Front propagation in spatially ergodic media

Hiroshi Matano (University of Tokyo)

UK-Japan Winter School "Nonlinear Analysis" Royal Academy of Engineering, London, Jan 7-11, 2013

Outline

- 1. Introduction Formulation of the problem
- 2. Basic concepts Ergodicity and traveling waves
- 3. Main results
- 4. Outline of the proof
- 5. The case of Random media

Joint work with B. Lou and K.-I. Nakamura and partly with J. Nolen

1. Introduction

Formulation of the problem

Curvature-dependent motion of a plane curve

- on the speed of propagation.
- 2. Generalized notion of traveling waves in heterogeneous environments.
- 3. A good example of homogenization under non-periodic heterogeneity.

The bigger the opening angles, the slower the speed

Effect of geometry on front propagation

The bigger the opening angles, the slower the speed

Too rapid widening blocks propagation.

M. (1979), M.-Mimura (1983), Jimbo (1988)

The same fact was used, e.g., in the study of spreading depression (SD) by Dronne *et al* (2004).

$$V = \kappa + A$$

$$\Omega_{\varepsilon} = \{-H - g_{-}^{\varepsilon}(y) < x < H + g_{+}^{\varepsilon}(y), y \in \mathbf{R}\}$$

$$V \text{ normal velocity}$$

$$\kappa \text{ curvature}$$

$$A \text{ constant } > 0$$

$$g_{\pm}^{\varepsilon}(y) = \varepsilon g_{\pm}(y/\varepsilon)$$

$$g_{\pm}(y) \text{ recurrent functions}$$

$$\partial_{\Omega_{\varepsilon}}$$

$$\int_{U_{\varepsilon}} U_{\varepsilon}(y) = u(x, t)$$

$$\partial_{U_{\varepsilon}} = \frac{u_{xx}}{1 + u_{x}^{2}} + A\sqrt{1 + u_{x}^{2}}$$

GOAL

- ① Existence and non-existence of traveling waves
- ② Average speed
- (3) Homogenization limit as $\varepsilon \to 0$.
- <u>Earlier results</u> For $g_+(y) = g_-(y)$: periodic (Lou-M.-Nakamura 2006)

What if g is non-periodic?

Features specific to non-periodic environments:

- virtual pinning (related to topic (2))
- slower convergence rate (related to topic ③)

Another topic

The case when the undulation is random (i.e. non-deterministic).

- ④ Existence of average speed (almost surely)
- 5 Central limit theorem for observed data.

(joint work with J. Nolen)

2. Basic concepts

- Definition of traveling waves
- Recurrence and ergodicity
- Average speed

What is a traveling wave?

homogeneous environment

- constant speed
- constant profile

heterogeneous environment

- speed <u>fluctuates</u>
- profile <u>fluctuates</u>

More precise definition of TW is needed.

What is a traveling wave?

<u>The periodic case</u>: $g_{\pm}(y+L) \equiv g_{\pm}(y)$, i.e. $g_{\pm}^{\varepsilon}(y+\varepsilon L) \equiv g_{\pm}^{\varepsilon}(y)$

The speed and profile may fluctuate, but periodically in time.

The above definition does not work in the non-periodic case!

To deal with non-periodic cases, it is useful to introduce the notion of the hull of a function.

 $g: \mathbb{R} \to \mathbb{R}$ bounded continuous function on R

 $\mathcal{H}_g := \overline{\{\sigma_s g \mid s \in \mathbb{R}\}} \qquad \sigma_s \colon g(x) \mapsto g(x+s)$

Closure of the set of all translations of g(x) in the local uniform topology L^{∞}_{loc}

strictly ergodic = uniquely ergodic and recurrent

recurrent

$$\mathcal{H}_g$$
: compact in $L^\infty_{loc}(\mathbb{R})$

Moreover, every orbit is dense.

random: $g = g(x, \omega), \ \omega \in \Omega$

Ergodicity

$g \quad \text{uniquely ergodic} \quad \stackrel{def}{\Longleftrightarrow} \quad \stackrel{\exists \text{uniqe shift-invariant}}{\text{measure on } \mathcal{H}_g}$

A bounded uniformly continuous function $g : \mathbb{R} \to \mathbb{R}$ is uniquely ergodic if and only if, for any continuous map $F : \mathcal{H}_g \to \mathbb{R}$, the following limit exists uniformly in $a \in \mathbb{R}$:

$$\lim_{L \to \infty} \frac{1}{L} \int_{a}^{a+L} F(\sigma_{s}g) ds. = \int_{\mathcal{H}_{g}} F d\mu$$

Remark

Ergodicity is preserved under continuous deformation of a function.

