Finite-time blowup for the Zakharov system

 on 2D torusNobu Kishimoto (Kyoto University)
Joint work with Masaya Maeda (Tohoku University)

UK-Japan Winter School : Nonlinear Analysis 8/1/2013 Royal Academy of Engineering, London

Zakharov system

$$
\left\{\begin{array}{rlrl}
i \partial_{t} u+\Delta u & =n u, & & u: \mathbb{R} \times \mathbb{T}^{2} \rightarrow \mathbb{C} \tag{Z}\\
\partial_{t}^{2} n-\Delta n & =\Delta\left(|u|^{2}\right), & & n: \mathbb{R} \times \mathbb{T}^{2} \rightarrow \mathbb{R} \\
\left.\left(u, n, \partial_{t} n\right)\right|_{t=0} & =\left(u_{0}, n_{0}, n_{1}\right) . & & \\
i=\sqrt{-1}, \Delta & =\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}, \mathbb{T}^{2}=\mathbb{R}^{2} / 2 \pi \mathbb{Z}^{2}
\end{array}\right.
$$

- Conserved quantities :

$$
\begin{aligned}
M(u)(t) & :=\|u(t)\|_{L^{2}}^{2} \\
& =M\left(u_{0}\right) \\
H(u, n)(t) & :=\|\nabla u(t)\|_{L^{2}}^{2}+\frac{1}{2}\left(\|n(t)\|_{L^{2}}^{2}+\left\||\nabla|^{-1} \partial_{t} n(t)\right\|_{L^{2}}^{2}\right)+\int n(t)|u(t)|^{2} d x \\
& =H\left(u_{0}, n_{0}\right) .
\end{aligned}
$$

- Energy space : $H^{1} \times L^{2} \times|\nabla| L^{2} \quad\left(\subset H^{1} \times L^{2} \times H^{-1}\right)$
- Physical background :

Model of Langmuir turbulence in plasma fluid.
u... Envelope of rapidly oscillating electric field
n... Deviation of ion density from its mean value

- Langmuir turbulence :

1. 'Bubble' of low ion density region (caviton) is generated.
2. Caviton becomes smaller and smaller, with amplitude of electric field and deviation of ion density larger and larger. (caviton collapse)
3. When the collapse proceeds to some extent, energy dissipation begins, and eventually caviton disappears.
4. Such a process is repeated.

- Mathematical interest : Dispersion vs Nonlinear effect
- Linear part has dispersive effects ;

Nonlinearity has attractive (focusing) sign and causes localisation of waves.
$\rightsquigarrow \quad$ In the Cauchy problem, one may expect :

- global well-posedness (and scattering to linear sol.) for small data,
- finite-time blowup for large data.
- Aim : To predict long-time behaviour for given data. (Classification of data space)

Aim in this talk

To determine the threshold for global solvability.

Nonlinear Schrödinger equation

$$
\left\{\begin{aligned}
i \partial_{t} u+\Delta u & =-|u|^{2} u \\
\left.u\right|_{t=0} & =u_{0}
\end{aligned}\right.
$$

- Relation to Zakharov system :
- Subsonic limit of (Z).
$-u=e^{i \theta(t)} \phi(x):$ sol. to (NLS)
$\Rightarrow(u, n)=\left(e^{i \theta(t)} \phi(x),-|\phi(x)|^{2}\right):$ sol. to (Z).
- Conserved quantities :

$$
\begin{aligned}
& M(u)(t)=\|u(t)\|_{L^{2}}^{2}=M\left(u_{0}\right) \\
& E(u)(t):=\|\nabla u(t)\|_{L^{2}}^{2}-\frac{1}{2}\|u(t)\|_{L^{4}}^{4}=E\left(u_{0}\right) .
\end{aligned}
$$

- Energy space : \boldsymbol{H}^{1}.
- (NLS)
- On \mathbb{R}^{2}... Kato (1987)
- On \mathbb{T}^{2}... Bourgain (1993)
- (Z)
- On \mathbb{R}^{2}... Bourgain-Colliander (1996)
- On $\mathbb{T}^{2} \ldots$ K. (to appear)

Remark

In 1D, Hamiltonian and the L^{2} norm control the energy norm.
\rightsquigarrow Global well-posedness in energy space follows from local results.
In higher dim., Hamiltonian does not necessarily control the energy norm, so finite-time blowup may occur.
(In 2D or 3D, Hamiltonian control is valid for small data.)

