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Classical Special Functions
• Airy, Bessel, Whittaker, Kummer, hypergeometric functions
• Special solutions in terms of rational and elementary functions (for certain values of

the parameters)

• Solutions satisfy linear ordinary differential equations and linear difference equa-
tions

• Solutions related by linear recurrence relations

Painlevé Transcendents — Nonlinear Special Functions
• Special solutions such as rational solutions, algebraic solutions and special function

solutions (for certain values of the parameters)

• Solutions satisfy nonlinear ordinary differential equations and nonlinear difference
equations

• Solutions related by nonlinear recurrence relations
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Definition
An ODE has the Painlevé property if its solutions have no movable branch points.

• Single-valued

w(z) =
1

z − z0
pole

w(z) = exp

(
1

z − z0

)
essential singularity

•Multi-valued
w(z) =

√
z − z0 algebraic branch point

w(z) = ln(z − z0) logarithmic branch point
w(z) = tan[ln(z − z0)] essential singularity

Reference
• Cosgrove, “Painlevé classification problems featuring essential singularities", Stud.

Appl. Math., 98 (1997) 355–433. [See also Cosgrove, Stud. Appl. Math., 104 (2000)
1–65; 104 (2000) 171–228; 116 (2006) 321–413.]
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Second Order Equations
Painlevé, Gambier, R Fuchs et al. [1893–1906] studied

d2w

dz2
= F

(
dw

dz
, w, z

)
(1)

where F is rational in
dw

dz
and w, and analytic in z.

• Fifty canonical types whose solutions have no movable critical points.

• Forty-four of these are integrable in terms of previously known functions, such as
elliptic functions and linear equations, or were reducible to one of six new nonlinear
ordinary differential equations, namely the Painlevé equations.

• The fifty canonical types are generalizable by the Möbius transformation

W (ζ) =
a(z)w + b(z)

c(z)w + d(z)
, ζ = φ(z)

• The most interesting of the fifty canonical equations are those which require the
introduction of new transcendental functions for their solution. These are the six
Painlevé equations.
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Painlevé Equations
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+
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=
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w
+
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+
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+

1

z − 1
+
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+
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z2(z − 1)2
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βz

w2
+
γ(z − 1)

(w − 1)2
+
δz(z − 1)

(w − z)2

}
where α, β, γ and δ are arbitrary constants.
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Higher Degree and Higher Order Equations

dwj
dz

= Fj(w1, w2, . . . , wn, z), j = 1, 2, . . . , n

dnw

dzn
= F

(
dn−1w

dzn−1
, . . . ,

dw

dz
, w, z

)
• At present there are no comprehensive results for third and higher order equations.

• Partial classifications for the third order equation (Chazy [1911], Garnier [1907,
1912], Bureau [1964, 1972], Lukashevich [1982], Martynov [1982], Cosgrove
[1997, 2000, 2001])

d3w

dz3
= F

(
d2w

dz2
,
dw

dz
, w, z

)
To date, no new transcendental third-order equations have been discovered.

• No comprehensive results either for the second order, second degree equation(
d2w

dz2

)2

= F

(
dw

dz
, w, z

)
d2w

dz2
+ G

(
dw

dz
, w, z

)
Cosgrove and Scoufis [1993] have done the special case when F ≡ 0.
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Painlevé σ-Equations
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where α, ϑ0, ϑ1, ϑ2, ϑ3, ϑ4 and ϑ∞ are arbitrary constants.
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History of the Painlevé Equations
• Derived by Painlevé, Gambier and colleagues in the late 19th/early 20th centuries.

• Studied in Minsk, Belarus by Erugin, Lukashevich, Gromak et al. since 1950’s;
much of their work is published in the journal Diff. Eqns., translation of Diff. Urav..

• Barouch, McCoy, Tracy & Wu [1973, 1976] showed that the correlation function
of the two-dimensional Ising model is expressible in terms of solutions of PIII.

• Ablowitz & Segur [1977] demonstrated a close connection between completely in-
tegrable PDEs solvable by inverse scattering, the so-called soliton equations, such
as the Korteweg-de Vries equation and the nonlinear Schrödinger equation, and
the Painlevé equations.

• Flaschka & Newell [1980] introduced the isomonodromy deformation method
(inverse scattering for ODEs), which expresses the Painlevé equation as the compat-
ibility condition of two linear systems of equations and are studied using Riemann-
Hilbert methods. Subsequent developments by Deift, Fokas, Its, Zhou, . . .
• Algebraic and geometric studies of the Painlevé equations by Okamoto in 1980’s.

Subsequent developments by Noumi, Umemura, Yamada, . . .
• The Painlevé equations are a chapter in the “Digital Library of Mathematical

Functions", which is a rewrite/update of Abramowitz & Stegun’s “Handbook of
Mathematical Functions" — see http://dlmf.nist.gov.
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Some Properties of the Painlevé Equations
• PII–PVI have Bäcklund transformations which relate solutions of a given Painlevé

equation to solutions of the same Painlevé equation, though with different values of
the parameters with associated Affine Weyl groups that act on the parameter space.
• PII–PVI have rational, algebraic and special function solutions expressed in terms

of the classical special functions [PII: Airy Ai(z), Bi(z); PIII: Bessel Jν(z), Yν(z),
Jν(z), Kν(z); PIV: parabolic cylinder Dν(z); PV: confluent hypergeometric
1F1(a; c; z) [equivalently Kummer M(a, b, z), U(a, b, z) or Whittaker Mκ,µ(z),
Wκ,µ(z)]; PVI: hypergeometric 2F1(a, b; c; z)], for certain values of the parameters.
• These rational, algebraic and special function solutions of PII–PVI, called classical

solutions, can usually be written in determinantal form, frequently as wronskians.
Often these can be written as Hankel determinants or Toeplitz determinants.
• PI–PVI can be written as a (non-autonomous) Hamiltonian system and the Hamilto-

nians satisfy a second-order, second-degree differential equations (SI–SVI).
• PI–PVI possess Lax pairs (isomonodromy problems).
• PI–PVI and SI–SVI form a coalescence cascade

PVI −→ PV −→ PIVy y
PIII −→ PII −→ PI

SVI −→ SV −→ SIVy y
SIII −→ SII −→ SI
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Properties of the fourth Painlevé equation
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• Hamiltonian formulation