Penrose tiling (2D ergodic)

Any finite pattern is distributed uniformly.

Propagation speed

 $\xi(t)$: front position at time t

e speed
$$c := \lim_{T \to \infty} \frac{\xi(t+T) - \xi(t)}{T}$$

More precisely,

Averag

We say that the <u>average speed exists</u> if $c_{-} = c_{+}$

Law of motion $\dot{\xi}(t) = p(\xi(t))$

The function p is determined uniquely by g. Hence ergodicity of g implies that of p.

Classification of front behaviors

Pinning (propagation failure)

$$\lim_{t \to -\infty} \xi(t) > -\infty \quad \text{or} \quad \lim_{t \to +\infty} \xi(t) < +\infty$$

Propagation $\lim_{t \to \pm \infty} \xi(t) = \pm \infty$ regular propagation $c_{-} > 0$ virtual pinning $c_{-} = 0$

- Note 1. Pinning occurs if and only if there exists a stationary solution.
 - 2. Virtual pinning never occurs if g is periodic.

3. Main results

Joint work with

Bendong Lou and Ken-Ichi Nakamura

Notation

 $\tan \alpha_{\pm} = \sup_{y} g'_{\pm}(y)$ maximal opening angles $\tan \beta_{\pm} = -\inf_{y} g'_{\pm}(y)$ maximal closing angles

Standing assumption: $\alpha_{\pm}, \beta_{\pm} \in (0, \pi/4)$

Global existence of classical solutions.

 $\alpha_{\pm}, \beta_{\pm} \in (0, \pi/4)$

Theorem 1 (existence and stability).

If $2AH \ge \sin \alpha_{-} + \sin \alpha_{+}$, then a recurrent TW exists for all small $\varepsilon > 0$. This TW is unique up to time shift and is asymptotically stable.

Theorem 2 (non-existence).

If $2AH < \sin \alpha_{-} + \sin \alpha_{+}$, then no TW exists. Moreover, any time-global solution γ_t converges to a stationary solution as $t \to \infty$.

<u>Proposition.</u> The average speed exists if g is uniquely ergodic and $c_- > 0$.

Virtual pinning
$$(\varepsilon = 1)$$
Propagation $\lim_{t \to \pm \infty} \xi(t) = \pm \infty$ $\begin{bmatrix} regular propagation & c_- > 0 \\ virtual pinning & c_- = 0 \end{bmatrix}$

Theorem 3 (Virtual pinning).

Virtual pinning occurs if and only if

(1) there exists no stationary solution in $\Omega = \Omega_g$

(2) there exists a stationary solution in Ω_h for some $h \in \mathcal{H}_g$

$$\Omega = \{-H - g(y) < x < H + g(y), \ y \in \mathbf{R}\}$$
$$\Omega_h = \{-H - h(y) < x < H + h(y), \ y \in \mathbf{R}\}$$
$$\sigma_{a_j}\Omega \to \Omega_h \ (j \to \infty)$$

Theorem 4 (homogenization).

Assume $AH > \sin \alpha$ and let $U^{\varepsilon}(x,t)$ be the recurrent TW that is normalized to satisfy $U^{\varepsilon}(0,0) = 0$. Then

(i) $U^{\varepsilon}(x,t)$ converges to a function of the form $\varphi(x) + c_0 t$ as $\varepsilon \to 0$ whose contact angle is $\theta^* = \pi/2 - \alpha$.

(ii) The limit speed c_0 is determined by $H = \int_0^{\alpha} \frac{\cos \eta}{A - c_0 \cos \eta} d\eta$.

$$\left(H = \int_0^\alpha \frac{\cos\eta}{A - c_0\cos\eta} d\eta.\right)$$

The larger the opening angle α , the slower the speed c_0 .

Convergence rate

$$f(z_1, z_2, \dots, z_m)$$
 : 1-periodic in z_i with the second seco

Theorem 5 (convergence rate for quasi-periodic g).

