One-dimensional model

equations for incompressible

fluid motion
10 Jan., 2013 @ London

Hisashi Okamoto

Research Institute for Mathematical Sciences
Kyoto University
okamoto@kurims.kyoto-u.ac.jp
${ }^{\text {Rapan }}$ rnal of $\operatorname{Industrial}$ and Applied Mathematics

Official Journal of JSIAM
(The Japan Society for Industrial and Applied Mathematics)

(2) Springer
$1 / 51$

A short introduction of myself

- Educated in Univ. Tokyo--Hiroshi Fujita---Tosio Kato
- Tosio Kato died in 1999.
- His wife died in 2011 and left thousands of slides taken by Tosio Kato.

Three sources of PDE peoples

Navier-Stokes

1 $\mathbf{u}_{t}+(\mathbf{u} \bullet \nabla) \mathbf{u}=v \Delta \mathbf{u}-\frac{1}{\rho} \nabla p$
 ρ

$\operatorname{div} \mathbf{u}=0$

The parish where Stokes was born. His father was the parish minister.

GEORGE GABRIEL STOKES
MATHEMATICAL PHYSICIST

LUCASIAN PROFESSOR OF MATHEMATICS AT CAMBRIDGE PRESIDENT OF ROYAL SOCIETY DIED CAMBRIDGE FEB 1.1903
UNVEILED BY
RAY MCSHARRY
FORMER
EUROPEAN
COMMISSIONER
FOR
AGRICULTURE
JUNE $10,1995$.

3D Navier-Stokes: A bad problem

Turbulence is a bad Problem!? How about the NS itself?

Try simpler models:

Burgers
('15 Bateman, '39 Burgers)
Proudman--Johnson eq. ('62)
Fujita's eq. $\quad u_{t}=\Delta u+u^{p}$

- De Gregorio
(90)

Strain-vorticity dynamics (unbounded sol.)

* Quasi-geostrophic eq.
- Many others.

Navier-Stokes is nonlinear \& nonlocal

- Navier-Stokes eqns. are integro-differential eqns. rather than differential eqns.

$$
\boldsymbol{\omega}_{t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=v \Delta \boldsymbol{\omega}
$$

$$
\begin{aligned}
& \mathbf{u}=(\text { curl })^{-1} \boldsymbol{\omega}, \text { Biot -Savart } \\
& \mathbf{u}(t, x)=\frac{-1}{4 \pi} \iiint \frac{x-\xi}{|x-\xi|^{3}} \boldsymbol{\omega}(t, \xi) d \xi
\end{aligned}
$$

nonlocal $\Leftrightarrow \nabla p \Leftrightarrow$ Helmoltz decom.

Therefore models must be nonlinear \& nonlocal.

model (1)

The Proudman-Johnson equation. '62

- Derived from 2D Navier-Stokes

$$
\mathbf{u}=\left(u(t, x),-y u_{x}(t, x)\right)
$$

(unbounded solution of NS)

$$
u_{t x x}+u u_{x x x}-u_{x} u_{x x}=v u_{x x x x}
$$

$(0<t, 0<x<1)$
periodic BC \& $u_{x x}(0, x)=-\phi(x)$

Global existence or finite time blow-up?
$u_{t x x}+u u_{x x x}-u_{x} u_{x x}=v u_{x x x x}$
$\omega=-u_{x x}$
Order-2
$\omega_{t}+u \omega_{x}-u_{x} \omega=v \omega_{x x}, \quad u=\left(-\frac{d^{2}}{d x^{2}}\right)^{-1} \omega$
$\omega(0, x)=\phi(x)$
$\boldsymbol{\omega}_{t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=v \Delta \boldsymbol{\omega}$
$\mathbf{u}=(\text { curl })^{-1} \boldsymbol{\omega}, \quad$ Biot - Savart
Order - 1

In 1989, a paper appeared in J. Fluid Mech.

- Finite time blow up was predicted by numerical computation.

Global existence was proved by X. Chen
Theorem. Assume that $v>0$.
For any initial data $\omega(t=0)$ in $L^{2}(-1,1)$, a solution exists uniquely for all t and tends to zero as $t \rightarrow \infty$,
if homogeneous Dirichlet, Neumann, or the periodic boundary condition.

