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Zakharov system

(Z)


i∂tu + ∆u = nu, u : R × T2 → C,

∂2
t n − ∆n = ∆(|u|2), n : R × T2 → R,

(u, n, ∂tn)
∣∣
t=0

= (u0, n0, n1).

i =
√

−1, ∆ = ∂2
x1

+ ∂2
x2

, T2 = R2/2πZ2.

• Conserved quantities :

M(u)(t) :=
∥∥u(t)

∥∥2

L2

= M(u0),

H(u, n)(t) :=
∥∥∇u(t)

∥∥2

L2 +
1

2

(∥∥n(t)
∥∥2

L2 +
∥∥|∇|−1∂tn(t)

∥∥2

L2

)
+

∫
n(t)|u(t)|2 dx

= H(u0, n0).

• Energy space : H1 × L2 × |∇|L2 (⊂ H1 × L2 × H−1)
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I Physical background :

Model of Langmuir turbulence in plasma fluid.

u ... Envelope of rapidly oscillating electric field

n ... Deviation of ion density from its mean value

• Langmuir turbulence :

1. ‘Bubble’ of low ion density region (caviton) is generated.

2. Caviton becomes smaller and smaller, with amplitude of electric field

and deviation of ion density larger and larger. (caviton collapse)

3. When the collapse proceeds to some extent, energy dissipation begins,

and eventually caviton disappears.

4. Such a process is repeated.
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I Mathematical interest : Dispersion vs Nonlinear effect

• Linear part has dispersive effects ;

Nonlinearity has attractive (focusing) sign and causes localisation of waves.

Ã In the Cauchy problem, one may expect :

— global well-posedness (and scattering to linear sol.) for small data,

— finite-time blowup for large data.

• Aim : To predict long-time behaviour for given data.

(Classification of data space)

Aim in this talk

To determine the threshold for global solvability.
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Nonlinear Schrödinger equation

(NLS)

 i∂tu + ∆u = −|u|2u,

u
∣∣
t=0

= u0.

• Relation to Zakharov system :

— Subsonic limit of (Z).

— u = eiθ(t)φ(x) : sol. to (NLS)

⇒ (u, n) = (eiθ(t)φ(x), −|φ(x)|2) : sol. to (Z).

• Conserved quantities :

M(u)(t) =
∥∥u(t)

∥∥2

L2 = M(u0),

E(u)(t) :=
∥∥∇u(t)

∥∥2

L2 −
1

2

∥∥u(t)
∥∥4

L4 = E(u0).

• Energy space : H1.
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Local well-posedness in the energy space

I (NLS)

• On R2 ... Kato (1987)

• On T2 ... Bourgain (1993)

I (Z)

• On R2 ... Bourgain-Colliander (1996)

• On T2 ... K. (to appear)

Remark

In 1D, Hamiltonian and the L2 norm control the energy norm.

Ã Global well-posedness in energy space follows from local results.

In higher dim., Hamiltonian does not necessarily control the energy norm,

so finite-time blowup may occur.

(In 2D or 3D, Hamiltonian control is valid for small data.)
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Global well-posedness in the energy space

I Sharp Gagliardo-Nirenberg inequality

(Weinstein 1982 for R2 / Ceccon-Montenegro 2008 for T2)∥∥u
∥∥4

L4 ≤
2

‖Q‖2
L2(R2)

∥∥u
∥∥2

L2

∥∥∇u
∥∥2

L2

(
+ C

∥∥u
∥∥4

L2

)
,

where Q : R2 → R+ is pos. rad. solution of −Q + ∆Q + |Q|2Q = 0 on R2.

• (NLS) on R2 has a standing wave solution u = eitQ(x).

(Z) on R2 has a similar solution (u, n) = (eitQ(x), −|Q(x)|2).

I Corollary : Hamiltonian control for solutions s.t. M(u) < M(Q).

• (NLS) ... E(u)(t) + CM(u)(t) ∼
∥∥u(t)

∥∥2

H1

• (Z) ... H(u, n)(t) + CM(u)(t) ∼
∥∥(u, n, ∂tn)(t)

∥∥2

H1×L2×|∇|L2

⇒ Global well-posedness in energy space for data M(u0) < M(Q).
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Results for M(u0) ≥ M(Q)

I For (NLS)

• On R2 ... Explicit blow-up solution with M(u0) = M(Q)

uλ(t, x) = 1
λt

e
−i( 1

λ2t
− |x|2

4t )
Q( x

λt
), λ > 0, (t, x) ∈ (0, ∞) × R2

This solution is obtained from the standing wave sol u = eitQ(x)

via pseudo-conformal (and scaling) transform.

