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1.1. The Navier-Stokes initial value 
problem

: real vector (velocity fields)

: scalar (pressure fields)

(kinematic viscosity is normalized to be one)

(NS) ௧ in ௡

in ௡

௧ୀ଴ ଴ ଴
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One of Clay’s Millennium Problems

Does the three-dimensional
Navier-Stokes initial value problem
admit a global-in-time smooth solutions
for smooth (compactly supported) initial
data even if it is not small?



1.2. Quick overview of known results

For there exists a unique global
smooth solution for arbitrary
provided that the kinetic energy

೙

is finite. (No smallness assumption is
necessary) J. Leray ’33 ……
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(1) Two-dimensional problem 



Even for if initial data is
sufficiently small, say

೙

is small, then there exists a unique
global smooth solution. Smallness
depends only on . J. Leray ’34,
Kiselev-Ladyzhenskaya ……
G-Miyakawa ’85 T. Kato ’84
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(2) Global existence for small data 



Always, there exists a unique smooth
locally-in-time solution for arbitrary initial
data .

For example, if is finite for
, there is such a solution.

( -theory: Kato-Fujita ’62,
-theory: G-Miyakawa ’85, Kato ’84)
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(3) Local existence



Remark. Local existence and global
existence of small data has been
established for various function spaces
not only but also Besov spaces, BMO
space (e.g. Koch-Tataru ’01). However,
there seems to be ‘critical exponent’ to
guarantee solvability. (Bourgain-Pavlovic,
Yoneda, Sawada)
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If solves (NS) in ,
so does

,
for .

The norm ೙ is invariant under
this scaling. In this sense is
critical. 11

Critical exponent and
scaling invariance of (NS)
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There is a global weak solution (may
not be differentiable, may not be
unique) for arbitrary initial data with
finite energy.
J. Leray ’34, ……

(4) Weak solutions
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equ
2 21  | | | | 0

2
d u dx u
dt

   

2 2 2
2 2 0 20

|| || ( ) 2 || ||   || ||
t

u t u ds u


  

Energy inequality –
a key for construction a weak solution
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J. Leray ’34, Scheafer, Cafferelli-Kohn-
Nirenberg ’82. A suitable weak solution
with is constructed for .
Here is a singular set and is the
Hausdorff measure (parabolic). Note
that can be empty.

(5) Regularity of weak solutions
(a) Estimate of possible singularities
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(b) Regularity criteria

(Extendability) Let be a smooth
solution of (NS) in . If one
assumes extra assumptions, then one
can extend the solution beyond

(Regularity) Let be a weak solution
of (NS) in . If one assumes extra
assumptions, then is regular
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Typical example (J. Serrin ’61…)
If satisfies

௣

௤/௣
்

଴

with ௡
௣

ଶ
௤

, then one can extend the
solution beyond
If is a weak solution, is regular in
௡ . Note that the integral is

scaling invariant for the equality case of
exponents.
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Remark. (i) Since then there is a
large literature on regularity criteria. A
general principle is that if a scaling
invariant quantity is finite, then one
expect smoothness. In fact, energy
inequality is scaling invariant for
while it is not for . Energy
inequality is too weak to guarantee
smoothness for .
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Remark. (ii) Most of regularity criteria
assumes finiteness of some scaling
invariant quantity for velocity, vorticity,
pressure. New type of criteria called
geometric criteria is introduced by
Constantin-Fefferman ’93 on the
direction of the vorticity.
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2.1. Nondecaying initial data
If does not decay at spatial

infinity, does the solution blow-up in
finite time?

There is more chance to have a
blow-up solution. However, if is
periodic the situation is essentially
similar and even easier than whole
space problem.
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( , ) ( )
( , ) ( )

u x t g t
x t g t x


 

g

always solves the Navier-Stokes initial value
problems.

Note:      is arbitrary. 
Any spatially constant vector field is
a solution!

u

(Seregin-Sverak called a Parasitic Solution)

Warning for nondecaying solutions
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Mild sol: Solution             satisfying

Take        of the first equation to get.

Mild solutions (approximable by 
decaying initial data)

We asked a special relation between and
which is automatic for spatially decaying solutions.

div
div ( , ) 0u u    

( , )u 
1( ) (div ( , ) )u u    (G-Inui-Matsui ’99)
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There exists a unique local-in-time mild
solution for the Navier-Stokes initial value
problem for belonging to a function
space which includes nondecaying
functions. The solution is classical for

.