Xinfu Chen and O., Proc. Japan Acad., 2000.

Blow-up if non-homogeneous Dirichlet BC.????
Grundy \& McLaughlin (1997).

Be careful for numerical solution

- Somebody may say:

A remark on numerical experiments

- In the case of $v=0$, numerical experiments are sometimes misleading.

Rigorous analysis is necessary

Prime suspect of the blow-up

 is the stretching term.$$
\begin{aligned}
& \boldsymbol{\omega}_{t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=\mathbf{v} \Delta \boldsymbol{\omega} \\
& \text { convection stretching diffusion }
\end{aligned}
$$

Conjecture: blow-up is caused by
the stretching term.
The convection term is the by-stander.

Effect of convection term

$\omega_{t}+u \omega_{x}-u_{x} \omega=v \omega_{x x}, \quad u=\left(-\frac{d^{2}}{d x^{2}}\right)^{-1} \omega$ convection stretching difusion

$$
\left.\begin{array}{l}
u_{t x x}-u_{x} u_{x x}=v u_{x x x x} \quad \begin{array}{l}
\text { The convection term is } \\
\text { NOT important in blow-up. }
\end{array} \\
u_{t x}-\frac{1}{2} u_{x}^{2}=v u_{x x x}+\text { constant }
\end{array}\right] \begin{gathered}
U_{t}=v U_{x x}+U^{2}-b(t) \\
U=\frac{1}{2} u_{x}, \quad \text { Close to the Fujita eqn. }
\end{gathered}
$$

$U_{t}=U_{x x}+U^{2}-\frac{1}{2} \int_{-1}^{1} U(t, x)^{2} d x, \quad(0<t,-1<x<1)$
$\int_{-1}^{1} U(t, x) d x=0$, periodic BC blow-up
$U_{t}=U_{x x}+P U^{2}, \quad P: L^{2} \rightarrow L^{2} / \mathbf{R} \quad$ Fujita+Projection
$\omega_{t x x}+u \omega_{x}-u_{x} \omega=v \omega_{x x}, \longleftarrow$ Global existence
$\omega_{t x x} \quad-u_{x} \omega=v \omega_{x x} \hookleftarrow$ Blow-up
A proper convection term prevents solutions from blowing-up.
(O. \& J. Zhu, Taiwanese J. Math., 2000)

Budd，Dold \＆Stuart（＇93），Zhu \＆O．（＇00）

－ヨ⿺𠃊 $\mathrm{x}_{0} \quad u_{t}=v u_{x x}+u^{2}-\int_{0}^{1} u(t, x)^{2} d x$ ．
$\lim _{t \rightarrow T} u\left(t, x_{0}\right)=+\infty$ ，
$\lim _{t \rightarrow T} u(t, y)=-\infty \quad\left(y \neq x_{0}\right)$
$\lim _{t \rightarrow T} \frac{u(t, y)}{u\left(t, x_{0}\right)}=0$

Blow-up with or

without the projection

Everywhere blow-up is likely Proof?

model (2) Generalized
 Proudman-Johnson equation

- A model:

$$
\begin{aligned}
& \omega_{t x x}+u \omega_{x}-a u_{x} \omega=v \omega_{x x}, \quad u=\left(-\frac{d^{2}}{d x^{2}}\right)^{-1} \omega \\
& \omega(0, x)=\phi(x)
\end{aligned}
$$

(1) $a=-(m-3) /(m-1)$, axisymmetric exact solutions of the NavierStokes eqns in \boldsymbol{R}^{m}.
(2) $a=1$ ($m=2$) Proudman-Johnson eqn
(3) $a=-2, v=0$. Hunter-Saxton equation ('91)
(4) $a=-3 \quad$ the Burgers equation ('46)
$\frac{d^{2}}{d x^{2}} \quad u_{t}+u u_{x}=v u_{x x} \Rightarrow u_{t x x}+u u_{x x x}+3 u_{x} u_{x x}=v u_{x x x x}$

Prime suspect of the blow-up is the stretching term.

$$
\boldsymbol{\omega}_{t}+(\mathbf{u} \cdot \nabla) \boldsymbol{\omega}-(\boldsymbol{\omega} \cdot \nabla) \mathbf{u}=v \Delta \boldsymbol{\omega}
$$

convection stretching diffusion

$$
\omega_{t x x}+u \omega_{x}-a u_{x} \omega=\nu \omega_{x x}
$$

Conjecture: blow-up for large $|a|$ global existence for small $|a|$.