• On T2 ... ∃ blow-up solution with M(u0) = M(Q)

(Burq-Gérard-Tzvetkov 2003)

Idea : u = ψ(x)uλ + r, solve eq. for r via energy method.

(cf. Ogawa-Tsutsumi 1990 for 1D quintic NLS)
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I For (Z)

• (u0, n0, n1) ∈ H1 × L2 × H−1, M(u0) = M(Q) ⇒ global.

(Glangetas-Merle (1994) for R2, K.-Maeda (to appear) for T2)

• On R2, ∀ε > 0, ∃ blow-up sol (u, n) in energy sp. with

M(Q) < M(u)(t) < M(Q) + ε.

(Glangetas-Merle 1994)

I Summary :

(NLS) on R2 (NLS) on T2 (Z) on R2 (Z) on T2

M(u0) < M(Q) global
global

M(u0) = M(Q)
∃ blowup

M(u0) > M(Q) ∃ blowup ??
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Main result

Theorem (K.-Maeda, to appear)

On T2, ∀ε > 0, ∃ blow-up sol (u, n) to (Z) in energy sp. with

M(Q) < M(u)(t) < M(Q) + ε.

Remarks

• Solution is defined on (0, T ] × T2 for some T = T (ε) > 0 and

blows up at x = 0 as t → 0. Moreover,

‖∇u(t)‖L2 ∼ ‖n(t)‖L2 ∼ ‖|∇|−1∂tn(t)‖L2 ∼ t−1.

• For given p points on T2, we can construct a sol of (Z)

which blows up at these points simultaneously and

pM(Q) < M(u)(t) < pM(Q) + ε.

• We can also construct a blow-up solution on bounded domain (u
∣∣
∂Ω

= 0).
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Outline of proof

I Blow-up sol to (NLS) on T2 (Burq-Gérard-Tzvetkov 2003)

• Recall that Ũ(t, x) := 1
t
e−i(1

t − |x|2
4t )Q(x

t
) is a blow-up sol on R2.

Ã Set u = ψ(x)Ũ + v, where ψ is a smooth cutoff such that

ψ ≡ 1 in a nbd. of 0, supp ψ ⊂ (−π, π)2.

u is a blow-up solution on T2 if v solves
i∂tv + ∆v = −|v|2v − (2U |v|2 + Uv2)

−(U2v + 2|U |2v) + F in (0, T ] × T2,

v(0, x) = 0,

U := ψ(x)Ũ ,

F := (1 − ψ2)ψ|Ũ |2Ũ − 2∇ψ · ∇Ũ − (∆ψ)Ũ .

— Singular coeff. in RHS : ‖U(t)2‖L∞(T2) = O(t−2) (t → 0).
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i∂tv + ∆v = −|v|2v − (2U |v|2 + Uv2)

−(U2v + 2|U |2v) + F in (0, T ] × T2,

v(0, x) = 0,

U := ψ(x)Ũ , Ũ = 1
t
e−i(1

t − |x|2
4t )Q(x

t
),

F := (1 − ψ2)ψ|Ũ |2Ũ − 2∇ψ · ∇Ũ − (∆ψ)Ũ .

• Ũ(t, 0) = O(t−1), but Ũ(t, x) = O(e−c
t) outside nbd of x = 0.

(Note that Q(x) decays exponentially as |x| → ∞.)

Since F ≡ 0 around x = 0, we have F (t) = O(e−c
t) (t → 0).

Then, one can also expect that v(t) = O(e−c
t).

Ã Solve the equation by the iteration with the norm, e.g.,

‖v‖X = sup
0<t<T

e
c
t‖v(t)‖H3(T2).

• Exponential decay is essential to control t−2 singularity!
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I Blow-up sol to (Z) on R2 (Glangetas-Merle 1996)

∃ Family of rad. functions (Pλ, Nλ) : R2 → R2, 0 < λ ¿ 1 s.t.

(1) Ũλ(t, x) := 1
λt

e
−i( 1

λ2t
− |x|2

4t )
Pλ(

x
λt

), W̃λ(t, x) := ( 1
λt

)2Nλ(
x
λt

)

⇒ (u, n) = (Ũλ, W̃λ) : blow-up sol to (Z) on (0, ∞) × R2.