- Sharp Gagliardo-Nirenberg inequality
(Weinstein 1982 for $\mathbb{R}^{2} /$ Ceccon-Montenegro 2008 for \mathbb{T}^{2})

$$
\|u\|_{L^{4}}^{4} \leq \frac{2}{\|Q\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}\|u\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2}\left(+C\|u\|_{L^{2}}^{4}\right)
$$

where $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$is pos. rad. solution of $-Q+\Delta Q+|Q|^{2} Q=0$ on \mathbb{R}^{2}.

- (NLS) on \mathbb{R}^{2} has a standing wave solution $u=e^{i t} \boldsymbol{Q}(\boldsymbol{x})$.
(Z) on \mathbb{R}^{2} has a similar solution $(u, n)=\left(e^{i t} \boldsymbol{Q}(x),-|Q(x)|^{2}\right)$.
- Corollary : Hamiltonian control for solutions s.t. $M(u)<M(Q)$.
- (NLS) $\ldots \boldsymbol{E}(\boldsymbol{u})(\boldsymbol{t})+\boldsymbol{C M}(\boldsymbol{u})(\boldsymbol{t}) \sim\|\boldsymbol{u}(\boldsymbol{t})\|_{\boldsymbol{H}^{1}}^{2}$
- (Z) $\ldots H(u, n)(t)+C M(u)(t) \sim\left\|\left(u, n, \partial_{t} n\right)(t)\right\|_{H^{1} \times L^{2} \times|\nabla| L^{2}}^{2}$
\Rightarrow Global well-posedness in energy space for data $M\left(u_{0}\right)<M(Q)$.

Results for $M\left(u_{0}\right) \geq M(Q)$

- For (NLS)
- On \mathbb{R}^{2}... Explicit blow-up solution with $M\left(u_{0}\right)=M(Q)$
$u_{\lambda}(t, x)=\frac{1}{\lambda t} e^{-i\left(\frac{1}{\lambda^{2} t}-\frac{|x|^{2}}{4 t}\right)} Q\left(\frac{x}{\lambda t}\right), \lambda>0,(t, x) \in(0, \infty) \times \mathbb{R}^{2}$
This solution is obtained from the standing wave sol $u=e^{i t} Q(x)$ via pseudo-conformal (and scaling) transform.
- On \mathbb{T}^{2}... \exists blow-up solution with $M\left(u_{0}\right)=M(Q)$
(Burq-Gérard-Tzvetkov 2003)
Idea : $u=\psi(x) u_{\lambda}+r$, solve eq. for r via energy method.
(cf. Ogawa-Tsutsumi 1990 for 1D quintic NLS)
- For (Z)
- $\left(u_{0}, n_{0}, n_{1}\right) \in H^{1} \times L^{2} \times H^{-1}, M\left(u_{0}\right)=M(Q) \Rightarrow$ global.
(Glangetas-Merle (1994) for \mathbb{R}^{2}, K.-Maeda (to appear) for \mathbb{T}^{2})
- On $\mathbb{R}^{2}, \forall \epsilon>0, \exists$ blow-up sol (u, n) in energy sp. with

$$
M(Q)<M(u)(t)<M(Q)+\epsilon
$$

(Glangetas-Merle 1994)

- Summary :

	(NLS) on \mathbb{R}^{2}	(NLS) on \mathbb{T}^{2}	(Z) on \mathbb{R}^{2}	(Z) on \mathbb{T}^{2}
$\boldsymbol{M}\left(\boldsymbol{u}_{0}\right)<\boldsymbol{M}(Q)$	global	global		
$\boldsymbol{M}\left(\boldsymbol{u}_{0}\right)=M(Q)$	\exists blowup			
$\boldsymbol{M}\left(u_{0}\right)>M(Q)$		\exists blowup	$? ?$	

Main result

Theorem (K.-Maeda, to appear)
On $\mathbb{T}^{2}, \forall \epsilon>0, \exists$ blow-up sol (u, n) to (Z) in energy sp. with

$$
M(Q)<M(u)(t)<M(Q)+\epsilon
$$

Remarks

- Solution is defined on $(0, T] \times \mathbb{T}^{2}$ for some $T=T(\epsilon)>0$ and blows up at $x=0$ as $t \rightarrow 0$. Moreover,

$$
\left.\|\nabla u(t)\|_{L^{2}} \sim\|n(t)\|_{L^{2}} \sim\| \|\right|^{-1} \partial_{t} n(t) \|_{L^{2}} \sim t^{-1}
$$

- For given \boldsymbol{p} points on \mathbb{T}^{2}, we can construct a sol of (Z) which blows up at these points simultaneously and

$$
p M(Q)<M(u)(t)<p M(Q)+\epsilon
$$

- We can also construct a blow-up solution on bounded domain (u| $\left.\left.\right|_{\partial \Omega}=0\right)$.

