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Naturally, island nations have been particularly active in the
mathematical theory of fluids and water waves. See, for

instance, the influential book of Okamoto & Shoji and the
papers of T. Nishida, B. Benjamin, J. Toland,....





Joint work with:
Adrian Constantin

Joy Ko

Miles Wheeler

We consider water in, say, a lake with a flat bottom B and
a free surface S under gravity g.
Above is air with atmospheric pressure Patm.

The water: 2D, incompressible, inviscid, no surface tension.

Not irrotational!

Not an approximation!
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2D Euler Equations

Velocity ~u = [u, v ] = [u(x , y , t), v(x , y , t)], pressure= P(x , y , t),
density= 1. Inside the fluid [Euler ∼1750]:

∇ · ~u = 0

∂~u
∂t

+ (~u · ∇)~u +∇P =

(
0
−g

)
On the surface S = {y = η(x , t)}:

P = Patm, v = ηt + u ηx

On the bottom B = {y = −d}: v = 0.

Define the stream function ψ: ψx = −v , ψy = u

and the 2D vorticity ω: ω = vx − uy = −∆ψ.
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Traveling (i.e. Steady) Waves
We consider waves of speed c:
velocity ~u(x − ct , y), surface η(x − ct).
and of period L.
Therefore we can change to a moving frame: x − ct → x .
Then the Euler equations imply that ω and ψ − cy are
functionally dependent, so that we get the nonlinear elliptic
PDE

−∆ψ(x , y) = γ[ψ(x , y)− cy ] = ω(x , y)

where ∆ψ = ψxx + ψyy . The vorticity function γ is a completely
arbitrary function of one variable; we assume it’s single-valued.

There are two constants:
1. The flux p0 =

∫ η(x)
−d [u(x , y)− c] dy is independent of x .

2. The relative stream function ψ(x , y)− cy , restricted to the
free surface S, is a constant.

We will first consider waves periodic in x .
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Irrotational Case (no vorticity):

Cauchy (1815), Poisson, Airy, Stokes (1847), . . .

Existence:
Nekrasov, Levi-Civita, Struik (1920’s),
Keady & Norbury, Amick & Toland & Fraenkel (∼1980), . . . .

Theorem (2010). Within the fluid:
(i) The pressure decreases horizontally away from the crest
line, and increases with depth.
(ii) If u < c, all the particle trajectories are non-closed looping
orbits unless there is a background current.

All of this work strongly uses the fact that ψ is a harmonic
function inside the fluid.



Irrotational Case (no vorticity):

Cauchy (1815), Poisson, Airy, Stokes (1847), . . .

Existence:
Nekrasov, Levi-Civita, Struik (1920’s),
Keady & Norbury, Amick & Toland & Fraenkel (∼1980), . . . .

Theorem (2010). Within the fluid:
(i) The pressure decreases horizontally away from the crest
line, and increases with depth.
(ii) If u < c, all the particle trajectories are non-closed looping
orbits unless there is a background current.

All of this work strongly uses the fact that ψ is a harmonic
function inside the fluid.



Steady Waves with Vorticity

Rotational effects (i.e. due to nontrivial vorticity) are significant
for

I wind-driven waves
I waves riding upon a sheared current
I waves near a ship
I tsunamis approaching a shore

Important example: Gerstner (1802)

Existence:
Dubreil-Jacotin (1934), Constantin & S (2004)

This situation requires looking inside the fluid because ψ is no
longer a harmonic function.



If ∃ vorticity, the pressure is not necessarily monotone:



The height of the same wave:



Existence of Traveling Waves

Theorem [Constantin & S, 2004-2011]

Let arbitrary constants c > 0,L > 0,p0 < 0
and an arbitrary C∞ function γ(·) be given
subject to: either γ ≤ 0 or |p0| not too big or L is not too small.
Then there exists a continuum C (a connected set) of C∞

symmetric traveling waves with u(x , y) < c, each one with a
single crest and trough per period.

I C contains a trivial laminar flow with S flat,
I as well as waves for which max u ↗ c (“stagnation").

More generally, if, for some 0 < α < 1, the vorticity is merely Cα

except for a finite number of jumps, then
h ∈ C1+α,u, v ∈ Cα, η ∈ C1+α.

Computations [Joy Ko & S.]. The computations below show
that the vorticity can have a big qualitative effect on the
solutions! (We take L = 2π, p0 = −2, g = 9.8.)
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The continuum: amplitude vs. energy for γ ≡ 2.95
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Profiles of waves near stagnation for γ ≡ −4, −2, 0, 2.95
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Extreme waves with top, bottom and internal stagnation
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Change of coordinates

First step in the proof: fix the free boundary by introducing a
new independent variable p = cy − ψ(x , y).

It would be very nice for the other coordinate q to be its
harmonic conjugate but that is possible only if ψ is harmonic,
that is, if there is no vorticity.

So Dubreil-Jacotin in 1933 simply put q = x . This permits the
vorticity to be arbitrary.



D-J Transformation:



The D-J transformation
p = cy − ψ(x , y), q = x

leads to the following system for the height

h(q,p) = y + d

in the rectangle R = {0 < q < L, p0 < p < 0}:{
−

1 + h2
q

2h2
p

+ Γ(p)

}
p

+

{
hq

hp

}
q

= 0 in R,

−
1 + h2

q

2h2
p
− gh +

Q
2

= 0 on the top T

h = 0 on the bottom B

period L in the q variable.

