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1.1. The Navier-Stokes initial value
problem

(NS) u —Au+ (u, VYu+ Ve =0inR™ x (0,T)
divu =0inR" x (0,T)

Ule=o = up(divu,y = 0)

u = u(x, t): real vector (velocity fields)
m = n(x,t): scalar (pressure fields)

(kinematic viscosity iIs normalized to be one)
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One of Clay’s Millennium Problems

Does the three-dimensional (n = 3)
Navier-Stokes Initial value problem
admit a global-in-time smooth solutions
for smooth (compactly supported) initial
data even if it is not small?



1.2. Quick overview of known results
(1) Two-dimensional problem

For n = 2 there exists a unique global
smooth solution for arbitrary u,
provided that the kinetic energy

1 2
ELn\uo\ dx

IS finite. (No smallness assumption Is
necessary) J. Leray '33 ......



(2) Global existence for small data

Even for n=3 If Initial data Is
sufficiently small, say

Juollf = [ uol" dx

IS small, then there exists a unique
global smooth solution. Smallness
depends only on n. J. Leray '34,
Kiselev-Ladyzhenskaya ......

G-Miyakawa '85 T. Kato '84



(3) Local existence

Always, there exists a unigue smooth
locally-in-time solution for arbitrary initial
data u,.

For example, if [[ugll, Is finite for
p = n, there Is such a solution.

(L*-theory: Kato-Fuijita '62,
LP-theory:. G-Miyakawa '85, Kato '84)



Remark. Local existence and global
existence of small data has been
established for various function spaces
not only LPbut also Besov spaces, BMO
space (e.g. Koch-Tataru '01). However,
there seems to be ‘critical exponent’ to
guarantee solvability. (Bourgain-Pavlovic,
Yoneda, Sawada)
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Critical exponent and
scaling invariance of (NS)

If (u, ) solves (NS) in R™ x (0, ),
SO does
uy (x, t) = Au(Ax, A1),
T (x,t) = 2w (Ax, 1°t) for 1 > 0.
The norm ||lugll;» Is Invariant under

this scaling. In this sense p=n IS
critical. 1



(4) Weak solutions

There iIs a global weak solution (may
not be differentiable, may not be
unique) for arbitrary Initial data with
finite energy.

J. Leray '34, ......
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Energy inequality —
a key for construction a weak solution

uxeq
j\u\dx+jwu\ =0

2dt

t
Jull; @©+2] VUl ds <|luy I
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(5) Reqgularity of weak solutions
(a) Estimate of possible singularities

J. Leray ’34, Scheafer, Cafferelli-Kohn-
Nirenberg '82. A suitable weak solution
with P1(s) = 0 is constructed for n = 3.
Here s is a singular set and P! is the
Hausdorff measure (parabolic). Note
that s can be empty.
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(b) Regularity criteria

(Extendabllity) Let u be a smooth
solution of (NS) in (0,T). If one
assumes extra assumptions, then one
can extend the solution beyond T.

(Regularity) Let u be a weak solution
of (NS) in (0, 00). If one assumes extra
assumptions, then u Is regular.
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Typical example (J. Serrin '61...)

If u satisfies

. q/p
f ([Iulpdx) dt < oo
0

with §+§§ 1. then one can extend the

solution beyond T.

If u Is a weak solution, u Is regular In
R™ x (0,T] . Note that the Integral Is
scaling invariant for the equality case of
exponents. 16



Remark. (1) Since then there Is a
large literature on regularity criteria. A
general principle iIs that If a scaling
Invariant quantity is finite, then one
expect smoothness. In fact, energy
iInequality Is scaling invariant for n = 2
while 1t Is not for n>3. Energy
Inequality Is too weak to guarantee
smoothness for n > 3.
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Remark. (i) Most of regularity criteria
assumes finiteness of some scaling
Invariant quantity for velocity, vorticity,
pressure. New type of criteria called
geometric criteria Is Introduced by
Constantin-Fefferman '93 on the
direction of the vorticity.
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2.1. Nondecaying initial data

If u, does not decay at spatial
infinity, does the solution blow-up In
finite time?