Xinfu Chen's proof of global existence

- X. Chen and O., Proc. Japan Acad., vol. 78 (2002),
- periodic boundary condition.

Burgers

- THEOREM. If $0<v \&-3 \leqq a \leqq 1$, the solutions exist globally in time for all initial data.

If $a<-3$, or $1<a$, then \ldots

- Global existence for small initial data. Blow-up for large initial data --- numerical evidence but no proof.

$\max |\omega|$

$v=0.001$

$$
a=1 \text { is a threshold. }
$$

Numerical experiments

$$
\begin{aligned}
& \omega_{0}=30 \sin (2 \pi x) \\
& a=10
\end{aligned}
$$

If $1<a$, we expect blow-up occurs even for smooth initial data.

- Nakagawa’s method(1976) adaptive Δt_{n}
- W. Ren \& X.-P. Wang's iterative grid redistribution method(2000)
adaptive Δx_{n}

Initial data

$\mu_{0}(x)=$	$300 \sin (2 \pi x)$
$u_{0}(x)=$	$200 \sin (2 \pi x)+400 \cos (2 \pi x)$
$u_{0}(x)=$	$300 \sin (2 \pi x)-200 \cos (4 \pi x)$
$u_{0}(x)=$	$250 \sin (4 \pi x)+100 \cos (2 \pi x)$
$\mu_{0}(x)=300 \sin (2 \pi x)-200 \cos (2 \pi x)+100 \sin (4 \pi x)$	
$\mu_{0}(x)=200 \sin (2 \pi x)-100 \cos (2 \pi x)$	
	$\quad+50 \sin (4 \pi x)+75 \cos (4 \pi x)$

Max norm of u \& u_{x}

Blow-up time versus a

Current Status

O. J. Math. Fluid Mech. 2009

Summary for $v=0$

O. J. Math. Fluid Mech. 2009

- Blow-up for $-\infty<a<-1$. (Remember that the solutions can exist globally in this region if $v>0$. Viscosity helps global existence.)
- Global existence if $-1 \leqq a<1 \&$ if smooth initial data.
- Self-similar, non-smooth blow-up solutions exist for $-1<a<\infty$.
- So far, I have no conclusion in the case of $1<a$.

Weak sol. of the generalized PJ

Cho \& Wunsch, (2010), $a=-(n+2) /(n+1)$

model (3)

Constantin-Lax-Majda

$$
\begin{aligned}
& \omega_{t}-\omega u_{x}=0 \\
& u_{x}=H \omega
\end{aligned}
$$

A necessary and sufficient condition is known
(Constantin, Lax, \& Majda 1985).

De Gregorio ‘90

$$
\begin{aligned}
& \omega_{t}+u \omega_{x}-\omega u_{x}=0 \\
& u_{x}=H \omega
\end{aligned}
$$

Global existence???
Does the convection term delete the blow-up?

$$
\begin{aligned}
& \omega_{t}+a u \omega_{x}-\omega u_{x}=0 \quad{ }_{\circ 08} \text { O, Sakajo \& Wunsch } \\
& u_{x}=H \omega, \quad a \in \mathbf{R}
\end{aligned}
$$

$$
-\infty<a \leqq 0 . \quad \text { Blow-up }
$$

$$
\text { Castro \& Cordoba }{ }^{\prime 09^{33}}
$$

Constantin-Lax-Majda \& De Gregorio \& Proudman-Johnson can be unified.