(2) ∀k ≥ 0, ∃C, µ > 0 s.t. ∀x ∈ R2,

|∇kPλ(x)| ≤ Ce−µ|x|, |∇kNλ(x)| ≤
C

1 + |x|3+k
.

(3) (Pλ, Nλ) → (Q, −Q2) in H1 × L2 (λ → 0)

• Pλ decays exponentially as Q, but Nλ decays polynomially.

• Choose λ small so that M(Q) < M(Pλ) < M(Q) + ε.

• Set (u, n) = (U + v, W + w), (U, W ) := (ψ(x)Ũ , ψ(x)W̃ ),

and solve the system for (v, w).
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I System for the perturbation (v, w) :

(i∂t + ∆)v = vw + Wv + Uw + O(e−c
t),

(∂2
t − ∆)w = ∆(|v|2 + Uv + Uv) + O(t3),

(v, w)
∣∣
t=0

= (0, 0), (t, x) ∈ (0, T ] × T2.

• Wv ∼ t−2v has a strong singularity as t → 0.

To treat this term as a perturbation, v(t) = O(e−c
t) is required.

Difficulty 1 One cannot expect exp. decay for (v, w) !

I Decomposition of the wave equation :

w = Z + z,

 (∂2
t − ∆)Z = O(t3),

(∂2
t − ∆)z = ∆(|v|2 + Ūv + Uv̄).

• Z(t) decays only polynomially, but Z(t, x) ≡ 0 around x = 0 for some time

due to finite speed of propagation.
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• System for (v, z) :
(i∂t + ∆)v = vz + (W + Z)v + Uz + UZ + O(e−c

t),

(∂2
t − ∆)z = ∆(|v|2 + Ūv + Uv̄),

(v, w)
∣∣
t=0

= (0, 0), (t, x) ∈ (0, T ] × T2.

One can expect the exponential decay for (v, z) !

• Reduction to 1st order system :

Set r = z + i|∇|−1∂tz and solve the system for (v, r) :
(i∂t + ∆)v = vrR + (W + Z)v + UrR + O(e−c

t),

(i∂t − |∇|)r = |∇|(|v|2 + Ūv + Uv̄),

(v(t), r(t)) = O(e−c
t) in H1 × L2 (t → 0).

where rR := Re r.

Difficulty 2 Loss of one derivative in the wave equation !
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I Parabolic regularisation

For ε > 0, consider sol (vε, rε) of the approximate system :
(i∂t + ∆ +iε∆2)vε = vεrε

R + (W + Z)vε + Urε
R + O(e−c

t),

(i∂t − |∇| +iε∆2)rε = |∇|(|vε|2 + Ūvε + Uv̄ε),

(vε(t), rε(t)) = O(e−c
t) in H1 × L2 (t → 0).

• Easily solved by iteration with the norm, e.g.,∥∥(vε, rε)
∥∥

XTε
:= sup

0<t<Tε

H[vε, rε](t),

H[vε, rε](t)2 = e
2c
t

(∥∥vε(t)
∥∥2

H3 +
∥∥rε(t)

∥∥2

H2

)
• Tε = O(ε3/2) depends on ε

Ã One needs an a priori estimate on H[vε, rε](t) uniform in ε > 0.



16/16
I Energy estimate with modified energy (Kwon 2008, Segata 2012)

• For (vε, rε) : solution of the approximate system, one has

d

dt
H2[vε, rε] ≤ C(1 + H3[vε, rε]) +2e

2c
t Im

∫
(vε + U)∇3rε

R · ∇3v̄ε

On the other hand,

d

dt

[
2e

2c
t Re

∫
(vε + U)∇2rε

R · ∇2v̄ε
]

≤ −2e
2c
t Im

∫
(vε + U)∇3rε

R · ∇3v̄ε + (l.o.t.)

• Define modified energy E as

E[v, r] := H2[v, r] + 2e
2c
t Re

∫
(v + U)∇2rR · ∇2v̄ + e

2c
t

∥∥u(t)
∥∥10

H1

(1) H2(t) . E(t) . H2(t) + H10(t) for 0 < t ¿ 1, uniformly in ε.

(2) d
dt

E(t) ≤ C(1 + E3(t)) for 0 < t ¿ 1, uniformly in ε.

⇒ A priori estimate follows. ¤



That’s all.

Thank you for your attention!