• Bäcklund and Schlesinger transformations

• Classical solutions
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Hamiltonian Representation of PIV
PIV can be written as the Hamiltonian system

dq

dz
=
∂HIV

∂p
= 4qp− q2 − 2zq − 2ϑ0

dp

dz
= − ∂HIV

∂q
= −2p2 + 2pq + 2zp− ϑ∞

whereHIV(q, p, z;ϑ0, ϑ∞) is the Hamiltonian defined by

HIV(q, p, z;ϑ0, ϑ∞) = 2qp2 − (q2 + 2zq + 2ϑ0)p + ϑ∞q

Eliminating p then w = q satisfies

d2q

dz2 =
1

2q

(
dq

dz

)2

+ 3
2q

3 + 4zq2 + 2(z2 + ϑ0 − 2ϑ∞ − 1)q − 2ϑ2
0

q

which is PIV with α = 1−ϑ0 + 2ϑ∞ and β = −2ϑ2
0, whilst eliminating q then p satisfies

d2p

dz2 =
1

2p

(
dq

dz

)2

+ 6p3 − 8zp2 + 2(z2 − 2ϑ0 + ϑ∞ + 1)p− ϑ2
∞

2p

and letting p = −1
2w gives PIV with α = 2ϑ0 − ϑ∞ − 1 and β = −2ϑ2

∞.
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Theorem (Okamoto [1986])
The function

σ(z;ϑ0, ϑ∞) = HIV ≡ 2qp2 − (q2 + 2zq + 2ϑ0)p + ϑ∞q

where q and p satisfy the Hamiltonian system
dq

dz
= 4qp− q2 − 2zq − 2ϑ0,

dp

dz
= −2p2 + 2pq + 2zp− ϑ∞ HIV

satisfies the second-order, second-degree equation(
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− 4
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+ 4
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)(
dσ

dz
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)
= 0 SIV

Conversely, if σ(z;ϑ0, ϑ∞) is a solution of SIV, then

q(z;ϑ0, ϑ∞) =
σ′′ − 2zσ′ + 2σ

2(σ′ + 2ϑ∞)
, p(z;ϑ0, ϑ∞) =

σ′′ + 2zσ′ − 2σ

4(σ′ + 2ϑ0)

are solutions of the Hamiltonian system HIV.
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Bäcklund Transformations

Definition
• A Bäcklund transformation maps solutions of a given Painlevé equation to solu-

tions of the same Painlevé equation, though with different values of the parameters.
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Bäcklund Transformations of PIV
Theorem

Let w = w(z;α, β) and w±j = w(z;α±j , β
±
j ), j = 1, 2, 3, 4 be solutions of PIV with

α±1 = 1
4(2− 2α± 3

√
−2β), β±1 = −1

2(1 + α± 1
2

√
−2β)2

α±2 = −1
4(2 + 2α± 3

√
−2β), β±2 = −1

2(1− α± 1
2

√
−2β)2

α±3 = 3
2 −

1
2α∓

3
4

√
−2β, β±3 = −1

2(1− α± 1
2

√
−2β)2

α±4 = −3
2 −

1
2α∓

3
4

√
−2β, β±4 = −1

2(−1− α± 1
2

√
−2β)2

Then

T ±1 : w±1 =
w′ − w2 − 2zw ∓

√
−2β

2w

T ±2 : w±2 = − w
′ + w2 + 2zw ∓

√
−2β

2w

T ±3 : w±3 = w +
2
(
1− α∓ 1

2

√
−2β

)
w

w′ ±
√
−2β + 2zw + w2

T ±4 : w±4 = w +
2
(
1 + α± 1

2

√
−2β

)
w

w′ ∓
√
−2β − 2zw − w2

which are valid when the denominators are non-zero, and where the upper signs or the
lower signs are taken throughout each transformation.
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Schlesinger Transformations of PIV
(Fokas, Mugan & Ablowitz [1988])

α β κ0 κ∞

R1 α + 1 −1
2

(
2−
√
−2β

)2
κ0 − 1 κ∞ + 1

R2 α− 1 −1
2

(
2 +
√
−2β

)2
κ0 + 1 κ∞ − 1

R3 α + 1 −1
2

(
2 +
√
−2β

)2
κ0 + 1 κ∞ + 1

R4 α− 1 −1
2

(
2−
√
−2β

)2
κ0 − 1 κ∞ − 1

R1 : w1 =

(
w′ +

√
−2β

)2
+
(
4α + 4− 2

√
−2β

)
w2 − w2(w + 2z)2

2w
(
w2 + 2zw − w′ −

√
−2β

) ,

R2 : w2 =

(
w′ −

√
−2β

)2
+
(
4α− 4− 2

√
−2β

)
w2 − w2(w + 2z)2

2w
(
w2 + 2zw + w′ −

√
−2β

) ,

R3 : w3 =

(
w′ −

√
−2β

)2 − (4α + 4 + 2
√
−2β

)
w2 − w2(w + 2z)2

2w
(
w2 + 2zw − w′ +

√
−2β

) ,

R4 : w4 =

(
w′ +

√
−2β

)2
+
(
4α− 4 + 2

√
−2β

)
w2 − w2(w + 2z)2

2w
(
w2 + 2zw + w′ +

√
−2β

) ,
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Fokas, Mugan & Ablowitz [1988] defined the composite transformations
α β κ0 κ∞

R5 ≡ R1R3 α + 2 β κ0 κ∞ + 2

R+
6 ≡ R2R3 α −1

2

(
4 +
√
−2β

)2
κ0 + 2 κ∞

R−6 ≡ R1R4 α −1
2

(
4−
√
−2β

)2
κ0 − 2 κ∞

R7 ≡ R2R4 α− 2 β κ0 κ∞ − 2

R5 : w5 =

(
w′ − w2 − 2zw

)2
+ 2β

2w {w′ − w2 − 2zw + 2 (α + 1)}
,

R±6 : w6 = w +

(
2α− 2∓

√
−2β

)
wM±(w,w′, z;α, β)

w(4± 2
√
−2β)−M±(w,w′, z)

(
w′ − 2zw − w2 ∓

√
−2β

)
+

(
2 + 2α±

√
−2β

)
w

w′ − 2zw − w2 ∓
√
−2β

+
2±
√
−2β

M±(w,w′, z;α, β)
,

R7 : w7 = −
(
w′ + w2 + 2zw

)2
+ 2β

2w {w′ + w2 + 2zw − 2 (α− 1)}
,

where

M±(w,w′, z;α, β) = 1
2w + z +

(
2 + 2α±

√
−2β

)
w

w′ − 2zw − w2 ∓
√
−2β

+
w′ ∓

√
−2β

2w
.