Assume $g_+ \equiv g_- = f(\omega_1 y, \omega_2 y, \dots, \omega_m y)$ and let c_{ε} denote the average speed of $U^{\varepsilon}(x, t)$. Then

$$c_0 + P \varepsilon^{\frac{2}{m+3}} \le c_{\varepsilon} \le c_0 + Q \varepsilon^{\frac{2}{m+3}}$$

for some constants P, Q > 0. If, in particular, g is periodic, then

$$c_0 + P\sqrt{\varepsilon} \le c_{\varepsilon} \le c_0 + Q\sqrt{\varepsilon}$$

Examples of QP

$$C_1 \sin^2 \omega_1 y + C_2 \sin^2 \omega_2 y$$

$$m = 4$$

$$m = 2$$

$$m = 1$$

4. Outline of the proof

(for homogenization)

 $g_i^{\varepsilon}(y) = \varepsilon g_i(y/\varepsilon) \to 0$

<u>Difficulty</u>: The two ends of the curve flips back and forth very rapidly, in a highly nonlinear manner. This makes it difficult to estimate the average speed.

Strategy

1. Estimate the gradient slightly away from the boundary. $O(\sqrt{\varepsilon})$

The derivatives stabilize in this zone as ε tends to 0.

 $g_i^{\varepsilon}(y) = \varepsilon g_i(y/\varepsilon) \to 0$

Strategy

1. Estimate the gradient slightly away from the boundary. $O(\sqrt{\varepsilon})$

This can be done by placing circular arcs of curvature A at points where the opening angle is close to its supremum.

2. Construct a sub-solution in this zone whose motion mimicks that of an inchworm.

Direction of Motion

Orbit of $(\omega_1 y, \omega_2 y)$ in $\mathbf{T}^2 := \mathbb{R}^2 / \mathbb{Z}^2$

$$g'(y) = f(\omega_1 y, \, \omega_2 y)$$

The parameter region where the opening angle is large (which slows down the speed).

Orbit of $(\omega_1 y, \omega_2 y)$ in $\mathbf{T}^2 := \mathbb{R}^2 / \mathbb{Z}^2$

$$g'(y) = f(\omega_1 y, \, \omega_2 y)$$

The parameter region where the opening angle is large (which slows down the speed).

5. The random case

Joint work with James Nolen

Assumptions

$$\begin{array}{ll} \bigstar & g = g(y, \omega) : \mathbf{R} \times \Omega \to \mathbf{R} \quad \text{random stationary ergodic} \\ & g(y + s, \omega) = g(y, \tau_s \omega) \ (s \in \mathbf{R}) \\ & \tau_s : \Omega \to \Omega, \ \tau_s \circ \tau_{s'} = \tau_{s+s'} \quad \text{measure preserving and ergodic} \end{array}$$

$$\Rightarrow \tan \alpha_{\pm} = \sup_{y} g'_{\pm}(y, \omega), \quad -\tan \beta_{\pm} = \inf_{y} g'_{\pm}(y, \omega) \quad \text{almost surely}$$
where the constants $\alpha_{\pm}, \beta_{\pm}$ satisfy
 $\alpha_{\pm}, \beta_{\pm} \in (0, \pi/4), \quad \sin \alpha_{-} + \sin \alpha_{+} < 2AH.$

Notation

$$\xi(t,\omega) = \max_{x} U(x,t,\omega)$$

Theorem 5 (Existence of average speed).

The following limit exists almost surely (i.e. with probability one) for some deterministic constant
$$c$$
.

$$c := \lim_{T \to \infty} \frac{\xi(t, \omega)}{t}$$

$$\xi(t)$$

Theorem 6 (Central limit theorem).

If g has a certain mixing property, then there is $\sigma \ge 0$ such that

$$\frac{\xi(t,\omega) - ct}{\sqrt{t}} \to N(0,\sigma^2) \quad \text{(normal distribution)}$$

Concluding remarks:

- TW is unique and stable if it exists.
- TW has a well-defined average speed in ergodic environments.
- In non-periodic environments, "virtual pinning" can occur.
- The limit speed of the homogenized TW is determined only by the maximal opening angle.
- The wider the maximal opening angle, the slower the limit speed.
- If g is quasi-periodic, the rate of convergence of the speed is slower than in the periodic case.

Open problems:

- What if we allow the propagating curve to be nongraphical? (Viscosity solution framework needed.)
- The case of random undulation? (Partially solved.)

London 2013

general

Thank you & Happy New Year!