$$
\begin{aligned}
& \omega_{t x x}+u \omega_{x}-a u_{x} \omega=v \omega_{x x}, \quad u=\left(-\frac{d^{2}}{d x^{2}}\right)^{-1} \omega \\
& \omega(0, x)=\phi(x) \\
& \omega_{t x x}+u \omega_{x}-a u_{x} \omega=v \omega_{x x}, \quad u=\left(-\frac{d^{2}}{d x^{2}}\right)^{-\beta / 2} \omega \\
& \omega(0, x)=\phi(x) \\
& \beta=1 \& a=\infty \\
& \beta=1 \& a=1 \quad \text { Blow-up Constantin-Lax-Majda } \\
& \beta=1 \&-\infty<a<0 \longrightarrow \text { ??? De Gregorio's `90 }
\end{aligned}
$$

Unified equation $\& b$-equation

$\omega_{t x x}+u \omega_{x}+b u_{x} \omega=v \omega_{x x}, \quad u=\left(m^{2}-\frac{d^{2}}{d x^{2}}\right)^{-1} \omega$ $\omega(0, x)=\phi(x)$

Holm \& Hone 2005
Escher \& Seiler 2010

The generalized $P-J$ with $v=0$.

$u_{t x x}+u u_{x x x}-a u_{x} u_{x x}=0$
($0<t, 0<x<1$)

- 3D axisymmetric Euler for $a=0$.
periodicBC
- Hunter-Saxton model for nematic liquid crystal for $a=-2$.
$u_{x x}(0, x)=-\phi(x) \quad$ - Burgers for $a=-3$.

Starting point: local existence theorem

- With a help of Kato \& Lai's theorem (J. Func. Anal. '84),

$$
\omega=-u_{x x}, \quad \omega_{t}+u \omega_{x}-a u_{x} \omega=0
$$

- Locally well-posed if $\omega(0, \bullet) \in L^{2}(0,1) / \mathbf{R}$,
- Global existence if $\omega(0, \bullet) \in L^{2}(0,1) / \mathbf{R}$,

Different methods were needed for global existence/blow-up in

$$
-\infty<a<-2, \quad-2 \leqq a<-1,-1 \leqq a<0,0 \leqq a<1
$$

- The case of $-\infty<a<-2$ is settled in Zhu \& O.,

$$
\begin{aligned}
& \phi(t) \equiv \int_{0}^{1} u_{x}(t, x)^{2} d x \\
& \frac{d^{2}}{d t^{2}} \phi(t) \geq b \phi(t)^{3}
\end{aligned}
$$ Taiwanese J. Math. (2000).

$-2 \leqq a<-1$. Follows the recipe of Hunter \& Saxton ('91)

- Use the Lagrangian coordinates

$$
X_{t}=u(t, X(t, \xi)), \quad X(0, \xi)=\xi, \quad(0 \leq \xi \leq 1)
$$

- Define $V(t, \xi)=X_{\xi}(t, \xi)$.

$$
V V_{t t}=\left(V_{t}\right)^{2}-I(t) V, \quad I(t)=\int_{0}^{1} \frac{V_{t}^{2}}{V} d \xi
$$

- V tends to $-\infty$.
- Global weak solution in the case of $a=-2$ (Bressan \& Constantin ‘05).

Blow-up occurs both in $-\infty<a<-2$

and in $-2 \leqq a<-1$, but

- Asymptotic behavior is quite different.
- $\left\|u_{x}(t)\right\|_{L^{2}} \quad$ blow up. $\quad(-\infty<a<-2)$
- $\left\|u_{x}(t)\right\|_{L^{2}}$ is bounded. $\left\|u_{x}(t)\right\|_{L^{\infty}}$ blows up.

$$
(-2 \leqq a<-1)
$$

$-1 \leqq a<0 . \quad$ Follows the recipe of Chen \& O. Proc. Japan Acad., (2002)

- Define

$$
\Phi(s)=|s|^{-1 / a}
$$

- Invariance
$\frac{d}{d t} \int_{0}^{1} \Phi\left(u_{x x}(t, x)\right) d x=\int_{0}^{1} \Phi^{\prime}\left(u_{x x}\right)\left[-u u_{x x x}+a u_{x} u_{x x}\right] d x$
$=\int_{0}^{1}\left[\Phi\left(u_{x x}\right)+a u_{x x} \Phi^{\prime}\left(u_{x x}\right)\right] u_{x} d x=0$.
- Boundedness of $\int_{0}^{1}\left|u_{x x}(t, x)\right|^{-1 / a} d x, \int_{0}^{1}\left|u_{x x}(t, x)\right| d x$

$-1 \leqq a<0 . \quad$ Continued.