Remark: Murata [1985] derived the transformationsR5 andR7.
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Classical Solutions of the Fourth Painlevé Equation
and the Fourth Painlevé σ-Equation
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=
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(
dw
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+
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2
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w
PIV(
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dz2
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Classical Solutions of PIV

d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
PIV

Theorem
• PIV has rational solutions if and only if

(α, β) =
(
m,−2(2n−m+ 1)2

)
or (α, β) =

(
m,−2(2n−m+ 1

3
)2
)

with m,n ∈ Z. Further these rational solutions are unique.

• PIV has special function solutions in terms of parabolic cylinder functions through
the Riccati equation

z
dw

dz
= ε(w2 + 2zw)− 2(1 + εα), ε = ±1

if and only if
β = −2(2n + 1 + εα)2 or β = −2n2

with n ∈ Z which has solution

w(z) = −ε d

dz
lnϕν(z; ε)

where ϕν(z; ε) satisfies the Weber-Hermite equation
d2ϕν
dz2
− 2εz

dϕν
dz

+ 2ενϕν = 0
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Rational and Special Function Solutions of SIV
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PIV — Generalized Hermite Polynomials
Theorem (Kajiwara & Ohta [1998], Noumi & Yamada [1998])

Define the generalized Hermite polynomialHm,n(z), which has degree mn, by

Hm,n(z) = am,nW (Hm(z), Hm+1(z), . . . , Hm+n−1(z)) , m, n ≥ 1

where W(ϕ1, ϕ2, . . . , ϕn) is the Wronskian, Hn(z) is the nth Hermite polynomial and
am,n is a constant. Then

w(i)
m,n(z) = w(z;α(i)

m,n, β
(i)
m,n) =

d

dz
ln
Hm+1,n(z)

Hm,n(z)

w(ii)
m,n(z) = w(z;α(ii)

m,n, β
(ii)
m,n) =

d

dz
ln

Hm,n(z)

Hm,n+1(z)

w(iii)
m,n(z) = w(z;α(iii)

m,n, β
(iii)
m,n) = −2z +

d

dz
ln
Hm,n+1(z)

Hm+1,n(z)

are respectively solutions of PIV for

(α(i)
m,n, β

(i)
m,n) = (2m + n + 1,−2n2)

(α(ii)
m,n, β

(ii)
m,n) = (−m− 2n− 1,−2m2)

(α(iii)
m,n, β

(iii)
m,n) = (n−m,−2(m + n + 1)2)
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Roots of the Generalized Hermite PolynomialsHm,n(z)
(PAC [2003])
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Properties of the Generalized Hermite Polynomials Hm,n(z)

•Hm,n(z) can be expressed as the multiple integral

Hm,n(z) =
πm/2

∏m
k=1 k!

2m(m+2n−1)/2

∫ ∞
−∞
· · ·n
∫ ∞
−∞

n∏
i=1

n∏
j=i+1

(xi − xj)2
n∏
k=1

(z − xk)m

× exp
(
−x2

1 − x2
2 − . . .− x2

n

)
dx1 dx2 . . . dxn

which arises in random matrix theory (Brézin & Hikami [2000], Forrester & Witte
[2001], Kanzieper [2002]).

•Hm,n(z) satisfies the fourth order bilinear equation

Hm,nH
′′′′
m,n − 4H ′m,nH

′′′
m,n + 3

(
H ′′m,n

)2
+ 4zHm,nH

′
m,n − 8mnH2

m,n

− 4(z2 + 2n− 2m)
{
Hm,nH

′′
m,n −

(
H ′m,n

)2}
= 0

and homogeneous difference equations (PAC [2005]).
•Hm,n(z) has a real zero unless n is a positive, even integer. Hence the only bounded

rational solutions of PIV are w[1]
m,2n(z), with n ∈ Z+, which have 2m + 1 real zeros

and asymptotics, as z →∞

w
[1]
m,2n(z) =

d

dz
ln
Hm+1,2n(z)

Hm,2n(z)
∼ 2n

z
+

(2m− 2n + 1)n

z3
+O

(
1

z5

)
UK-Japan Winter School, London, 7 January 2013 23



Plots of Bounded Rational Solutions of PIV
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PIV — Generalized Okamoto Polynomials
Theorem (Kajiwara & Ohta [1998], Noumi & Yamada [1998], PAC [2006])

Let ϕk(z) = 3k/2e−kπi/2Hk

(
1
3

√
3 iz
)
, with Hk(ζ) the kth Hermite polynomial, then

define the generalized Okamoto polynomialQm,n(z) by

Qm,n(z) =W(ϕ1, ϕ4, . . . , ϕ3m+3n−5;ϕ2, ϕ5, . . . , ϕ3n−4)

with m,n ≥ 1, whereW(ϕ1, ϕ2, . . . , ϕn) is the Wronskian. Then

w̃(i)
m,n(z) = w(z; α̃(i)

m,n, β̃
(i)
m,n) = −2

3z +
d

dz
ln
Qm+1,n(z)

Qm,n(z)

w̃(ii)
m,n(z) = w(z; α̃(ii)

m,n, β̃
(ii)
m,n) = −2

3z +
d

dz
ln

Qm,n(z)

Qm,n+1(z)

w̃(iii)
m,n(z) = w(z; α̃(iii)

m,n, β̃
(iii)
m,n) = −2

3z +
d

dz
ln
Qm,n+1(z)

Qm+1,n(z)

are respectively solutions of PIV for

(α̃(i)
m,n, β̃

(i)
m,n) = (2m + n,−2(n− 1

3)2)