Outline of proof

- Blow-up sol to (NLS) on \mathbb{T}^{2} (Burq-Gérard-Tzvetkov 2003)
- Recall that $\tilde{U}(t, x):=\frac{1}{t} e^{-i\left(\frac{1}{t}-\frac{|x|^{2}}{4 t}\right)} Q\left(\frac{x}{t}\right)$ is a blow-up sol on \mathbb{R}^{2}.
\rightsquigarrow Set $u=\psi(x) \widetilde{U}+v$, where ψ is a smooth cutoff such that

$$
\psi \equiv 1 \text { in a nbd. of } 0, \quad \text { supp } \psi \subset(-\pi, \pi)^{2}
$$

\boldsymbol{u} is a blow-up solution on \mathbb{T}^{2} if \boldsymbol{v} solves

$$
\left\{\begin{aligned}
& i \partial_{t} v+\Delta v=-|v|^{2} v-\left(2 U|v|^{2}+\bar{U} v^{2}\right) \\
&-\left(U^{2} \bar{v}+2|U|^{2} v\right)+F \quad \text { in }(0, T] \times \mathbb{T}^{2} \\
& v(0, x)= 0 \\
& U:=\psi(x) \widetilde{U} \\
& F:=\left(1-\psi^{2}\right) \psi|\widetilde{U}|^{2} \tilde{U}-2 \nabla \psi \cdot \nabla \tilde{U}-(\Delta \psi) \tilde{U}
\end{aligned}\right.
$$

- Singular coeff. in RHS : $\left\|U(t)^{2}\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}=O\left(t^{-2}\right)(t \rightarrow 0)$.

$$
\left\{\begin{aligned}
& i \partial_{t} v+\Delta v=-|v|^{2} v-\left(2 U|v|^{2}+\bar{U} v^{2}\right) \\
&-\left(U^{2} \bar{v}+2|U|^{2} v\right)+F \quad \text { in }(0, T] \times \mathbb{T}^{2}, \\
& v(0, x)= 0, \\
& U:=\psi(x) \widetilde{U}, \quad \widetilde{U}=\frac{1}{t} e^{-i\left(\frac{1}{t}-\frac{|x|^{2}}{4 t}\right)} Q\left(\frac{x}{t}\right) \\
& \boldsymbol{F}:=\left(1-\psi^{2}\right) \psi|\widetilde{U}|^{2} \widetilde{U}-2 \nabla \psi \cdot \nabla \widetilde{U}-(\Delta \psi) \widetilde{U}
\end{aligned}\right.
$$

- $\widetilde{U}(t, 0)=O\left(t^{-1}\right)$, but $\widetilde{U}(t, x)=O\left(e^{-\frac{c}{t}}\right)$ outside nbd of $x=0$.
(Note that $\boldsymbol{Q}(\boldsymbol{x})$ decays exponentially as $|x| \rightarrow \infty$.)
Since $F \equiv 0$ around $x=0$, we have $F(t)=O\left(e^{-\frac{c}{t}}\right)(t \rightarrow 0)$.
Then, one can also expect that $v(t)=O\left(e^{-\frac{c}{t}}\right)$.
\rightsquigarrow Solve the equation by the iteration with the norm, e.g.,

$$
\|v\|_{X}=\sup _{0<t<T} e^{\frac{c}{e}}\|v(t)\|_{H^{3}\left(\mathbb{T}^{2}\right)}
$$

- Exponential decay is essential to control t^{-2} singularity!
- Blow-up sol to (Z) on \mathbb{R}^{2} (Glangetas-Merle 1996)
\exists Family of rad. functions $\left(P_{\lambda}, N_{\lambda}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, 0<\lambda \ll 1$ s.t.
(1) $\widetilde{U}_{\lambda}(t, x):=\frac{1}{\lambda t} e^{-i\left(\frac{1}{\lambda^{2} t}-\frac{|x|^{2}}{4 t}\right)} P_{\lambda}\left(\frac{x}{\lambda t}\right), \widetilde{W}_{\lambda}(t, x):=\left(\frac{1}{\lambda t}\right)^{2} N_{\lambda}\left(\frac{x}{\lambda t}\right)$

$$
\Rightarrow \quad(u, n)=\left(\widetilde{U}_{\lambda}, \widetilde{W}_{\lambda}\right): \text { blow-up sol to }(Z) \text { on }(0, \infty) \times \mathbb{R}^{2}
$$

