text{var}(U, G)$ has non-empty interior relative to M, then $M \subset \text{var}(U, G)$.

 $\alpha \in \mathcal{V}_a(\mathbb{F}^n)$ is irreducible if

 $\alpha = \alpha_1 \cup \alpha_2, \quad \alpha_1, \, \alpha_2 \in \mathcal{V}_a(\mathbb{F}^n) \text{ implies that } \alpha = \alpha_1 \text{ or } \alpha = \alpha_2.$

If $a \in M$, an analytic manifold, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$.

A point of α is called ℓ -regular if α is an ℓ -dimensional manifold in a neighbourhood of the point. The dimension of α is the largest ℓ for which α has ℓ -regular points

If $a \in M$ and var (U, G) is an \mathbb{F} -analytic variety, there is an open neighbourhood W of a in M such that $W \setminus \text{var}(U, G)$ is either empty or dense in W.

If $M \subset U$ is a connected analytic manifold and $M \cap \text{var}(U, G)$ has non-empty interior relative to M, then $M \subset \text{var}(U, G)$.

 $\alpha \in \mathcal{V}_a(\mathbb{F}^n)$ is irreducible if

 $\alpha = \alpha_1 \cup \alpha_2, \quad \alpha_1, \, \alpha_2 \in \mathcal{V}_a(\mathbb{F}^n) \text{ implies that } \alpha = \alpha_1 \text{ or } \alpha = \alpha_2.$

If M is an analytic manifold and $a \in M$, then $\gamma_a(M) \in \mathcal{V}_a(\mathbb{F}^n)$ is irreducible.

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

 $H = \{h_{m+1}, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1, \dots, z_m)$

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

$$H = \{h_{m+1}, \cdots, h_n\}$$
 where $h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m)$

A Weierstrass analytic variety is a set of the form var $(V \times \mathbb{C}^{n-m}, H) \subset \mathbb{C}^n$.

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

$$H = \{h_{m+1}, \cdots, h_n\}$$
 where $h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m)$

A Weierstrass analytic variety is a set of the form var $(V \times \mathbb{C}^{n-m}, H) \subset \mathbb{C}^n$.

Its discriminant $D(H):V\to \mathbb{C}$ is the product of the discriminants of the $A_k\mathbf{s}$

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

$$H = \{h_{m+1}, \cdots, h_n\}$$
 where $h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m)$

A Weierstrass analytic variety is a set of the form var $(V \times \mathbb{C}^{n-m}, H) \subset \mathbb{C}^n$.

Its discriminant $D(H): V \to \mathbb{C}$ is the product of the discriminants of the A_k s

Its branches are the connected components of

 $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \setminus \left(\operatorname{var}\left(V, D(H)\right) \times \mathbb{C}^{n-m}\right).$

Weierstrass Analytic Varieties on \mathbb{C}^n

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

$$H = \{h_{m+1}, \cdots, h_n\}$$
 where $h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m)$

A Weierstrass analytic variety is a set of the form var $(V \times \mathbb{C}^{n-m}, H) \subset \mathbb{C}^n$.

Its discriminant $D(H):V\to \mathbb{C}$ is the product of the discriminants of the $A_k\mathbf{s}$

Its branches are the connected components of

 $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \setminus \left(\operatorname{var}\left(V, D(H)\right) \times \mathbb{C}^{n-m}\right).$

Each branch is a connected \mathbb{C} -analytic manifold of dimension m which projects onto the connected set $V \setminus \text{var}(V, \{D(H)\})$.

Weierstrass Analytic Varieties on \mathbb{C}^n

For Weierstrass polynomials $\{A_{m+1}, \cdots, A_n\}$ on $V \subset \mathbb{C}^m$

$$H = \{h_{m+1}, \cdots, h_n\}$$
 where $h_k(z_1, \cdots, z_n) = A_k(z_k; z_1, \cdots, z_m)$

A Weierstrass analytic variety is a set of the form var $(V \times \mathbb{C}^{n-m}, H) \subset \mathbb{C}^n$.

Its discriminant $D(H):V\to \mathbb{C}$ is the product of the discriminants of the $A_k\mathbf{s}$

Its branches are the connected components of

 $\operatorname{var}\left(V \times \mathbb{C}^{n-m}, H\right) \setminus \left(\operatorname{var}\left(V, D(H)\right) \times \mathbb{C}^{n-m}\right).$

Each branch is a connected \mathbb{C} -analytic manifold of dimension m which projects onto the connected set $V \setminus \text{var}(V, \{D(H)\})$.