(α̃(ii)
m,n, β̃

(ii)
m,n) = (−m− 2n,−2(m− 1

3)2)

(α̃(iii)
m,n, β̃

(iii)
m,n) = (n−m,−2(m + n + 1

3)2)
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Roots of the Generalized Okamoto PolynomialsQm,n(z), m,n> 0
(PAC [2003])

–8

–6

–4

–2

0

2

4

6

8

–6 –4 –2 0 2 4 6 8 –8

–6

–4

–2

0

2

4

6

8

–6 –4 –2 0 2 4 6 8

Q10,10(z) Q11,9(z)

m× n “rectangles" and “equilateral triangles" with sides m− 1 and n− 1
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Rational and Rational-Oscillatory Solutions of the NLS Equation
Theorem (PAC [2006])

The de-focusing NLS equation
iut = uxx − 2|u|2u (1)

has decaying rational solutions of the form

un(x, t) =
neπi/4

√
t

Hn+1,n−1(z)

Hn,n(z)
, z =

x eπi/4

2
√
t

(2)

and non-decaying rational-oscillatory solutions of the forms

ũn(x, t) =
e−πi/4

3
√

2t

Qn+1,n−1(z)

Qn,n(z)
exp

(
− ix2

6t

)
, z =

x eπi/4

2
√
t

(3)

where n ≥ 1.

• The rational solutions (2) generalize the results of Hirota & Nakamura [1985] (see
also Boiti & Pempinelli [1981]; Hone [1996]).

• The rational-oscillatory solutions (3) are new solutions of the NLS equation (1).

• There are other rational-oscillatory solutions of the NLS equation (1), e.g. the Ma-
Peregrine solution

u(x, t) =

{
1− 4(1 + 4it)

1− 4x2 + 16t2

}
e2it
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Parabolic Cylinder Function Solutions of PIV

d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w

Theorem
Suppose τν,n(z; ε) is given by

τν,n(z; ε) =W
(
ψν(z; ε), ψ′ν(z; ε), . . . , ψ(n−1)

ν (z; ε)
)
, n ≥ 1

where τν,0(z; ε) = 1 and ψν(z; ε) satisfies

d2ψν

dz2 − 2εz
dψν
dz

+ 2ενψν = 0, ε2 = 1

Then parabolic cylinder function solutions of PIV are given by

w[1]
ν,n(z) = −2z + ε

d

dz
ln
τν,n+1(z; ε)

τν,n(z; ε)
,
(
α[1]
ν,n, β

[1]
ν,n

)
=
(
ε(2n− ν),−2(ν + 1)2

)
w[2]
ν,n(z) = ε

d

dz
ln
τν,n+1(z; ε)

τν+1,n(z; ε)
,

(
α[2]
ν,n, β

[2]
ν,n

)
=
(
− ε(n + ν),−2(ν − n + 1)2

)
w[3]
ν,n(z) = −ε d

dz
ln
τν+1,n(z; ε)

τν,n(z; ε)
,

(
α[3]
ν,n, β

[3]
ν,n

)
=
(
ε(2ν − n + 1),−2n2

)
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d2ψν

dz2 − 2εz
dψν
dz

+ 2ενψν = 0, ε2 = 1 (∗)

• If ν 6∈ N then (∗) has the solutions

ψν(z; ε) =

{{
C1Dν(

√
2 z) + C2Dν(−

√
2 z)
}

exp
(

1
2z

2
)
, if ε = 1{

C1D−ν−1(
√

2 z) + C2D−ν−1(−
√

2 z)
}

exp
(
−1

2z
2
)
, if ε = −1

with C1 and C2 arbitrary constants and where Dν(ζ) is the parabolic cylinder func-
tion which satisfies

d2Dν

dζ2 = (1
4ζ

2 − ν − 1
2)Dν

with boundary condition
Dν(ζ) ∼ ζν exp

(
−1

4ζ
2
)
, as ζ → +∞

• If ν = 0 then (∗) has the solutions

ψ0(z; ε) =

{
C1 + C2 erfi(z), if ε = 1

C1 + C2 erfc(z), if ε = −1

with C1 and C2 arbitrary constants, where erfc(z) is the complementary error func-
tion and erfi(z) the imaginary error function, which are defined by

erfc(z) =
2√
π

∫ ∞
z

exp(−t2) dt, erfi(z) =
2√
π

∫ z

0

exp(t2) dt
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d2ψν

dz2 − 2εz
dψν
dz

+ 2ενψν = 0, ε2 = 1 (∗)

• If ν = n, for n ≥ 1, then (∗) has the solutions

ψn(z; ε) =


C1Hn(z) + C2 exp(z2)

dn

dzn
{

erfi(z) exp(−z2)
}
, if ε = 1

C1(−i)nHn(iz) + C2 exp(−z2)
dn

dzn
{

erfc(z) exp(z2)
}
, if ε = −1

with C1 and C2 arbitrary constants, where Hn(z) is the Hermite polynomial, erfc(z)
the complementary error function and erfi(z) the imaginary error function.

• If ν = −n, for n ≥ 1, then (∗) has the solutions

ψ−n(z; ε) =


C1(−i)n−1Hn−1(iz) exp(z2) + C2

dn−1

dzn−1

{
erfc(z) exp(z2)

}
, if ε = 1

C1Hn−1(z) exp(−z2) + C2
dn−1

dzn−1

{
erfi(z) exp(−z2)

}
, if ε = −1

with C1 and C2 arbitrary constants, where Hn(z) is the Hermite polynomial, erfc(z)
the complementary error function and erfi(z) the imaginary error function.
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Special Cases

D0

(√
2 z
)

= exp(−1
2z

2)

Dn

(√
2 z
)

= (1
2)n/2 exp(−1

2z
2)Hn(z), n = 1, 2, . . .

D−1

(√
2 z
)

= 1
2

√
2π exp(1

2z
2) erfc(z)

D−n−1

(√
2 z
)

=
(−1)n

√
π

n! 2(n+1)/2
exp(−1

2z
2)

dn

dzn
{

exp(z2) erfc(z)
}
, n = 1, 2, . . .