There I1s more chance to have a
blow-up solution. However, if u, Is
periodic the situation Is essentially
similar and even easier than whole

space problem.
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Warning for nondecaying solutions
u(x,t) =g(t)
(X, 1) =—g'(t)X

always solves the Navier-Stokes initial value
problems.

Note: J is arbitrary.
Any spatially constant vector field U is
a solution!

(Seregin-Sverak called a Parasitic Solution)
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Mild solutions (approximable by
decaying initial data)

We asked a special relation between u and m
which Is automatic for spatially decaying solutions.

Take dIV of the first equation to get.
div (u,VJu+Az =0

Mild sol: Solution (U, 7) satisfying
7 = (=A)"(div (u, V)U) | (G-Inui-Matsui '99)
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2.2. Local well-posedness

There exists a unigue local-in-time mild
solution for the Navier-Stokes initial value
problem for u, belonging to a function
space X which includes nondecaying
functions. The solution Is classical for
t > 0.
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(1)

(2)

(3)

(4)
(5)

Kightly '72 X = L™ mild sol.
(without explicit proof)

G-lnui-Matsui '99 X = BUC, L mild sol.
regularity

Koch-Tataru '01 X = d(BMO)
luollaemo) small = global existence

Lemarie-Riesset X = L%, local weak sol.

Maekawa-Terasawa X = Lfd, p = n local
strong sol. 1/p
lullp, = sup || JulP dx
ul XeERN ”3

B(x,1)



Reqgularity for local solution

(6) G-Sawada '03
spatial estimate || 0} u||, (t)<Ct™"”
spatial analyticity
(7) G-Jo-Mahalov-Yoneda '08
time analyticity
Note: Solution depends on initial data uniformly

continuously in L.
G-Mahalov-Nicolaenko '08

Uy: almost periodic= u: spatially almost periodic
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2.3. Construction of a local solution
Convert edg. to Iintegral eq.

P : Leray-Helmoltz projection P = (Pl-j)
P =6;; + axiaxj(—A)—l, 1<1i,j<n.

" Apply P to the first eq. of (NS)
u; —Au = —-Pu,V)u

- Integral eq. (Duhamel’s principle)
t

u(t) = et®uy — j et=5)A p(yu, Vu ds
0
- Picard like successive approximation 2



Heat semigroup e®®

(4)) = | Gele = NFOIdy = Gex f

Rn
G (x) = (4mt) ™ 2exp(—|x|?/4t)
Gauss kernel

Regularizing estimates
Young'’s inequality for convolution implies

lomeaf| ) < cem™2Ifll, (1 <p < o).
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Operator P

Note that P is bounded in LP (1 < p < o0)
but not in L.

We use regularizing estimate

C
”aetAPfH = 11/2 11l

for p = oo to prove the convergence of
approximate solutions.
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For 1 < p < oo it follows from
0 tA ¢
oea Il < =5 Ifly.

For p = oo special device Is necessatry.
(Short proof by G-Jo-Mahalov-Yoneda '08)

Use (—A)1 =f eS2ds to get
0 00
aketAaiaj(—A)_l — 6,(616][ eSAdS

t
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Picard like successive approximation
r

U g (t) = ePuy — j et=Ap(y  Vu,,ds,
0

u(t) = etPuy, m=1,2, ...

Boundedness of the sequence:
Regularizing estimates imply

t
sl < ol + | = Gillm s

since (u,V)u=V-u® ubydivu = 0.
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A prioril estimate

We set K,,,(T) = sup{||u,, ||l ()]0 <t < T}.
The estimate implies
Kim+1(T) < lluglles + C'Kpy (T)?TY2.