Globally, z_{m+1}, \dots, z_n are not analytic functions on $V \setminus \operatorname{var}(V, \{D(H)\})$ if the latter set is multiply connected

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

This may give a sense of the following result

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

This may give a sense of the following result Think about its structure in this simple case

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

This may give a sense of the following result Think about its structure in this simple case When m = 1 a variety is the union of its branches:

$$\alpha = \gamma_0 \left(\bigcup_{\alpha \cap \gamma_0(B) \neq \{0\}} B \cup \{0\} \right)$$

One-dimensional Branches m = 1

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E = \operatorname{var}(V \times \mathbb{C}^{n-1}, H)$ and D(H) is non-zero on $V \setminus \{0\}$.

One-dimensional Branches m = 1

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E = \operatorname{var}(V \times \mathbb{C}^{n-1}, H)$ and D(H) is non-zero on $V \setminus \{0\}$.

Then there exist $K \in \mathbb{N}$, $\delta > 0$ and a \mathbb{C} -analytic function

$$\psi: \{z \in \mathbb{C}: |z|^K < \delta\} \to \mathbb{C}^{n-1}$$

One-dimensional Branches m = 1

Theorem. Suppose B is a branch of the Weierstrass analytic variety $E = \operatorname{var}(V \times \mathbb{C}^{n-1}, H)$ and D(H) is non-zero on $V \setminus \{0\}$.

Then there exist $K \in \mathbb{N}$, $\delta > 0$ and a \mathbb{C} -analytic function

$$\psi: \{z \in \mathbb{C}: |z|^K < \delta\} \to \mathbb{C}^{n-1}$$

such that the mapping $z \mapsto (z^K, \psi(z))$ is injective, $\psi(0) = 0$ and

$$\{0\} \cup B = \overline{B} \cap (V \times \mathbb{C}^{n-1}) = \{(z^K, \psi(z)) : |z|^K < \delta\}.$$

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial.

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$.

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$. Then the result holds with

$$K = 1$$
 and $\psi(z_1) = (a_2(z_1), a_3(z_1), \cdots, a_n(z_1)), \ z_1 \in V.$

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$. Then the result holds with

$$K = 1$$
 and $\psi(z_1) = (a_2(z_1), a_3(z_1), \cdots, a_n(z_1)), \ z_1 \in V.$

When D(H) is zero at 0, each of the polynomials $A_k(Z; z_1)$ has only simple roots for $z_1 \in V \setminus \{0\}$.

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$. Then the result holds with

K = 1 and $\psi(z_1) = (a_2(z_1), a_3(z_1), \cdots, a_n(z_1)), z_1 \in V.$

When D(H) is zero at 0, each of the polynomials $A_k(Z; z_1)$ has only simple roots for $z_1 \in V \setminus \{0\}$.

Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$\widehat{V} = \{ z \in \mathbb{C} : z = \rho + i\theta, -\infty < \rho < \log \delta, \ \theta \in \mathbb{R} \}, \widehat{h}_k(z, z_k) = A_k(z_k; e^z), \ z \in \widehat{V}, \ z_k \in \mathbb{C}.$$

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$. Then the result holds with

K = 1 and $\psi(z_1) = (a_2(z_1), a_3(z_1), \cdots, a_n(z_1)), \ z_1 \in V.$

When D(H) is zero at 0, each of the polynomials $A_k(Z; z_1)$ has only simple roots for $z_1 \in V \setminus \{0\}$.

Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$\widehat{V} = \{ z \in \mathbb{C} : z = \rho + i\theta, -\infty < \rho < \log \delta, \ \theta \in \mathbb{R} \}, \widehat{h}_k(z, z_k) = A_k(z_k; e^z), \ z \in \widehat{V}, \ z_k \in \mathbb{C}.$$

Let

$$\widehat{H} = \{\widehat{h}_2, \cdots, \widehat{h}_n\}$$
 and $\widehat{E} = \operatorname{var}(\widehat{V} \times \mathbb{C}^{n-1}, \widehat{H}).$

Let $H = \{h_2, \dots, h_n\}$ where $h_k(z_1, \dots, z_n) = A_k(z_k; z_1)$, and each A_k is a Weierstrass polynomial. If the discriminant D(H)is not zero at $z_1 = 0$, then $A_k(Z; z_1) = Z - a_k(z_1)$. Then the result holds with

K = 1 and $\psi(z_1) = (a_2(z_1), a_3(z_1), \cdots, a_n(z_1)), \ z_1 \in V.$

When D(H) is zero at 0, each of the polynomials $A_k(Z; z_1)$ has only simple roots for $z_1 \in V \setminus \{0\}$.