Integral Representation

Dν(z) =
exp
(
− 1

4z
2
)

Γ(−ν)

∫ ∞
0

t−ν−1 exp
(
− 1

2t
2 − zt

)
dt, ν < 0

Property
• The parabolic cylinder function Dν(z) has no real zeros if ν < 0, so

ψν(z) =
{
C1D−ν(

√
2 z) + C2D−ν(−

√
2 z)
}

exp
(

1
2z

2
)

has no real zeros if ν > 0 and C1C2 > 0.
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Plots of Parabolic Cylinder Function Solutions of PIV

w(z; 1
2,−

1
2) w(z; 5

2,−
1
2)

w(z; 9
2,−

1
2) w(z; 13

2 ,−
1
2)
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Plots of Error Function Solutions of PIV

w(z; 3,−8) w(z; 5,−8)

w(z; 7,−8) w(z; 9,−8)
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Plots of Bound State Solutions of PIV

w(z; 1, 0) w(z; 3, 0)

w(z; 5, 0) w(z; 7, 0)
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Classical Solutions of SIV(
d2σ

dz2

)2

− 4

(
z

dσ

dz
− σ

)2

+ 4
dσ

dz

(
dσ

dz
+ 2ϑ0

)(
dσ

dz
+ 2ϑ∞

)
= 0

Theorem
• Rational solutions of SIV are given by

σm,n(z) =
d

dz
lnHm,n(z), (ϑ0, ϑ∞) = (m,−n)

σ̃m,n(z) = 4
27z

3 − 2
3(m− n)z +

d

dz
lnQm,n(z), (ϑ0, ϑ∞) =

(
m− 1

3,−n + 1
3

)
where Hm,n(z) is the generalized Hermite polynomial and Qm,n(z) the generalized
Okamoto polynomial.
• Suppose τν,n(z; ε) is given by

τν,n(z; ε) =W
(
ψν(z; ε), ψ′ν(z; ε), . . . , ψ(n−1)

ν (z; ε)
)
, n ≥ 1

where τν,0(z; ε) = 1 and ψν(z; ε) satisfies
d2ψν

dz2 − 2εz
dψν
dz

+ 2ενψν = 0, ε2 = 1

then parabolic cylinder function solutions of SIV are given by

σν,n(z) =
d

dz
ln τν,n(z; ε), (ϑ0, ϑ∞) =

(
ε(ν − n + 1),−εn

)
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Plots of Bounded Rational Solutions of SIV

σm,n(z) =
d

dz
lnHm,n(z), Hm,n(z) =W

(
Hm, Hm+1, . . . , Hm+n−1

)

σ1,2j(z), j = 1, 2, 3, 4 σ2,2j(z), j = 1, 2, 3, 4 σ3,2j(z), j = 1, 2, 3, 4

σ4,2j(z), j = 1, 2, 3, 4 σ5,2j(z), j = 1, 2, 3, 4 σ10,2j(z), j = 1, 2, 3, 4

UK-Japan Winter School, London, 7 January 2013 36



Plots of Bounded Special Function Solutions of SIV

σν,n(z) = −2nz +
d

dz
lnW

(
ψν, ψ

′
ν, . . . , ψ

(n−1)
ν

)
ψν(z) =

{
C1D−ν

(√
2 z
)

+ C2D−ν
(
−
√

2 z
)}

exp
(

1
2z

2
)

σ1/2,1(z) σ3/2,1(z) σ5/2,1(z)
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σ1/2,2(z) σ3/2,2(z) σ5/2,2(z)

σ1/2,3(z) σ3/2,3(z) σ5/2,3(z)
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Plots of Error Function Solutions of SIV

σm,n =
d

dz
lnW

(
ψm, ψ

′
m, . . . , ψ

(n−1)
m

)
, ψm = exp(−z2)

dm

dzm
{C1 + C2 erfc(z)} exp(z2)

σ1,0(z) σ2,1(z) σ3,2(z)

σ4,3(z) σ5,4(z)
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Application of PIV to Orthogonal Polynomials

Semi-classical Laguerre Weight

ω(x; t) = xλ exp(−x2 + tx), x ∈ R+, λ > −1

• P A Clarkson, “The relationship between semi-classical Laguerre polynomials and
the fourth Painlevé equation", preprint (2013)
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Some History
• The relationship between semi-classical orthogonal polynomials and integrable equa-

tions dates back to the work of Shohat [1939] and later Freud [1976].
• Fokas, Its & Kitaev [1991, 1992] identified these equations as discrete Painlevé

equations.

•Magnus [1995] considered the Freud weight
ω(x; t) = exp

(
−1

4x
4 − tx2

)
, x, t ∈ R,

and showed that the coefficients in the three-term recurrence relation can be ex-
pressed in terms of solutions of

wn(wn−1 + wn + wn+1) + 2twn = n

which is discrete PI (dPI), and
d2wn

dz2 =
1

2wn

(
dwn
dz

)2

+
3

2
w3
n + 4zw2

n + 2(z2 + 1
2n)wn −

n2

2wn

which is PIV with α = −1
2n and β = −1

2n
2.

• Filipuk, van Assche & Zhang [2012] comment:

“We note that for classical orthogonal polynomials (Hermite, Laguerre, Jacobi)
one knows these recurrence coefficients explicitly in contrast to non-classical
weights".
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Monic Orthogonal Polynomials
Let Pn(x), n = 0, 1, 2, . . . , be the monic orthogonal polynomials of degree n in x,
with respect to the positive weight ω(x) on the interval [a, b] (which may be infinite),
such that ∫ b

a

Pm(x)Pn(x)ω(x) dx = hnδm,n, hn > 0, m, n = 0, 1, 2, . . .

Monic orthogonal polynomials satisfy the three-term recurrence relation
xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x)

where the coefficients are given by

αn =
∆̃n+1

∆n+1
− ∆̃n

∆n
, βn =

∆n+1∆n−1

∆2
n

with

∆n =

∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
... ... . . . ...

µn−1 µn . . . µ2n−2

∣∣∣∣∣∣∣∣ , ∆̃n =

∣∣∣∣∣∣∣∣
µ0 µ1 . . . µn−2 µn
µ1 µ2 . . . µn−1 µn+1
... ... . . . ... ...