2.2. Local well-posedness
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(1) Kightly ’72  mild sol.
(without explicit proof)

(2) G-Inui-Matsui ’99  mild sol. 
regularity

(3) Koch-Tataru ’01 
small ⇒ global existence

(4) Lemarie-Riesset  local weak sol.
(5) Maekawa-Terasawa local 

strong sol.

௅ೠ೗
೛

∈ோ೙
௣

஻ ௫,ଵ

ଵ/௣
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Note: Solution depends on initial data uniformly
continuously in ஶ.
G-Mahalov-Nicolaenko ’08

: almost periodic⇒ : spatially almost periodic

(6) G-Sawada ’03 
spatial estimate
spatial analyticity 

(7) G-Jo-Mahalov-Yoneda ’08 
time analyticity 

Regularity for local solution

/ 2||  || ( )m m
x u t Ct 
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Convert eq. to integral eq.
: Leray-Helmoltz projection 

೔ ೕ

・ Apply to the first eq. of (NS)

・ Integral eq. (Duhamel’s principle)

・ Picard like successive approximation

2.3. Construction of a local solution
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Heat semigroup

೙

Gauss kernel

Regularizing estimates
Young’s inequality for convolution implies

.
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Operator 
Note that is bounded in
but not in .
We use regularizing estimate

for to prove the convergence of
approximate solutions.
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For it follows from 
௧୼

௣ ଵ ଶ⁄ ௣

For special device is necessary.
〈Short proof by G-Jo-Mahalov-Yoneda ’08〉

Use                                  to get

௞
௧୼

௜ ௝
ିଵ

௞ ௜ ௝
௦୼

ஶ

௧

௅ಮ→௅ಮ ଷ ଶ⁄
ᇱ ିଵ ଶ⁄

ஶ

௧

.

ିଵ ௦୼
ஶ

଴



29

Picard like successive approximation

Boundedness of the sequence: 
Regularizing estimates imply

భ మ⁄

since by .
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A priori estimate
We set .
The estimate implies

.
This implies a bound for provided
that is smaller than a fixed
computable constant (depending on ).
One can prove that is a Cauchy
sequence in .



Theorem (Knightly ’72, G-Inui-Matsui ’99).
There is a constant ଴ such that there exists a
local-in-time mild solution of (NS) with ଴

ஶ

in a time interval with ଴ ଴ ஶ
ଶ .

Corollary (Lower bound of blow-up).
If blows up at time ∗, then

ஶ ଴
ଵ ଶ⁄

∗
ଵ ଶ⁄ .

Remark: If ଴ , then
. 31

Unique local existence
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If the space dimension ,
the solution can be extended globally-in-time. 
(G-Matsui-Sawada ’01)

(Sawada-Taniuchi ’07)

3.1. Global well-posedness
3. Two dimensional problem
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The proof is based on voritcity eq. 
〈No stretching term               unlike           .〉

key:          vorticity equation2 D

( , ) 0t u      

0|| || ( ) || ||t  

curl u 

( , )u  3n 

Maximum principle (Kato-Fujita ’59)
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3.2. Idea of Proof
A priori global estimate for ஶ .
(G-Matsui-Sawada ’01, double exponential)
(Sawada-Taniuchi ’07, single exponential type)
We shall give a sketch of the proof for

ஶ ଴ ஶ ଴ ஶ

following the idea of Sawada-Taniuchi.
Here ଴ ଴.
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Littlewood-Payley decomposition

such that

(i)
(ii)
(iii)

Such always exists! Here
denotes the Fourier transform of .
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Basic estimates
Set

Lemma. (a)

(b)

(c)
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Decomposition of low and high 
frequency part

: low frequency part
: high frequency part

( )
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Estimate for low frequency part
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Estimate for high frequency part
Use Biot-Savart: to
get

.

The last inequality follows from the
maximum principle. We thus obtain
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Choice of cutting number 

Take large such that

to get 
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Application of the Gronwall
inequality

Use to get

Gronwall implies
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Are there global-in-time weak solutions
for ?

(cf. J. Leray ’34 if has finite energy
i.e., మ , then global weak
solution.)

Open problems
a
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b Even if does the problem
admit a global solution for
when we impose the Dirichlet
boundary condition.
〈No maximum principle for is
expected.〉