Let \widehat{V} denote the half-plane in \mathbb{C} defined by

$$\widehat{V} = \{ z \in \mathbb{C} : z = \rho + i\theta, -\infty < \rho < \log \delta, \ \theta \in \mathbb{R} \}, \widehat{h}_k(z, z_k) = A_k(z_k; e^z), \ z \in \widehat{V}, \ z_k \in \mathbb{C}.$$

Let

$$\widehat{H} = \{\widehat{h}_2, \cdots, \widehat{h}_n\}$$
 and $\widehat{E} = \operatorname{var}(\widehat{V} \times \mathbb{C}^{n-1}, \widehat{H}).$

B is a branch of E if and only if \widehat{B} is a branch of \widehat{E} , where

$$B = \{ (e^z, \xi) : (z, \xi) \in \widehat{B} \}, \quad \xi \in \mathbb{C}^{n-1}$$

$$(\{z\} \times \mathbb{C}^{n-1}) \cap \widehat{E} = \{(z, \xi_q(z)) : 1 \le q \le p\},\$$

where $p = \prod_{k=2}^{n} p_k$.

$$(\{z\} \times \mathbb{C}^{n-1}) \cap \widehat{E} = \{(z, \xi_q(z)) : 1 \le q \le p\},\$$

where $p = \prod_{k=2}^{n} p_k$.

By the Analytic Implicit Function Theorem, each ξ_q is defined locally on \widehat{V} as a \mathbb{C} -analytic function with values in \mathbb{C}^{n-1}

$$(\{z\} \times \mathbb{C}^{n-1}) \cap \widehat{E} = \{(z, \xi_q(z)) : 1 \le q \le p\},\$$

where $p = \prod_{k=2}^{n} p_k$.

By the Analytic Implicit Function Theorem, each ξ_q is defined locally on \widehat{V} as a \mathbb{C} -analytic function with values in \mathbb{C}^{n-1}

Since \widehat{V} is simply connected, they define analytic functions on \widehat{V} . Thus \widehat{E} is the union of the disjoint graphs of the functions $\xi_q: \widehat{V} \to \mathbb{C}^{n-1}, 1 \leq q \leq p$.

$$(\{z\} \times \mathbb{C}^{n-1}) \cap \widehat{E} = \{(z, \xi_q(z)) : 1 \le q \le p\},\$$

where $p = \prod_{k=2}^{n} p_k$.

By the Analytic Implicit Function Theorem, each ξ_q is defined locally on \widehat{V} as a \mathbb{C} -analytic function with values in \mathbb{C}^{n-1}

Since \widehat{V} is simply connected, they define analytic functions on \widehat{V} . Thus \widehat{E} is the union of the disjoint graphs of the functions $\xi_q: \widehat{V} \to \mathbb{C}^{n-1}, 1 \leq q \leq p$.

Recall that, for $z \in \widehat{V}$, each component of $\xi_q(z) \in \mathbb{C}^{n-1}$ is a simple root of a polynomial $A_k(Z; e^z), 2 \leq k \leq n$.

Therefore

$$z \mapsto \left\{ (e^z, \xi_q(z)) : 1 \le q \le p \right\}$$

is a $2\pi i$ -periodic set-valued map on \widehat{V} .

Therefore

$$z \mapsto \left\{ (e^z, \xi_q(z)) : 1 \le q \le p \right\}$$

is a $2\pi i$ -periodic set-valued map on \widehat{V} .

Moreover if, for some $\widehat{z} \in \widehat{V}$ and some $m \in \mathbb{Z}$,

$$\xi_{q_1}(\widehat{z}) = \xi_{q_2}(\widehat{z} + 2\pi m i), \ q_1, q_2 \in \{1, \cdots p\},$$

then

$$\xi_{q_1}(z) = \xi_{q_2}(z + 2\pi mi) \text{ for all } z \in \widehat{V},$$

by the Analytic Implicit Function Theorem and analytic continuation.

Therefore

$$z \mapsto \left\{ (e^z, \xi_q(z)) : 1 \le q \le p \right\}$$

is a $2\pi i$ -periodic set-valued map on \widehat{V} .