µn−1 µn . . . µ2n−3 µ2n−1

∣∣∣∣∣∣∣∣
and µk, the moments of the weight ω(x) given by

µk =

∫ b

a

xk ω(x) dx, k = 0, 1, 2, . . .
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Pearson Equation
Consider the Pearson equation satisfied by the weight ω(x)

d

dx
[σ(x)ω(x)] = τ (x)ω(x)

• Classical orthogonal polynomials: σ(x) is a monic polynomial with deg(σ) ≤ 2
and τ (x) a polynomials with deg(τ ) = 1

ω(x) σ(x) τ (x)

Hermite exp(−x2) 1 −2x

Associated Laguerre xλ exp(−x) x 1 + λ− x

• Semi-classical orthogonal polynomials: σ(x) and τ (x) are polynomials with either
deg(σ) > 2 or deg(τ ) > 1

ω(x) σ(x) τ (x)

semi-classical Laguerre xλ exp(−x2 + tx) x 1 + λ + tx− 2x2

Freud exp(−1
4x

4 − tx2) 1 −2tx− x3
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Suppose the weight has the form ω(x; t) = ω0(x) exp(tx), where ω0(x) is a classical
weight with finite moments, i.e.∫ ∞

−∞
xkω0(x) exp(tx) dx <∞, k = 0, 1, 2, . . .

Then the kth moment is given by

µk(t) =

∫ ∞
−∞

xkω0(x) exp(tx) dx =
dk

dtk

(∫ ∞
−∞

ω0(x) exp(tx) dx

)
=

dkµ0

dtk

and so ∆n(t) and ∆̃n(t) can be expressed as Wronskians

∆n(t) =

∣∣∣∣∣∣∣∣
µ0(t) µ1(t) . . . µn−1(t)
µ1(t) µ2(t) . . . µn(t)

... ... . . . ...
µn−1(t) µn(t) . . . µ2n−2(t)

∣∣∣∣∣∣∣∣ =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)

∆̃n(t) =

∣∣∣∣∣∣∣∣
µ0(t) µ1(t) . . . µn−2(t) µn(t)
µ1(t) µ2(t) . . . µn−1(t) µn+1(t)

... ... . . . ... ...
µn−1(t) µn(t) . . . µ2n−3(t) µ2n−1(t)

∣∣∣∣∣∣∣∣ =
d

dt
W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)

⇒ ∆̃n(t)

∆n(t)
=

d

dt
lnW

(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
UK-Japan Winter School, London, 7 January 2013 44



Semi-classical Laguerre weight
Consider monic orthogonal polynomials with respect to the semi-classical Laguerre
weight

ω(x; t) = xλ exp(−x2 + tx), x ∈ R+, λ > −1 (1)

which satisfy the three-term recurrence relation
xPn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t) (2)

Theorem (Filipuk, van Assche & Zhang [2012])
The coefficient αn(t) in the recurrence relation (2) associated with the semi-classical

Laguerre weight (1) is given by
αn(t) = 1

2wn(z) + 1
2t, z = 1

2t

where wn(z) satisfies

d2wn

dz2 =
1

2wn

(
dwn
dz

)2

+ 3
2w

3
n + 4zw2

n + 2(z2 − 2n− 1− λ)wn −
2λ2

wn
(3)

which is PIV with parameters
(α, β) =

(
2n + 1 + λ,−2λ2

)
(4)

• Filipuk, van Assche & Zhang [2012] do not specify the specific solution of (3).
• The parameters (4) satisfy the condition for PIV to have solutions expressible in terms

of parabolic cylinder functions.
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Lemma (PAC [2013])
For the semi-classical Laguerre weight ω(x; t) = xλ exp(−x2 + tx), the moment

µ0(t;λ) is given by

µ0(t;λ) =


Γ(λ + 1) exp(1

8t
2)

2(λ+1)/2
D−λ−1

(
−1

2

√
2 t
)
, if λ 6∈ N

1
2

√
π

dn

dtn
{

exp
(

1
4t

2
) [

1 + erf(1
2t)
]}
, if λ = n ∈ N

with Dν(ζ) the parabolic cylinder function and erf(z) the error function.
Proof. The parabolic cylinder function Dν(ζ) has the integral representation

Dν(ζ) =
exp(−1

4ζ
2)

Γ(−ν)

∫ ∞
0

s−ν−1 exp(−1
2s

2 − ζs) ds

If λ 6∈ N, then

µ0(t;λ) =

∫ ∞
0

xλ exp(−x2 + tx) dx =
Γ(λ + 1) exp

(
1
8t

2
)

2(λ+1)/2
D−λ−1

(
−1

2

√
2 t
)

If λ = n ∈ N, then

D−n−1(ζ) =

√
π

2

(−1)n

n!
exp(−1

4ζ
2)

dn

dζn

{
exp(1

2ζ
2) erfc

(
1
2

√
2 ζ
)}

,

with erfc(z) the complementary error function. Since erfc(−z) = 1 + erf(z), then

µ0(t;n) = 1
2

√
π

dn

dtn
{

exp
(

1
4t

2
) [

1 + erf(1
2t)
]}
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Theorem (PAC [2013])
Suppose that ∆n(t) is the Hankel determinant given by

∆n(t) =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
, n ≥ 1

∆0(t) = 1, where

µ0(t;λ) =


Γ(λ + 1) exp(1

8t
2)

2(λ+1)/2
D−λ−1

(
−1

2

√
2 t
)
, if λ 6∈ N

1
2

√
π

dn

dtn
{

exp
(

1
4t

2
) [

1 + erf(1
2t)
]}
, if λ = n ∈ N

with Dν(ζ) the parabolic cylinder function and erf(z) the error function. Then the
coefficients αn(t) and βn(t) in the three-term recurrence relation

xPn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t)

associated with the semi-classical Laguerre weight

ω(x; t) = xλ exp(−x2 + tx), x ∈ R+, λ > −1

are given by

αn(t) =
d

dt
ln

∆n+1(t)

∆n(t)
, βn(t) =

d2

dt2
ln ∆n(t), n ≥ 0
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Theorem (PAC [2013])
Suppose that ∆n(t) is the Hankel determinant given by

∆n(t) =W
(
µ0,

dµ0

dt
, . . . ,

dn−1µ0

dtn−1

)
, n ≥ 1

∆0(t) = 1, where

µ0(t;λ) =


Γ(λ + 1) exp(1

8t
2)

