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A short introduction of myself 
• Educated in Univ. Tokyo---

Hiroshi Fujita---Tosio Kato 

• Tosio Kato died in 1999.  

• His wife died in 2011 and left 
thousands of slides taken by                                   
Tosio Kato. 
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Three sources of PDE peoples 
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Kôsaku Yosida 
Gigas, Takada, 
Tsutsui, Abe  

Tosio Kato H.O., Kishimoto, 

Masaya Yamaguti Matano, Miyaji 
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Navier-Stokes 
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The parish where Stokes  
was born. His father was the  
parish minister. 
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3D Navier-Stokes: A bad problem 

Try simpler models: 

❂ Burgers        (‘15 Bateman, ‘39 Burgers) 

❂ Proudman--Johnson eq.  (‘62)  

❂ Fujita’s eq.        ut = u + u
p      

(‘66) 

❂ De Gregorio     (‘90)   

❂ Strain-vorticity dynamics  (unbounded sol.)  

❂ Quasi-geostrophic eq. 

❂ Many others.  

 

Turbulence is a bad Problem!?  How about the NS itself? 
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Navier-Stokes is nonlinear & nonlocal 

• Navier-Stokes eqns. are integro-differential 
eqns. rather than differential eqns. 
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Therefore models must be nonlinear & nonlocal. 

decom. Helmoltznonlocal  p
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model ① 
The Proudman-Johnson equation.  ‘62  

• Derived from 2D Navier-Stokes  

   

     (unbounded solution of NS ) 
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Global existence or finite time blow-up? 
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In 1989, a paper appeared in J. Fluid Mech. 

• Finite time blow up was predicted by 
numerical computation. 
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Global existence was proved by X. Chen 

Theorem.    Assume that   > 0.  

   For any initial data  t 0 in  L2(-1,1),  a 
solution exists uniquely  for all  t  and 
tends to zero as  t  →∞ , 

   if  homogeneous Dirichlet, Neumann, or the periodic 

boundary condition.  

  Xinfu  Chen and O., Proc. Japan Acad., 2000. 

 

   Blow-up if non-homogeneous Dirichlet BC.???? 

   Grundy & McLaughlin (1997). 11 



Be careful for numerical solution 

• Somebody may say: 
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PJ_Dirichlet.avi


A remark on numerical 
experiments 

• In the case of =0,  numerical experiments are 
sometimes misleading. 

 

 

Rigorous analysis 

is necessary 
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Prime suspect of the blow-up 
 is the stretching term. 

                   convection     stretching         diffusion 
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Conjecture: blow-up is caused by 
the stretching term. 
The convection term is the by-stander.  
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Effect of convection term 
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 The convection term is  
NOT important in blow-up.  

Close to the Fujita eqn. 

          convection  stretching   difusion 

 

15 



 
   
A proper convection term prevents 
solutions from blowing-up.  
(O. & J. Zhu,  Taiwanese J. Math., 2000)   
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Blow-up 

Fujita+Projection 
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Budd, Dold & Stuart (’93), Zhu &O. (’00) 
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Blow-up with or  
without  the projection 

ut = uxx + u2  
ut = uxx + Pu2  

Everywhere blow-up is likely 
Proof? 
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model ② Generalized  
Proudman-Johnson equation 

• A model:  
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  a = -(m-3)/(m-1),   axisymmetric exact solutions of the Navier-

Stokes eqns in Rm.  

  a = 1  (m=2)      Proudman-Johnson eqn  

  a = -2,  =0.      Hunter-Saxton equation (’91) 

  a = -3                 the Burgers equation (‘46) 
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Prime suspect of the blow-up  
is the stretching term. 

                   convection     stretching         diffusion 
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Conjecture: blow-up for large |a|  

global existence for small |a| .  
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Xinfu Chen’s proof of global existence 

• X. Chen and O.,  Proc. Japan Acad., vol. 78 
(2002),   

• periodic boundary condition. 

 

 

• THEOREM.   If  0 <  &   -3  ≦ a  ≦ 1,  
the solutions exist globally in time for all  
initial data. 

Proudman-
Johnson 

Burgers 
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If  a < -3, or  1 < a,    then …  

• Global existence for small initial data. Blow-up for 
large initial data ---  numerical evidence but no proof.  

a = 1 is a threshold. 22 



Numerical experiments 
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ProudmanJohnson1.wmv
ProudmanJohnson3.wmv


If  1 < a,  we expect blow-up occurs 
 even for smooth initial data. 

a = -2.5 

a = 1.5 
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• Nakagawa’s method(1976) 
adaptive  tn 

 

• W. Ren & X.-P. Wang’s 
iterative grid redistribution 
method(2000) 
adaptive  xn 
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Initial data 
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Max norm of  u  &  ux  
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Blow-up time versus  a 
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Current Status 

? ? 

