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1. Introduction
Stokes system:

B.C.
I.C.

Here       is a uniformly      -domain in
: unknown velocity field
: unknown pressure field
: a given initial velocity
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Problem. Is the solution operator (called 
the Stokes semigroup)                             is 
an analytic semigroup in     -type spaces?

),(:)( 0 tvvtS 

In other words, is there            s.t.

where is an -type Banach space.
Analyticity is a notion of regularizing effect
appeared in parabolic problems in an
abstract level.
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Definition of analyticity
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Definition 1 (semigroup). Let be a family
of bounded linear operators in a Banach space . In
other words, . We say that is a
semigroup in if
(i) (semigroup property)  for 

(ii) (strong continuity)  in  
as  for all  

(iii) (non degeneracy)  for all  implies  
.

(iv) (boundedness)  ∃ for  
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Definition 2 (non analytic semigroup). Let
be a semigroup in . We say that is analytic
if such that
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See a book [ABHN] W. Arendt, Ch. Batty, M.
Hieber, F. Neubrander, Vector-valued Laplace
transforms and Cauchy problems, Birkhäuser
(2011)
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Definition 3 ( -semigroup). A semigroup is
called -semigroup if as for
all .

Remark. The name of analyticity stems from
the fact that can be extended
as a holomorphic function to a sectorial region
of i.e. with some .
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Heat semigroup (Gauss-Weierstrass semigroup)

A simple example
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Proposition 1. The family is
a non -analytic semigroup in

(and also in )
but a -analytic semigroup in

(and also in )

Here

: uniformly continuous
-closure of
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,

the space of all smooth solenoidal
vector fields with compact support

, -closure of ,

in on 
If is bounded.          (Maremonti ’09)
-closure of , , 

Spaces for divergence free 
vector fields



Helmholtz decomposition ( bounded -domain, …)

.
	

for all

e.g. Fujiwara-Morimoto ’79, Galdi’s book ’11

Here 
for all , .

, 13

More spaces
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Remark. Whole space case is reduced to the
heat semigroup. This type of analyticity result
had been only known for half space where the
solution is written explicitly (Desch-Hieber-
Prüss ’01, Solonnikov ’03)

Typical main results
Theorem 1. (K. Abe – Y. G., Acta Math, to appear)
Let be a bounded -domain in .
Then the Stokes semigroup is a -analytic
semigroup in . It can be
regarded as a non semigroup in .
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Analyticity of semigroup …> regularizing effect
Known result for elliptic operators

(i) 2nd order operator on (one dim): K. Yosida ’66

(ii) 2nd order elliptic operator K. Masuda ’71 ’72 book in ’75
theory, cutoff procedure for resolvent

(iii) higher order, H. B. Stewart ’74, ’80
Masuda-Stewart method

(iv) degenerate + mixed B. C. K. Taira, ’04
See also: P. Acquistapace, B. Terrani (1987)

A. Lunardi (1995) Book.

More recent. nonsmooth coefficient / nonsmooth domain
Heck-Hieber-Stavarakidis (2010) VMO coeff., higher order
Arendt-Schaetzle (2010) 2nd order, Lipschitz domain
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Stokes problem in      (=     -closure of        )
(i)       : easy since the Stokes operator is nonnegative 

self-adljoint.
(ii)      : V. A. Solonnikov '77 Y. G. ’81 (bdd domain)

(max regularity / resolvent estimate)
… H. Abels–Y. Terasawa ’09 (variable coefficient)

bdd, exterior, bent half space.

(iii)      space 

W. Farwig, H. Kozono and H. Sohr ’05, ’07, ’09
General uniformity      -domain / All except 
Solonnikov appeals to the resolvent estimate
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Note that for an unbounded domain is strictly
smaller than because implies

as .

Theorem 2. (K. Abe – Y. G. ’12)
Let be an -exterior domain in . Then the
Stokes semigroup is a -analytic
semigroup in and extends to a non -
analytic semigroup in . It can be regarded
as a -analytic semigroup in .
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2. A priori estimates and blow-up 
arguments

Theorem 3 (A priori estimate). Let be a bounded
domain with -boundary. There exists and
such that for solution we have

(This estimate implies Theorem 1)
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A key a priori estimate
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Idea of the proof – a blow-up argument
a key observation

(Harmonic) pressure gradient estimate by
velocity gradient
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A blow-up argument
(Argument by contradiction)

Suppose that the priori estimate were false
for any choice of and . Then there would
exist a solution with and a
sequence such that

There is such that
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We normalize                by dividing         to observe

with 

We rescale                   around  a point                   
satisfying
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solves the equation in 
a rescaled space-time domain

(       is expanding)
]1,0(m

Blow-up sequence

m
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A. Compactness:
Prove that                (subsequently) 

converges to            strong enough so 
that                                .

B. Uniqueness:
The blow-up limit           solves the Stokes 

problem with zero initial data so if the 
solution is unique it must be                   
which contradicts                                .

M.-H. Giga, Y. Giga, J. Saal, Nonlinear PDEs, 2010

Basic strategy
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E. De Giorgi (1961), regularity of a
minimal surface; popular in nonlinear 
problems

B.Gidas – J. Spruck ’81, a priori bound 
for semilinear elliptic problems

Y. Giga ’86, First application to a priori 
bound for parabolic problem (Giga –
Kohn ’87) 

P. Quittner – Ph. Souplet, ’07, 
Superlinear parabolic problems

Blow-up argument
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Less for Navier-Stokes equations
・ Koch – Nadirashvili, Seregin, Šverák ’09

(nonexistence of type I axisymmetric 
singularity) 

・ Miura – Y. G. ’11
(nonexistence of type I singularity 
having continuous vorticity direction)

In our case the problem is linear so we
rescale the physical space and velocity in
an unrelated way.
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What estimate is available for              ?