2(λ+1)/2
D−λ−1

(
−1

2

√
2 t
)
, if λ 6∈ N

1
2

√
π

dn

dtn
{

exp
(

1
4t

2
) [

1 + erf(1
2t)
]}
, if λ = n ∈ N

with Dν(ζ) the parabolic cylinder function and erf(z) the error function. Then Sn(t) =
d

dt
ln ∆n(t) satisfies(

d2Sn

dt2

)2

− 1

4

(
t
dSn
dt
− Sn

)2

+
dSn
dt

(
2

dSn
dt
− n

)(
2

dSn
dt
− n− λ

)
= 0

which is equivalent to SIV, the PIV σ-equation, through the transformation
Sn(t) = 1

2σ(z), z = 2t

Hence the recurrence coefficients αn(t) and βn(t) are given by

αn(t) =
d

dt
ln

∆n+1(t)

∆n(t)
= Sn+1(t)− Sn(t), βn(t) =

d2

dt2
ln ∆n(t) =

dSn
dt
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Lemma
• As t→∞, µ0(t), ∆n(t) and Sn(t) have the respective asymptotic expansions

µ0(t) ∼
√
π (1

2t)
λ exp

(
1
4t

2
){

1 +
λ(λ− 1)

2t2
+O

(
t−4
)}

∆n(t) = cnt
nλ exp

(
1
4nt

2
){

1− nλ(n− λ)

t2
+O

(
t−4
)}

Sn(t) =
d

dt
ln ∆n(t) =

nt

2
+
nλ

t
+

2nλ(n− λ)

t3
+O

(
t−5
)

• As t → ∞, the recurrence coefficients αn(t) and βn(t) have the asymptotic expan-
sions

αn(t) = Sn+1(t)− Sn(t) =
t

2
+
λ

t
+O

(
t−3
)

⇒ lim
t=∞

αn(t) = 1
2t

βn(t) =
dSn
dt

=
n

2
− nλ

t2
+O

(
t−4
)

⇒ lim
t=∞

βn(t) = 1
2n

Remark The three-term recurrence relation

xQn(x; t) = Qn+1(x; t) + 1
2tQn(x; t) + 1

2nQn−1(x; t)

with Q−1 = 0 and Q0 = 1, generates the monic polynomials

Qn(x; t) = (1
2)nHn(x− 1

2t)

with Hn(y) the Hermite polynomial.
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Special function solutions of Painlevé equations

Number of
(essential)

parameters

Special
function

Number of
parameters

Associated
orthogonal
polynomial

Number of
parameters

PI 0 —

PII 1
Airy

Ai(z),Bi(z)
0 —

PIII 2
Bessel

Jν(z), Yν(z), Jν(z), Kν(z)
1 —

PIV 2
Parabolic cylinder

Dν(z)
1

Hermite
Hn(z)

0

PV 3

Kummer
M(a, b, z), U(a, b, z)

Whittaker
Mκ,µ(z),Wκ,µ(z)

2

Associated
Laguerre
L

(k)
n (z)

1

PVI 4
hypergeometric

2F1(a, b; c; z)
3

Jacobi
P (α,β)
n (z)

2
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Further Examples
• Semi-classical weight with recurrence coefficients expressible in terms of solutions

of SIII, the PIII σ-equation

ω(x; t) µ0(t) =

∫
ω(x; t) dx

xν−1 exp (−x− t/x) x ∈ R+ 2tν/2Kν

(
2
√
t
)

with Kν(z) the modified Bessel function (Chen & Its [2010]).
• Semi-classical weights with recurrence coefficients expressible in terms of solutions

of SV, the PV σ-equation

ω(x; t) µ0(t) =

∫
ω(x; t) dx

xα−1(1− x)β−1e−tx x ∈ [0, 1]
Γ(α)Γ(β)

Γ(α + β)
e−tM(α, α + β, t)

xα−1(1− x)β−1e−x/t x ∈ [0, 1] Γ(β)e−tU(β, 1− α, t)

xα−1(x + t)β−1e−x x ∈ R+ Γ(α) tα+β−1U(α, α + β, t)

with U(a, b, t) and M(a, b, z) the Kummer functions (Basor, Chen & Ehrhardt
[2010]; Chen & Dai [2010]; Forrester & Witte [2007]).
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Application of PIV to Vortex Dynamics

• The equations of motion for n point vortices with circulations Γj at positions zj, in a
background flow w(z) are

dz∗j
dt

=
1

2πi

n∑′

k=1

Γk
zj − zk

+
w∗(zj)

2πi
, j = 1, 2, . . . , n

• P A Clarkson, “Vortices and polynomials", Stud. Appl. Math., 123 (2009) 37–62
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Vortex Dynamics
The equations of motion for n point vortices with circulations Γj at positions zj, are

dz∗j
dt

=
1

2πi

n∑′

k=1

Γk
zj − zk

, j = 1, 2, . . . , n

If a vortex configuration rotates as a rigid body with angular velocity Ω then
dz∗j
dt

= −iΩz∗j , j = 1, 2, . . . , n

and so

λz∗j =

n∑′

k=1

Γk
zj − zk

, j = 1, 2, . . . , n (1)

where λ = 2πΩ. Suppose that zj is real, so zj = z∗j = xj, and all the Γj are equal, so
Γj = Γ for j = 1, 2, . . . , n, then set λ = 1 (by rescaling xj, if necessary) and so we
obtain

xj =

n∑′

k=1

1

xj − xk
, j = 1, 2, . . . , n (2)

which are known as Stieltjes relations (Stieltjes [1885]).