? 

a = 1 

0 <  

0 =  

a = -1 a = -3 

O.  J. Math. Fluid Mech. 2009 
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Summary 
for  = 0 

• Blow-up   for  -∞ < a < -1.  (Remember that the 
solutions can exist globally in this region if   > 0. Viscosity 
helps global existence.) 

 

• Global existence if  -1 ≦ a < 1 &  if smooth 
initial data. 

• Self-similar, non-smooth blow-up solutions 
exist for -1 < a < ∞. 

• So far, I have no conclusion in the case of 1 < a. 

? 
a = -1 a = 1 

O.  J. Math. Fluid Mech. 2009 
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Weak sol. of the generalized PJ 

Cho & Wunsch,  (2010),  a = -(n+2)/(n+1) 
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A necessary and  

sufficient condition  

is known  

(Constantin, Lax,  

& Majda 1985). 
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model ③ 
Constantin-Lax-Majda 
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De Gregorio  ‘90 

Global existence??? 

Does the convection term delete the blow-up? 
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-∞ < a  ≦0.    Blow-up   

 Castro & Cordoba  ‘09  

O, Sakajo & Wunsch 
‘08 
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Constantin-Lax-Majda & De Gregorio & 
Proudman-Johnson can be unified. 
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= 1 & a = 1 ??? De Gregorio’s  `90 

= 1 & -∞ < a < 0 Blow-up   Castro & Cordoba  ‘09  

= 1 & a = ∞  Blow-up Constantin-Lax-Majda `85 
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Unified equation & b-equation 

 

 

 

 

 

Holm & Hone  2005 

Escher & Seiler  2010 
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The generalized P-J with  =0.   
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• 3D axisymmetric Euler for  a = 0. 

• Hunter-Saxton model for 
nematic liquid crystal for a = -2. 

• Burgers for a = -3. 
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Starting point: local existence 
theorem 

• With a help of Kato & Lai’s theorem (J. Func. Anal. ’84), 

 

 

 

• Locally well-posed if 

 

• Global existence if  
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Different methods were needed 
 for global existence/blow-up in 

• The case of -∞< a < -2 is 
settled in Zhu & O., 
Taiwanese J. Math. 
(2000).      3
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-∞< a < -2,   -2 ≦ a < -1,  -1 ≦ a < 0,  0 ≦ a < 1 
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-2 ≦ a < -1. Follows the recipe of 
Hunter & Saxton ( ’91) 

• Use the Lagrangian coordinates 

 

 

• Define 

 

 

 

• V tends to -∞. 

• Global weak solution in the case of a= -2                         

(Bressan & Constantin ‘05). 
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Blow-up occurs both in  -∞< a < -2 

and in  -2 ≦  a < -1, but 

• Asymptotic behavior is quite different. 

 

•                        blow up.     (-∞ < a < -2) 

 

 

 

•                        is  bounded.                          blows up.    
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-1 ≦ a < 0.     Follows the recipe of 
Chen & O. Proc. Japan Acad., (2002) 

• Define 

 

• Invariance 

 

 

 

 

 

• Boundedness of  
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-1 ≦ a < 0.   Continued.  

•                      

 

 

•                                                                  gives us   

ctux 
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0 ≦ a < 1.     Follows the recipe of 
Chen &O. Proc. Japan Acad., (2002) 

• Define 

 

 

 

• Then 

 

 

 

•                               is bounded. 
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Non-smooth, self-similar blow-up 
solutions when -1 < a < +∞  

                      

 

 

 

 

 

 

 Nontrivial solution exists for all  -1 < a < +∞. 
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Another  

• 3D Navier-Stokes 

     exact sol. 

 

 

 

 

• Nagayama and O., ’02   numerical experiment. 

• Proof ??? 
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2D Example   (with K. Ohkitani) 
J. Phys. Soc. Japan, vol. 74 (2005), 2737--2742 

• 2D  Euler 
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The convection term is now deleted.  
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L2-norm of  c 
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∫0
t|c(s)|∞dx 
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(-)1/2 ~ |c| 
t=0 

t=3,  Euler t=3,  model 
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Conclusions 

• Similarity solutions of the Navier-Stokes eqns 
can blow up in finite time: necessity of the 
energy inequality. 

• A proper convection term prevent the solution 
from blowing-up. Or, at least, rapid growth is 
slowed down by a convection term.  

• There are some cases where proof is needed. 

• Blow-up behavior is very different from a  
nonlinear heat eqn: the yoke of non-locality. 

                     Thank you very much. 
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