- $\left\|u_{x}(t)\right\|_{\infty} \leq c$

$$
u_{t x x}+u u_{x x x}-a u_{x} u_{x x}=v u_{x x x x} \quad \text { gives us }
$$

$$
\frac{d}{d t} \int_{0}^{1} u_{x x}(t, x)^{2} d x=(2 a+1) \int_{0}^{1} u_{x} u_{x x}^{2} d x
$$

$$
\frac{d}{d t} \int_{0}^{1} u_{x x}(t, x)^{2} d x \leq c(2 a+1) \int_{0}^{1} u_{x x}(t, x)^{2} d x
$$

$0 \leqq a<1$. Follows the recipe of Chen \&O. Proc. Japan Acad., (2002)

- Define

$$
\Phi(s)=\left\{\begin{array}{cc}
|s|^{1 /(1-a)} & (s<0) \\
0 & (0<s)
\end{array}\right.
$$

- Then $\frac{d}{d t} \int_{0}^{1} \Phi\left(u_{x x x}\right) d x=a \int_{0}^{1} u_{x x}^{2} \Phi^{\prime}\left(u_{x x x}\right) d x \leq 0$
- $\int_{0}^{1}\left|u_{x x x}(t, x)\right| d x$ is bounded.

Non-smooth, self-similar blow-up solutions when $-1<a<+\infty$

$$
\begin{aligned}
& u(t, x)=\frac{F(x)}{T-t} \\
& F^{\prime \prime}+F F^{\prime \prime \prime}-a F^{\prime} F^{\prime \prime}=0
\end{aligned}
$$

- Nontrivial solution exists for all $-1<a<+\infty$.

Another

$f_{t x x}+(f-S f) f_{x x x}-\left(f_{x}-(S f)_{x}\right) f_{x x}=v f_{x x x}$

$$
S f(t, x)=f(t,-x)
$$

- Nagayama and O., '02 numerical experiment.
- Proof ???

2D Example (with K. Ohkitani)

J. Phys. Soc. Japan, vol. 74 (2005), 2737--2742

-2D Euler

$\omega_{t}+\mathbf{u} \bullet \nabla \omega=0$
$\omega=\operatorname{curl} \mathbf{u}$
$\chi=\left(\omega_{y},-\omega_{x}\right)=-\Delta \mathbf{u}$
$\chi_{t}+(\mathbf{u} \bullet \nabla) \chi-(\chi \bullet \nabla) \mathbf{u}=0$

The convection term is now deleted.

$$
\begin{aligned}
& \chi=\left(\omega_{y},-\omega_{x}\right)=-\Delta \mathbf{u} \\
& \boldsymbol{\chi}_{t}+(\mathbf{u} \bullet \nabla) \boldsymbol{\chi}-(\chi \bullet \nabla) \mathbf{u}=0 \\
& \boldsymbol{\chi}_{t} \quad-(\chi \bullet \nabla) \mathbf{u}=0 \\
& \mathbf{u}=(-\Delta)^{-1} \boldsymbol{\chi} \quad \begin{array}{l}
\chi_{t}-(\chi \bullet \nabla) \mathbf{u}=0 \\
\\
\\
\quad \mathbf{u}=P(-\Delta)^{-1} \chi
\end{array}
\end{aligned}
$$

L^{2}-norm of χ

$\int_{0}^{t}|\chi(s)|_{\infty} \mathrm{dx}$

$(-\Delta)^{1 / 2} \omega \sim|\chi|$

Conclusions

- Similarity solutions of the Navier-Stokes eqns can blow up in finite time: necessity of the energy inequality.
- A proper convection term prevent the solution from blowing-up. Or, at least, rapid growth is slowed down by a convection term.
- There are some cases where proof is needed.
- Blow-up behavior is very different from a nonlinear heat eqn: the yoke of non-locality.

Thank you very much.