The pressure gradients estimate implies

Set
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Compactness
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Even case 1 it is nontrivial because the 
problem cannot be localized completely.

Case 1.

Case 2.

Case 2 is more involved.
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Ex. Interior regularity of the heat eq

If     is bdd by               , then 

This is no longer true for the Stokes 
equations even if we assume

Mu 
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Ex. 

Evidently,        is fulfilled.

However       is not Hölder if      is 
not Hölder.
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Lemma 1 (Control of pressure gradient).
If the harmonic pressure gradient
estimate

holds, then

such that

with . The constant is
invariant under dilation and translation.
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solves the Stokes
system in with
If

(weak             )
and if , then

.

Uniqueness
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Lemma 2. (Solonnikov ’03)
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Then and
solves the Stokes system in a half space with
zero initial data and zero boundary data. Here

.

Without decay estimate for this is not true.
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Example of nontrivial solutions
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3. A priori estimate for harmonic 
pressure gradient

Consider
in

Take divergence to get
in

since . Take inner product
with : (unit exterior normal) and use

to get
on

Equations for the pressure
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Lemma 3. If , then

with

In three dimensional case,

where . In any case is
a tangent vector field.
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The pressure solves

(NP) in

Enough to prove that

for all tangential vector field .

Neumann problem
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Definition 4 (Weak solution of (NP)). (Ken
Abe – Y. G., ’12) Let be a domain in

with boundary. We call
a weak solution of (NP) for

with if with
fulfills

for all satisfying
on .

Strictly admissible domain
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Definition 5 (Strictly admissible domain). Let
be a uniformly domain. We say that is
strictly admissible if there is a constant such
that

holds for all weak solution of (NP) for tangential
vector fields. Note that strictly admissibility
implies admissibility defined below.
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Let be the Helmholtz

projection and . Applying to

the Stokes equation to get

Here

for .

Admissible domain
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Definition 6. (Ken Abe – Y. G., Acta Math to
appear) Let be a uniformly -domain. We
say that is admissible if there exists
and a constant such that CC

hold for all matrix value 

satisfy

and

for all                           . nlji ,,1,, 

Admissible domain (continued)
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Remark. (i) This is a property of the 
solution of the Neumann problem for the 
Laplace operator. In fact,                            
is formally equivalent to

Under the above condition for     we 
see that      is harmonic in       sinceq
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(ii) The constant       depends on       
but independent of dilation, 
translation and rotation.

(iii) If       is admissible, we easily 
obtain the pressure gradient 
estimate by taking                .



i
jij vf 

C 

(iv) It turns out that
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Remark. Strictly admissibility implies
admissibility.

Example of strictly admissible domains
(a) half space
(b) bounded domain
(c) exterior domain

Note that layer domain is not
strictly admissible.
Consider .
Conjecture: Is strictly admissible if it is
NOT quasi-cylindrical ?
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A simple example – half space
Proposition 2. A half space is
strictly admissible for .

Sketch of the proof: The solution of
(NP) is of the form

in , where
is the Poisson semigroup.
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Poisson semigroup
⁄

Thus

.
Clearly,

.
Moreover,

.
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Basic estimate and completion of the proof

This is explicitly proved by estimating the
Poisson kernel. Thus

This is what we want to prove.
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Nontrivial examples
Proposition 3. A bounded domain is
strictly admissible for .

Sketch of the proof: We shall prove this
estimate by argument by contradiction and
blow-up argument. Suppose that the estimate
holds there is a sequence of function such
that

By normalization we may assume that
and .
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Blow-up argument
We trace maximum point of Let be a
maximum point. By taking a subsequence we may
assume that as .

Case 1
This contradicts uniqueness of (NP) since the

limit of is a nontrivial solution of (NP).

Case 2
We blow up so that distance between and

the boundary equals 1. Then we yield a nontrivial
solution (NP) as a limit of contradicting the
uniqueness of (NP) in a half space.
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Summary
• The Stokes semigroup is analytic in

, when uniformly domain is admissible.

• It can be extended to a analytic semigroup in
when is exterior and bounded.

• Blow-up argument is useful to prove establish
necessary estimate.

Note: Proof by resolvent estimate is now available.
(Ken Abe, Y. G., M. Hieber ’12) (Abe’s presentation)

It is applicable to other boundary conditions like
Navier boundary condition.
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Open problems
We have discussed regularizing effect by

proving analyticity of the Stokes semigroup .
We do not know well about large time behavior.

Problem. (1) Is bounded in time?
i.e. for all .

(2) Is a bounded analytic semigroup?
i.e. for all .

[(1), (2) yes for a bounded domain: Abe-Giga,
Acta Math]
[(1) yes for an exterior domain: Maremonti ’12]
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Open problems
(Solvability of the Navier-Stokes equations)

Problem. (3) Do the Navier-Stokes equations
admit a local smooth solution even if initial data

is in or for a domain having a
boundary?

[(3) yes for a half space: Solonnikov ’03, Bae-
Jin ’12]
[(3) yes for a three dimensional exterior domain
provided that is Hölder and bounded: Galdi-
Maremonti-Zhou ’12]
[Ken Abe work in progress]