Moreover if, for some $\widehat{z} \in \widehat{V}$ and some $m \in \mathbb{Z}$,

$$\xi_{q_1}(\widehat{z}) = \xi_{q_2}(\widehat{z} + 2\pi m i), \ q_1, q_2 \in \{1, \cdots p\},$$

then

$$\xi_{q_1}(z) = \xi_{q_2}(z + 2\pi mi) \text{ for all } z \in \widehat{V},$$

by the Analytic Implicit Function Theorem and analytic continuation.

Hence, for $q \in \{1, \dots, p\}$, the mapping

$$z \mapsto (e^z, \xi_q(z)) \in E, \ z \in \widehat{V}, \tag{1}$$

is periodic with period $2\pi K_q i$ and is injective on the set $V_q = \{z = \rho + i\theta \in \widehat{V} : 0 < \theta \le 2\pi K_q\}, K_q \in \{1, \cdots, p\}.$

This is a branch of the variety E where m = 1:

$$B = \left\{ (e^z, \xi_q(z)) : z \in V_q \right\}$$

is an injective parameterization of *B*. Since $z \mapsto \xi_q(K_q z)$ has period (not necessarily minimal) $2\pi i$, we can define an analytic function $\widetilde{\psi} : \{z : 0 < |z| < \delta^{1/K_q}\} \to \mathbb{C}$ by

$$\widetilde{\psi}(z) = \xi_q(K_q \log z)$$

This is a branch of the variety E where m = 1:

$$B = \left\{ (e^z, \xi_q(z)) : z \in V_q \right\}$$

is an injective parameterization of *B*. Since $z \mapsto \xi_q(K_q z)$ has period (not necessarily minimal) $2\pi i$, we can define an analytic function $\widetilde{\psi} : \{z : 0 < |z| < \delta^{1/K_q}\} \to \mathbb{C}$ by

$$\widetilde{\psi}(z) = \xi_q(K_q \log z)$$

This gives a new injective parameterization of B, namely

$$B = \left\{ (z^{K_q}, \widetilde{\psi}(z)) : 0 < |z| < \delta^{1/K_q} \right\},$$

where ψ is analytic and $\lim_{z_1 \to 0} \widetilde{\psi}(z_1) = 0$.

This is a branch of the variety E where m = 1:

$$B = \left\{ (e^z, \xi_q(z)) : z \in V_q \right\}$$

is an injective parameterization of *B*. Since $z \mapsto \xi_q(K_q z)$ has period (not necessarily minimal) $2\pi i$, we can define an analytic function $\widetilde{\psi} : \{z : 0 < |z| < \delta^{1/K_q}\} \to \mathbb{C}$ by

$$\widetilde{\psi}(z) = \xi_q(K_q \log z)$$

This gives a new injective parameterization of B, namely

$$B = \{ (z^{K_q}, \widetilde{\psi}(z)) : 0 < |z| < \delta^{1/K_q} \},\$$

where ψ is analytic and $\lim_{z_1 \to 0} \widetilde{\psi}(z_1) = 0$.

The Riemann Extension Theorem means that $\tilde{\psi}$ has an analytic extension ψ defined on the ball $\{z_1 \in \mathbb{C} : |z_1| < \delta^{1/K_q}\}$ with $\psi(0) = 0$. Let $K = K_q$ to complete the proof.

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

(a) How many branches are there?

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

(a) How many branches are there?

(b) What is K for each branch?

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

- (a) How many branches are there?
- (b) What is K for each branch?
- (c) Do any of the branches intersect \mathbb{R}^4 ?

If $\gamma_0(B \cap \mathbb{R}^n) \notin \{\emptyset, \{0\}\}$ there exists $k \in \mathbb{N}_0$ with $0 \le k \le 2K - 1$ such that

 $\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},$ and this parameterization is injective.

Examination Questions!

Three Weierstrass polynomials

$$Z^2 - z_1;$$
 $Z^3 - z_1^2,$ $Z^4 - z_1^3$

define an analytic variety in \mathbb{C}^4 as follows:

$$z_2^2 - z_1 = 0;$$
 $z_3^3 - z_1^2 = 0,$ $z_4^4 - z_1^3 = 0$

- (a) How many branches are there?
- (b) What is K for each branch?
- (c) Do any of the branches intersect \mathbb{R}^4 ?