(2) $\forall k \geq 0, \exists C, \mu>0$ s.t. $\forall x \in \mathbb{R}^{2}$,

$$
\left|\nabla^{k} P_{\lambda}(x)\right| \leq C e^{-\mu|x|}, \quad\left|\nabla^{k} N_{\lambda}(x)\right| \leq \frac{C}{1+|x|^{3+k}}
$$

(3) $\left(P_{\lambda}, N_{\lambda}\right) \rightarrow\left(Q,-Q^{2}\right)$ in $H^{1} \times L^{2} \quad(\lambda \rightarrow 0)$

- P_{λ} decays exponentially as Q, but N_{λ} decays polynomially.
- Choose λ small so that $M(Q)<M\left(P_{\lambda}\right)<M(Q)+\epsilon$.
- $\operatorname{Set}(u, n)=(U+v, W+w),(U, W):=(\psi(x) \widetilde{U}, \psi(x) \widetilde{W})$, and solve the system for (v, w).
- System for the perturbation ($v, w)$:

$$
\left\{\begin{aligned}
\left(i \partial_{t}+\Delta\right) \boldsymbol{v} & =\boldsymbol{v} \boldsymbol{w}+\boldsymbol{W} \boldsymbol{v}+\boldsymbol{U} \boldsymbol{w}+O\left(e^{-\frac{c}{t}}\right) \\
\left(\partial_{t}^{2}-\Delta\right) \boldsymbol{w} & =\boldsymbol{\Delta}\left(|\boldsymbol{v}|^{2}+\overline{\boldsymbol{U}} \boldsymbol{v}+\boldsymbol{U} \overline{\boldsymbol{v}}\right)+O\left(t^{3}\right) \\
\left.\quad(\boldsymbol{v}, \boldsymbol{w})\right|_{t=0} & =(0,0), \quad(\boldsymbol{t}, \boldsymbol{x}) \in(0, \boldsymbol{T}] \times \mathbb{T}^{2}
\end{aligned}\right.
$$

- W $\boldsymbol{v} \sim t^{-2} \boldsymbol{v}$ has a strong singularity as $\boldsymbol{t} \rightarrow \mathbf{0}$.

To treat this term as a perturbation, $\boldsymbol{v}(\boldsymbol{t})=\boldsymbol{O}\left(e^{-\frac{c}{t}}\right)$ is required.
Difficulty 1 One cannot expect exp. decay for (v, w) !

- Decomposition of the wave equation :

$$
w=Z+z, \quad\left\{\begin{array}{l}
\left(\partial_{t}^{2}-\Delta\right) Z=O\left(t^{3}\right) \\
\left(\partial_{t}^{2}-\Delta\right) z=\Delta\left(|\boldsymbol{v}|^{2}+\bar{U} v+\boldsymbol{U} \bar{v}\right)
\end{array}\right.
$$

- $Z(t)$ decays only polynomially, but $Z(t, x) \equiv 0$ around $x=0$ for some time due to finite speed of propagation.
- System for (v, z) :

$$
\left\{\begin{aligned}
\left(i \partial_{t}+\Delta\right) v & =v z+(W+Z) v+U z+U Z+O\left(e^{-\frac{c}{t}}\right) \\
\left(\partial_{t}^{2}-\Delta\right) z & =\Delta\left(|v|^{2}+\bar{U} v+U \bar{v}\right) \\
\left.\quad(v, w)\right|_{t=0} & =(0,0), \quad(t, x) \in(0, T] \times \mathbb{T}^{2}
\end{aligned}\right.
$$

One can expect the exponential decay for (v, z) !

- Reduction to 1 st order system :

Set $r=z+i|\nabla|^{-1} \partial_{t} z$ and solve the system for $(v, r):$

$$
\left\{\begin{aligned}
\left(i \partial_{t}+\Delta\right) v & =\boldsymbol{v} r_{R}+(\boldsymbol{W}+Z) v+\boldsymbol{U} r_{R}+O\left(e^{-\frac{c}{t}}\right) \\
\left(i \partial_{t}-|\nabla|\right) r & =|\nabla|\left(|v|^{2}+\overline{\boldsymbol{U}} \boldsymbol{v}+\boldsymbol{U} \overline{\boldsymbol{v}}\right) \\
(\boldsymbol{v}(t), r(t)) & =O\left(e^{-\frac{c}{t}}\right) \text { in } \boldsymbol{H}^{1} \times L^{2} \quad(t \rightarrow 0)
\end{aligned}\right.
$$

where $r_{R}:=\operatorname{Re} r$.
Difficulty 2 Loss of one derivative in the wave equation !