This implies a bound for {K,,} provided
that ||ugllT1? is smaller than a fixed
computable constant (depending on C').
One can prove that {u,,} is a Cauchy
sequence in L*([0,T), L™).

30



Unique local existence

‘heorem (Knightly 72, G-Inui-Matsui ’'99).
'here Is a constant C, such that there exists a
local-in-time mild solution u of (NS) with u, € L™
in a time interval (0,T) with T = C,/[lugll%.

Corollary (Lower bound of blow-up).
If u blows up at time T,, then

lulloo (£) = Co”%/(T. — )2,

Remark: If uy € BUC, then
u € C(]0,T),BUC).
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3. Two dimensional problem
3.1. Global well-posedness

If the space dimension n = 2,
the solution can be extended globally-in-time.

(G-Matsui-Sawada '01)

[ulleo (8) < Clluglleo exp(Cllwollet)
(Sawada-Taniuchi '07)

wq = curl u,
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key: 2—D vorticity equation
o, —Ao+((U,V)w =0
Maximum principle (Kato-Fujita '59)
| @], (t) <[]y |l
@ = curl u

The proof Iis based on voritcity eq.
(No stretching term (@, V)u unlike n=3.)
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3.2. ldea of Proof

A priori global estimate for ||u|| (%).
(G-Matsui-Sawada '01, double exponential)
(Sawada-Taniuchi '07, single exponential type)
We shall give a sketch of the proof for

lulloo () < Cllugllooexp(Cllwolloot)

following the idea of Sawada-Taniuchi.
Here wy = curl u,.
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Littlewood-Payley decomposition
{cpj}j_oz_oo c C*(R™) such that

() @;(8) = po(277¢)

() ;&) =1 ( #0)

(ii) supp @ < {1/2 < [§]| < 2}

Such ¢, always exists! Here ¢@
denotes the Fourier transform of ¢.



Basic estimates
Set, =1— Z?:k ar

Lemma. () [|o;]|, = llgoll, < o0, €
‘1/JjH1 = |[Yolly (= a9) G <0)
() ||[V(=8)""o;||, =274, jeZ
(A = IV(=4) " oll; < )
(©) ||PVg;||, <270 (j < 0)
(0 = [IPV@; H|| < o)




Decomposition of low and high
frequency part

Uu=1yY_y*u-+ ZE:<pi*lt
j=—N

Jull < oy = ull + Y [lo; ]
j=—N

=1 4+ Il
[ low frequency part
II: high frequency part

CllE= 11 lleo ) .



Estimate for low frequency part

[ < [loll1]|le®uy|

£
+f |PVyp_y * e E=2u®ul|ds
0

t
< oy lluoll + 2-No f |ul|2ds
0
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Estimate for high frequency part

Use Biot-Savart: u = V+(—A)"w to
get
|@; *u|| < 277 Alwll < 2772w,

The last inequality follows from the
maximum principle We thus obtain

I</1 2 2" ]HCL)()H — ZNH(‘)OH

j==N .



Choice of cutting number N
[ 4+ 11 t
< ylluoll + 276 | lull’ds + 2V2 oL
0

Take N large such that

A 1/2
2N < (af Hquds/Ha)OHA) < pN+1
0

to get
J 2

2 t 2 1/2
Jull® < (aplluoll + 3 [oallwoll fyllullds| )
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Application of the Gronwall

Inequality

Use (a + b)? < 2(a? + b?) to get

lull* < 200 ]|ugl|

Gronwall implies

t
2 326A]|wo| f lull? ds.
0

lull*(t) < 200|lugll“exp(18al|lwyl|t).
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Open problems

(a) Are there global-in-time weak solutions
for n=37

(cf. J. Leray '34 If uy has finite energy
i.e., |lugll;z < oo, then 3 global weak
solution.)
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(b) Even if n=2 does the problem
admit a global solution for uy € L™
when we Impose the Dirichlet
boundary condition.

(No maximum principle for w is
expected.)
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