General Structure Theorem for \mathbb{C} -Analytic Germs $n \ge 2, \alpha \in \mathcal{V}_0(\mathbb{C}^n) \setminus \{0\}, \{0\} \subset \alpha \neq \gamma_0(\mathbb{C}^n)$

General Structure Theorem for \mathbb{C} -Analytic Germs $n \ge 2, \alpha \in \mathcal{V}_0(\mathbb{C}^n) \setminus \{0\} \subset \alpha \neq \gamma_0(\mathbb{C}^n)$

Then there exist sets B_1, \dots, B_N , such that

General Structure Theorem for \mathbb{C} -Analytic Germs $n \ge 2, \alpha \in \mathcal{V}_0(\mathbb{C}^n) \setminus \{0\} \subset \alpha \neq \gamma_0(\mathbb{C}^n)$

Then there exist sets B_1, \dots, B_N , such that

(a) $\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$

General Structure Theorem for \mathbb{C} -Analytic Germs $n \ge 2, \alpha \in \mathcal{V}_0(\mathbb{C}^n) \setminus \{0\} \subset \alpha \neq \gamma_0(\mathbb{C}^n)$

Then there exist sets B_1, \dots, B_N , such that

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

(b) Each B_j , $1 \le j \le N$, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).

Then there exist sets B_1, \dots, B_N , such that

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

(b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) dim_C α = max_{1≤j≤N}{dim_C B_j}.

Then there exist sets B_1, \dots, B_N , such that

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

(b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
(c) dime α = max₁ ≤ i ≤ n {dime B_i}

(c)
$$\dim_{\mathbb{C}} \alpha = \max_{1 \le j \le N} \{\dim_{\mathbb{C}} B_j\}$$

(d) If $L \subset \mathbb{C}^n$, $\gamma_0(L) \neq \emptyset$, is a connected \mathbb{C} -analytic manifold of dimension $l \in \{1, \dots, n\}$ the points of which are *l*-regular points of a representative of α , then there exists $j \in \{1, \dots, N\}$ such that $\gamma_0(L) \subset \gamma_0(\overline{B_j})$ and $\dim_{\mathbb{C}} B_j = l$.

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

- (b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
 (c) dim_C α = max_{1≤j≤N}{dim_C B_j}.
- (d) If L ⊂ Cⁿ, γ₀(L) ≠ Ø, is a connected C-analytic manifold of dimension l ∈ {1, · · · , n} the points of which are *l*-regular points of a representative of α, then there exists j ∈ {1, · · · , N} such that γ₀(L) ⊂ γ₀(B_j) and dim_C B_j = l.
 (e) If α is real-on-real, then B_j with B_j ∩ ℝⁿ ≠ Ø is real-on-real.

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

- (b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
 (c) dim_C α = max_{1≤j≤N}{dim_C B_j}.
- (d) If L ⊂ Cⁿ, γ₀(L) ≠ Ø, is a connected C-analytic manifold of dimension l ∈ {1, · · · , n} the points of which are *l*-regular points of a representative of α, then there exists j ∈ {1, · · · , N} such that γ₀(L) ⊂ γ₀(B_j) and dim_C B_j = l.
 (e) If α is real-on-real, then B_j with B_j ∩ Rⁿ ≠ Ø is real-on-real.
 (f) α ∩ γ₀(Rⁿ) = γ₀(B̃₁ ∪ · · · ∪ B̃_K ∪ {0}) where the B̃_j denotes those branches which intersect Rⁿ non-trivially.

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

- (b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
 (c) dim_C α = max_{1≤j≤N}{dim_C B_j}.
- (d) If L ⊂ Cⁿ, γ₀(L) ≠ Ø, is a connected C-analytic manifold of dimension l ∈ {1, · · · , n} the points of which are *l*-regular points of a representative of α, then there exists j ∈ {1, · · · , N} such that γ₀(L) ⊂ γ₀(B_j) and dim_C B_j = l.
 (e) If α is real-on-real, then B_j with B_j ∩ ℝⁿ ≠ Ø is real-on-real.
 (f) α ∩ γ₀(ℝⁿ) = γ₀(B̃₁ ∪ · · · ∪ B̃_K ∪ {0}) where the B̃_j denotes those branches which intersect ℝⁿ non-trivially.
 (g) dim_ℝ(α ∩ ℝⁿ) = max_{1 ≤ j ≤ K} dim_ℝ(B̃_j ∩ ℝⁿ).