- Parabolic regularisation

For $\epsilon>0$, consider sol $\left(v^{\epsilon}, r^{\epsilon}\right)$ of the approximate system :

$$
\left\{\begin{aligned}
\left(i \partial_{t}+\Delta+i \epsilon \Delta^{2}\right) \boldsymbol{v}^{\epsilon} & =\boldsymbol{v}^{\epsilon} r_{R}^{\epsilon}+(W+Z) v^{\epsilon}+U r_{R}^{\epsilon}+O\left(e^{-\frac{c}{t}}\right) \\
\left(i \partial_{t}-|\nabla|+i \epsilon \Delta^{2}\right) r^{\epsilon} & =|\nabla|\left(\left|\boldsymbol{v}^{\epsilon}\right|^{2}+\bar{U} \boldsymbol{v}^{\epsilon}+U \bar{v}^{\epsilon}\right) \\
\left(\boldsymbol{v}^{\epsilon}(t), r^{\epsilon}(t)\right) & =O\left(e^{-\frac{c}{t}}\right) \text { in } H^{1} \times L^{2} \quad(t \rightarrow 0)
\end{aligned}\right.
$$

- Easily solved by iteration with the norm, e.g.,

$$
\begin{aligned}
\left\|\left(v^{\epsilon}, r^{\epsilon}\right)\right\|_{X_{T_{\epsilon}}} & :=\sup _{0<t<T_{\epsilon}} \mathcal{H}\left[v^{\epsilon}, r^{\epsilon}\right](t) \\
\mathcal{H}\left[v^{\epsilon}, r^{\epsilon}\right](t)^{2} & =e^{\frac{2 c}{t}}\left(\left\|v^{\epsilon}(t)\right\|_{H^{3}}^{2}+\left\|r^{\epsilon}(t)\right\|_{H^{2}}^{2}\right)
\end{aligned}
$$

- $T_{\epsilon}=O\left(\epsilon^{3 / 2}\right)$ depends on ϵ
\rightsquigarrow One needs an a priori estimate on $\mathcal{H}\left[v^{\epsilon}, r^{\epsilon}\right](t)$ uniform in $\epsilon>0$.
- Energy estimate with modified energy (Kwon 2008, Segata 2012)
- For $\left(v^{\epsilon}, r^{\epsilon}\right)$: solution of the approximate system, one has

$$
\frac{\boldsymbol{d}}{\boldsymbol{d} t} \mathcal{H}^{2}\left[\boldsymbol{v}^{\epsilon}, \boldsymbol{r}^{\epsilon}\right] \leq \boldsymbol{C}\left(\mathbf{1}+\mathcal{H}^{3}\left[\boldsymbol{v}^{\epsilon}, \boldsymbol{r}^{\epsilon}\right]\right)+2 e^{\frac{2 c}{t}} \operatorname{Im} \int\left(v^{\epsilon}+U\right) \nabla^{3} r_{R}^{\epsilon} \cdot \nabla^{3} \bar{v}^{\epsilon}
$$

On the other hand,

$$
\begin{aligned}
\frac{d}{d t}\left[2 e^{\frac{2 c}{t}} \operatorname{Re} \int\right. & \left.\left(v^{\epsilon}+U\right) \nabla^{2} r_{R}^{\epsilon} \cdot \nabla^{2} \bar{v}^{\epsilon}\right] \\
& \leq-2 e^{\frac{2 c}{t}} \operatorname{Im} \int\left(v^{\epsilon}+U\right) \nabla^{3} r_{R}^{\epsilon} \cdot \nabla^{3} \bar{v}^{\epsilon} \quad+\text { (l.o.t.) }
\end{aligned}
$$

- Define modified energy \mathcal{E} as

$$
\mathcal{E}[v, r]:=\mathcal{H}^{2}[v, r]+2 e^{\frac{2 c}{t}} \operatorname{Re} \int(v+U) \nabla^{2} r_{R} \cdot \nabla^{2} \bar{v}+e^{\frac{2 c}{t}}\|u(t)\|_{H^{1}}^{10}
$$

(1) $\mathcal{H}^{2}(t) \lesssim \mathcal{E}(t) \lesssim \mathcal{H}^{2}(t)+\mathcal{H}^{10}(t) \quad$ for $0<t \ll 1$, uniformly in ϵ.
(2) $\frac{d}{d t} \mathcal{E}(t) \leq C\left(1+\mathcal{E}^{3}(t)\right) \quad$ for $0<t \ll 1$, uniformly in ϵ.
\Rightarrow A priori estimate follows.

That's all.

Thank you for your attention!