Notice that the PDE is elliptic so long as hp > 0.
Because hp = 1/(c − u), this means we will require u < c.
Notice that the only free parameters are the head Q, the
dimensions of R, and the vorticity function γ(·).
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Proof of Theorem

First, local bifurcation.
We treat Q as a bifurcation parameter.
Suppose γ(·) is an arbitrary smooth function.

There is a curve of trivial (flat surface) solutions Q(λ),H(p;λ) in
the (Q,h) space R× C3,α, where 0 < α < 1.

We look along this curve for a bifurcation point Q(λ∗),H(p, λ∗).
At such a point the linearized operator must have a kernel.

Even though this is not a standard eigenvalue problem, it is still
possible to apply the Crandall-Rabinowitz bifurcation - from - a -
simple - eigenvalue theorem (1971) (or the Liapunov-Schmidt
method) to get a unique local curve of non-trivial solutions.
Their amplitudes are small.





Global Continuation

We want to continue the bifurcation curve in R× C3,α.
Our tools are:

I Degree theory, Leray & Schauder (1930’s), but specifically
the degree of Healey & Simpson (1998).

I Global bifurcation method of Rabinowitz (1971).
I Schauder estimates for elliptic operators.

We obtain one of the following possibilities:
1. Unboundedness: C becomes unbounded.
2. Self-intersection: C intersects the trivial curve at another

point.
3. Degeneracy: The PDE becomes non-elliptic or the BC

becomes non-oblique.
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I Eliminate self-intersection by using the nodal properties
(nonvanishing derivative between crest and trough).
Tool: the maximum principles of Hopf and Serrin (1971).

I Reduce ‖h‖C3,α →∞ (unboundedness of h) to the much
weaker statement that ‖hp‖L∞ →∞ along C.
Tool: the Lieberman-Trudinger regularity estimates (1986).

I Eventually reduce all possibilities to

sup u ↗ c along C.

Recall that hp = 1/(c − u).

Tools: (1) A lower bound on u at the crest.
(2) A lower bound on the pressure P.





Profiles of waves near stagnation for 5 thicknesses with γ0 = 10
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Continuous vorticity with internal stagnation
γ
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Figure 1: Continuous vorticity. Top row: graph of the continuous vorticity γ(p) = 10 tanh 10(p+ 1); amplitude and d
row: wave streamlines, illustrating internal stagnation; c− u along the vertical line AB.



Solitary Waves

These are non-periodic waves which approach a constant
depth as x → ±∞, the same at both ends. I will consider only
symmetric waves with a single crest or trough.

Let u = U(y), v = 0 denote the trivial (flat) flow which is
approached as x → ±∞. Define F and U∗(y) by

1
F 2 = g

∫ d

0

dy
(c − U(y))2 , U(y) = c − FU∗(y).

F is non-dimensional and is called the generalized Froude
number. It is used as a measure of the drag of a ship. There is
vorticity provided U∗(y), the normalized flow at∞, is not a
constant.



Constructions of Solitary Waves

In the irrotational case there are several constructions of
solitary waves of small amplitude going back to the 1950’s. A
big advance was made by Amick and Toland (1981), who
constructed a global continuum of solitary waves with
1 < F < 2.

In the rotational case, first Hur (2008) and then Groves &
Wahlén (2008) constructed a local curve Cloc of small-amplitude
solitary waves with F slightly bigger than 1 (supercritical flow).
The local construction is much more complicated than the
periodic case because the linearized operator is not Fredholm;
it requires a KdV type of scaling.

The first global construction of rotational solitary waves has just
been accomplished by Miles Wheeler.



Theorem [Wheeler(2012)]

Let the speed c and the average depth d be given, as well as
an arbitrary C2, 1

2 trivial flow U∗(y) > 0.
Then there exists a continuum C ⊃ Cloc of solitary traveling
waves with C1, 1

2 surfaces and F > 1.
Each wave is a symmetric monotone wave of elevation with a
single crest and with u(x , y) < c.
The continuum C contains waves that
either approach stagnation or F →∞ or F ↘ 1.

In the irrotational case [Amick & Toland], only the first
alternative can occur and the stagnation occurs at the crest.

Method of proof: Use a continuation argument starting from a
point on Cloc . This requires detailed knowledge of the local
waves. In order to use degree theory, a compactness property
is needed which requires the use of a weight function as
x →∞. Therefore one must work in weighted Hölder spaces.



Additional results on steady waves with vorticity

I Infinite depth: large-amplitude waves. [Vera Hur]

I Surface tension: There can be multiple bifurcating curves
even from the lowest eigenvalue. These curves are global.
[Erik Wahlén, Sam Walsh]

I Stratified fluid: large-amplitude waves. [Sam Walsh]

I Stagnation: If the vorticity is nowhere positive, there is an
extreme wave (like Stokes’) with its stagnation point at the
crest. [Eugen Varvaruca]

I Critical layers: These are waves with layers where u = c.
[Wahlén, Varvaruca & Constantin]

I Vortex sheets. [Ambrose et al]



250 years after Euler, still many fundamental open
problems

I Overhanging steady waves

I 3D steady waves [Iooss and Plotnikov]

I Time-dependent flows;
• Short-time existence in Sobolev spaces by Sijue Wu et al.
• Long-time existence for small data in 2D by Sijue Wu.
• Infinite-time existence for small data in 3D by Germain,
Masmoudi, Shatah and by Wu.

I Unstable? Stable? [Zhiwu Lin: instability of some large
amplitude waves]

I Instability and turbulent flows!