(a)
$$\alpha = \gamma_0 (B_1 \cup \cdots \cup B_N \cup \{0\}).$$

- (b) Each B_j, 1 ≤ j ≤ N, after a linear change of coordinates, is a branch of a Weierstrass analytic variety (depending on j).
 (c) dim_C α = max_{1≤j≤N}{dim_C B_j}.
- (d) If L ⊂ Cⁿ, γ₀(L) ≠ Ø, is a connected C-analytic manifold of dimension l ∈ {1, · · · , n} the points of which are *l*-regular points of a representative of α, then there exists j ∈ {1, · · · , N} such that γ₀(L) ⊂ γ₀(B_j) and dim_C B_j = l.
 (e) If α is real-on-real, then B_j with B_j ∩ Rⁿ ≠ Ø is real-on-real.
 (f) α ∩ γ₀(Rⁿ) = γ₀(B̃₁ ∪ · · · ∪ B̃_K ∪ {0}) where the B̃_j denotes those branches which intersect Rⁿ non-trivially.
 (g) dim_R(α ∩ Rⁿ) = max_{1≤i≤K} dim_R(B̃_i ∩ Rⁿ).
- (h) If $\alpha \in \mathcal{V}_0(\mathbb{C}^n)$ is irreducible then $\alpha = \gamma_0(\overline{B})$ for some *B*. If α is real-on-real and $\alpha \cap \gamma_0(\mathbb{R}^n) \neq \{0\}$, then *B* is a branch of a real-on-real variety.

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R} -analytic function hon a (q + 1)-dimensional real vector space V into \mathbb{R}^q , its \mathbb{R} -analytic variety which contains and a 1-dimensional manifold M, namely a \mathbb{R} -analytic distinguished arc:

$$\begin{split} A &= \operatorname{var}\left(V, \{h\}\right) = \{(\lambda, \xi) \in V : h(\lambda, \xi) = 0\},\\ M &= \{(\lambda, \xi) \in V : (\lambda, \psi(\lambda, \xi)) \in \mathfrak{N}\}. \end{split}$$

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R} -analytic function hon a (q + 1)-dimensional real vector space V into \mathbb{R}^q , its \mathbb{R} -analytic variety which contains and a 1-dimensional manifold M, namely a \mathbb{R} -analytic distinguished arc:

$$A = \operatorname{var} \left(V, \{h\} \right) = \{ (\lambda, \xi) \in V : h(\lambda, \xi) = 0 \},$$

$$M = \{ (\lambda, \xi) \in V : (\lambda, \psi(\lambda, \xi)) \in \mathfrak{N} \}.$$

Let $\{M_j : j \in J\}$ denote those non-empty connected components of M with $\gamma_{(\lambda_*,0)}(M_j) \neq \emptyset$.

Back to Global Bifurcation

Lyapunov-Schmidt Reduction yields an \mathbb{R} -analytic function hon a (q + 1)-dimensional real vector space V into \mathbb{R}^q , its \mathbb{R} -analytic variety which contains and a 1-dimensional manifold M, namely a \mathbb{R} -analytic distinguished arc:

$$A = \operatorname{var} (V, \{h\}) = \{(\lambda, \xi) \in V : h(\lambda, \xi) = 0\},$$

$$M = \{(\lambda, \xi) \in V : (\lambda, \psi(\lambda, \xi)) \in \mathfrak{N}\}.$$

Let $\{M_j : j \in J\}$ denote those non-empty connected components of M with $\gamma_{(\lambda_*,0)}(M_j) \neq \emptyset$.

The q components of $h(\lambda, \xi)$ are real functions defined locally in a neighbourhood of $(\lambda_*, 0) \in V$ by a Taylor series.

Replacing $(x_1, \dots, x_{q+1}) \in \mathbb{R}^{q+1}$ with $(z_1, \dots, z_{q+1}) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C} -analytic extension h^c of h in a complex neighbourhood V^c of $(\lambda_*, 0)$ and a corresponding \mathbb{C} -analytic variety.

Replacing $(x_1, \dots, x_{q+1}) \in \mathbb{R}^{q+1}$ with $(z_1, \dots, z_{q+1}) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C} -analytic extension h^c of h in a complex neighbourhood V^c of $(\lambda_*, 0)$ and a corresponding \mathbb{C} -analytic variety. Let

$$\begin{aligned} A^{c} &= \operatorname{var}\left(V^{c}, \{h^{c}\}\right) = \{(\lambda, \xi) \in V^{c} : h^{c}(\lambda, \xi) = 0\},\\ M^{c} &= \big\{(\lambda, \xi) \in V^{c} : \operatorname{ker}(\partial_{\xi} h^{c}[(\lambda, \xi)]) = \{0\}\big\}, \end{aligned}$$

and let $\{M_j^c : j \in J^c\}$ be the non-empty connected components of M^c with $\gamma_{(\lambda_*,0)}(\mathbb{R}^{q+1} \cap M_j^c) \neq \emptyset$.

Replacing $(x_1, \dots, x_{q+1}) \in \mathbb{R}^{q+1}$ with $(z_1, \dots, z_{q+1}) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C} -analytic extension h^c of h in a complex neighbourhood V^c of $(\lambda_*, 0)$ and a corresponding \mathbb{C} -analytic variety. Let

$$\begin{aligned} A^{c} &= \operatorname{var}\left(V^{c}, \{h^{c}\}\right) = \{(\lambda, \xi) \in V^{c} : h^{c}(\lambda, \xi) = 0\},\\ M^{c} &= \big\{(\lambda, \xi) \in V^{c} : \operatorname{ker}(\partial_{\xi} h^{c}[(\lambda, \xi)]) = \{0\}\big\}, \end{aligned}$$

and let $\{M_j^c : j \in J^c\}$ be the non-empty connected components of M^c with $\gamma_{(\lambda_*,0)}(\mathbb{R}^{q+1} \cap M_j^c) \neq \emptyset$.

For each $j \in J$ there exists $\hat{j} \in J^c$ such that $M_j \subset M^c_{\hat{j}}$.

Replacing $(x_1, \dots, x_{q+1}) \in \mathbb{R}^{q+1}$ with $(z_1, \dots, z_{q+1}) \in \mathbb{C}^{q+1}$ leads to a real-on-real \mathbb{C} -analytic extension h^c of h in a complex neighbourhood V^c of $(\lambda_*, 0)$ and a corresponding \mathbb{C} -analytic variety. Let

$$A^{c} = \operatorname{var} (V^{c}, \{h^{c}\}) = \{(\lambda, \xi) \in V^{c} : h^{c}(\lambda, \xi) = 0\},\$$
$$M^{c} = \{(\lambda, \xi) \in V^{c} : \operatorname{ker}(\partial_{\xi} h^{c}[(\lambda, \xi)]) = \{0\}\},\$$

and let $\{M_j^c : j \in J^c\}$ be the non-empty connected components of M^c with $\gamma_{(\lambda_*,0)}(\mathbb{R}^{q+1} \cap M_i^c) \neq \emptyset$.

For each $j \in J$ there exists $\hat{j} \in J^c$ such that $M_j \subset M^c_{\hat{j}}$.

The structure theorem when applied to A^c gives, for each $j \in J^c$, the existence of a real-on-real branch B_j with

$$\gamma_{(\lambda_*,0)}(M_j^c) \subset \gamma_{(\lambda_*,0)}(\overline{B}_j), \quad \dim B_j = 1 \text{ and } B_j \subset A^c$$

with $B_j \setminus \{(\lambda_*, 0)\} \subset M_j^c$. There are finitely many branches and hence finitely many M_j^c and M_j .

Each one-dimensional branches B_j has a \mathbb{C} -analytic parameterization in a neighbourhood of $(\lambda_*, 0)$.

Each one-dimensional branches B_j has a \mathbb{C} -analytic parameterization in a neighbourhood of $(\lambda_*, 0)$.

In the setting of \mathbb{R}^n , we obtain that \overline{M} , locally near $(\lambda_*, 0)$, is the union of a finite number of curves which *pass through* $(\lambda_*, 0)$ in V, intersect one another only at $(\lambda_*, 0)$ and are given by an injective parameterization

$$\mathbb{R}^n \cap \overline{B} = \big\{ \big((-1)^k r^K, \psi(r \exp(k\pi i/K)) \big) : -\delta^{1/K} < r < \delta^{1/K} \big\},$$

Each one-dimensional branches B_j has a \mathbb{C} -analytic parameterization in a neighbourhood of $(\lambda_*, 0)$.

In the setting of \mathbb{R}^n , we obtain that \overline{M} , locally near $(\lambda_*, 0)$, is the union of a finite number of curves which *pass through* $(\lambda_*, 0)$ in V, intersect one another only at $(\lambda_*, 0)$ and are given by an injective parameterization

$$\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},\$$

Thus, in our previous notation each M_j , $j \in J$, is paired, in a unique way with another $M_{\tilde{j}}$, $\tilde{j} \in J$, so that their union with the point $(\lambda_*, 0)$ forms one of these curves in V.

Each one-dimensional branches B_j has a \mathbb{C} -analytic parameterization in a neighbourhood of $(\lambda_*, 0)$.

In the setting of \mathbb{R}^n , we obtain that \overline{M} , locally near $(\lambda_*, 0)$, is the union of a finite number of curves which *pass through* $(\lambda_*, 0)$ in V, intersect one another only at $(\lambda_*, 0)$ and are given by an injective parameterization

$$\mathbb{R}^n \cap \overline{B} = \left\{ \left((-1)^k r^K, \psi(r \exp(k\pi i/K)) \right) : -\delta^{1/K} < r < \delta^{1/K} \right\},\$$

Thus, in our previous notation each M_j , $j \in J$, is paired, in a unique way with another $M_{\tilde{j}}$, $\tilde{j} \in J$, so that their union with the point $(\lambda_*, 0)$ forms one of these curves in V.

Thus curves in \mathfrak{N} cannot terminate when real-analytic operators are involved.

This leads directly to the advertised properties of maximal routes

• A *distinguished arc* is a maximal connected subset of \mathfrak{N} .

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:

• $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length N ∈ N ∪ {∞} is a set {A_n : 0 ≤ n < N} of distinguished arcs and a set {(λ_n, x_n) : 0 ≤ n < N} ⊂ ℝ × X such that:
 (λ₀, x₀) = (λ₀, 0) is the bifurcation point;

$$\succ \mathcal{R}^+ \subset \mathcal{A}_0;$$

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

• The mapping $n \mapsto \mathcal{A}_n$ is injective.

- A *distinguished arc* is a maximal connected subset of \mathfrak{N} .
- A route of length $N \in \mathbb{N} \cup \{\infty\}$ is a set $\{\mathcal{A}_n : 0 \le n < N\}$ of distinguished arcs and a set $\{(\lambda_n, x_n) : 0 \le n < N\} \subset \mathbb{R} \times X$ such that:
 - $(\lambda_0, x_0) = (\lambda_0, 0)$ is the bifurcation point;

$$\blacktriangleright \mathcal{R}^+ \subset \mathcal{A}_0;$$

• For N > 1 and $0 \le n < N - 1$,

$$(\lambda_{n+1}, x_{n+1}) \in (\partial \mathcal{A}_n \cap \partial \mathcal{A}_{n+1}) \setminus \{(\lambda_n, x_n)\}$$

and there exists an injective \mathbb{R} -analytic map $\rho: (-1,1) \to \mathcal{A}_n \cup \mathcal{A}_{n+1} \cup \{(\lambda_{n+1}, x_{n+1})\}$ with $\rho(0) = (\lambda_{n+1}, x_{n+1})$. Hence \mathcal{A}_{n+1} is uniquely determined by \mathcal{A}_n and vice versa.

• The mapping $n \mapsto \mathcal{A}_n$ is injective.

 $\{\mathcal{A}_0\}, \{(\lambda_0, 0)\}$ is a route of length 1 with $(\lambda_0, 0) \in \partial \mathcal{A}_0$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

 $\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$ We have seen that a distinguished arc cannot terminate at a singular point:

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A} := \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

We have seen that a distinguished arc cannot terminate at a singular point:

on the contrary it is paired canonically with another uniquely determined distinguished arc

By Zorn's Lemma there exists a maximal route of length $N \in \mathbb{N} \cup \{\infty\}$ which we denote by

$$\{\mathcal{A}_n, (\lambda_n, x_n)\}: 0 \le n < N\}, \qquad \mathcal{A}:= \cup \mathcal{A}_n.$$

The problem is to show that

if ${\mathcal A}$ is unbounded it has a parametrization which tends to infinity as $s\to\infty$

and

if \mathcal{A} is bounded then N must be finite and $(\lambda_n, x_n) = (\lambda_0, x_0)$

We have seen that a distinguished arc cannot terminate at a singular point:

on the contrary it is paired canonically with another uniquely determined distinguished arc

The global result follows easily from this and the local compactness of solution sets.