Question: What are the solutions x1, x2, . . . , xn of equation (2)?
Answer: They are the roots of the nth Hermite polynomialHn(x).
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Quadrupole Background Flow
Lemma (Kadtke & Campbell [1987])

The equations of motion for m + n point vortices with circulations Γj at positions
zj in a background flow w(z) are

dz∗j
dt

=
1

2πi

m+n∑′

k=1

Γk
zj − zk

+
w∗(zj)

2πi
, j = 1, 2, . . . ,m + n

When
dz∗j
dt

= 0, w(z) = Γµ∗z∗, with µ∗ a (complex) constant, Γk = Γ for k = 1, 2, . . . ,m

and Γk = −Γ for k = m + 1,m + 2, . . . ,m + n, then the polynomials

P (z) =

m∏
j=1

(z − zj), Q(z) =

n∏
j=1

(z − zj+m)

satisfy
d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
+ 2µz

(
dP

dz
Q− P dQ

dz

)
= 2µ(m− n)PQ

Remark: If Q = 1 and µ = −1 then P satisfies
d2P

dz2
− 2z

dP

dz
+ 2mP = 0

which is the equation for the mth Hermite polynomial Hm(z).
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d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
+ 2µz

(
dP

dz
Q− P dQ

dz

)
= 2µ(m− n)PQ

Kadtke & Campbell [1987] obtained some polynomial solutions of this equation when
m = n, though they claimed that there were no solutions when m = n = 6. However,
using MAPLE, it can be shown that there are solutions when m = n = 6.

Solutions for µ = −1
2 and m = n

P (z) Q(z)
m = n = 2 z2 + 1 z2 − 1
m = n = 4 z4 + 6z2 + 3 z4 + 2z2 − 1

z4 + 2z2 − 1 z4 − 2z2 − 1
z4 − 2z2 − 1 z4 − 6z2 + 3

m = n = 6 z6 + 15z4 + 45z2 + 15 z6 + 9z4 + 9z2 − 3
z6 + 9z4 + 9z2 − 3 z6 + 3z4 − 9z2 − 3
z6 + 3z4 − 9z2 − 3 z6 − 3z4 − 9z2 + 3
z6 − 3z4 − 9z2 + 3 z6 − 9z4 + 9z2 + 3
z6 − 9z4 + 9z2 + 3 z6 − 15z4 + 45z2 − 15
z6 + 3z4 + 9z2 − 9 z6 − 3z4 + 9z2 + 9
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K1

0
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Question What is the form of polynomial solutions of the bilinear equation

d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
+ 2µz

(
dP

dz
Q− P

dQ

dz

)
= 2µ(m− n)PQ

Theorem (Crum [1955]; also Oblomkov [1999], Veselov [2001])
The Schrödinger equation

−d2ψ

dz2
+ uψ = λψ (∗)

with potential

u = z2 − 2
d2

dz2
lnW

(
Hk1, Hk2, . . . , Hk`

)
where Hk(z) is the kth Hermite polynomial, W(φ1, φ2, . . . , φ`) is the Wronskian and
k1, k2, . . . , k` are a sequence of distinct positive integers, has the solutions

ψ(z) =
W
(
Hk1, Hk2, . . . , Hk`, Hk`+1

)
W
(
Hk1, Hk2, . . . , Hk`

) exp
(
−1

2z
2
)

ψ(z) =
W
(
Hk1, Hk2, . . . , Hk`−1

)
W
(
Hk1, Hk2, . . . , Hk`

) exp
(

1
2z

2
)

with kn+1 another different positive integer for the eigenvalues λ = 1 + 2(k`+1 − `) and
λ = 2(`− k`−1)− 1, respectively.
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Remark: Substituting u = z2 − 2
d2

dz2
lnQ and ψ =

P

Q
exp(−1

2z
2) into (∗) yields

d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
− 2z

(
dP

dz
Q− P dQ

dz

)
+ (λ− 1)PQ = 0

Theorem
The bilinear equation

d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
− 2z

(
dP

dz
Q− P dQ

dz

)
+ 2(m− n)PQ = 0

with m,n ∈ Z+, has polynomial solutions in the form

P (z) =W
(
Hk1(z), Hk2(z), . . . , Hk`(z), Hk`+1

(z)
)

Q(z) =W
(
Hk1(z), Hk2(z), . . . , Hk`(z)

) (∗)

where Hk(z) is the kth Hermite polynomial, W(φ1, φ2, . . . , φn) is the Wronskian and
k1, k2, . . . , k`, k`+1 are a sequence of distinct positive integers. The degrees of the poly-
nomials P (z) and Q(z), respectively m and n, are given by

m =

`+1∑
j=1

kj − 1
2`(` + 1), n =

∑̀
j=1

kj − 1
2`(`− 1)

⇒ m− n = k`+1 − `
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However there are additional solutions of the equation

d2P

dz2
Q− 2

dP

dz

dQ

dz
+ P

d2Q

dz2
− 2z

(
dP

dz
Q− P dQ

dz

)
+ 2(m− n)PQ = 0 (1)

in terms of the generalized Hermite polynomials Hm,n(z) and the generalized
Okamoto polynomialsQm,n(z).

Example 1 A set of solutions of (1) is given by

P (z) = Hk1,k2(z) =W (Hk1, Hk1+1, . . . , Hk1+k2−1)

Q(z) = Hk1+1,k2(z) =W (Hk1+1, Hk1+2, . . . , Hk1+k2)

where the Wronskians defining P (z) and Q(z) have the same number of Hermite poly-
nomials.

Example 2 Another set of solutions of (1) is given by

P (z) = Qk1,k2(z) =W(H1, H4, . . . , H3k1+3k2−5, H2, H5, . . . , H3k2−4)

Q(z) = Qk1,k2+1(z) =W(H1, H4, . . . , H3k1+3k2−2, H2, H5, . . . , H3k2−1)

where the Wronskian defining P (z) has two fewer Hermite polynomials than that defin-
ing Q(z).
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Symmetric Form of PIV

dϕ0

dz
+ ϕ0(ϕ1 − ϕ2) + 2µ0 = 0

dϕ1

dz
+ ϕ1(ϕ2 − ϕ0) + 2µ1 = 0

dϕ2

dz
+ ϕ2(ϕ0 − ϕ1) + 2µ2 = 0

where µ0, µ1 and µ2 are constants, with constraints

µ0 + µ1 + µ2 = 1

ϕ0 + ϕ1 + ϕ2 = −2z
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Symmetric Form of PIV
(Bureau [1980], Veselov & Shabat [1993], Adler [1994], Noumi & Yamada [1998])
Consider the symmetric PIV system

dϕ0

dz
+ ϕ0(ϕ1 − ϕ2) + 2µ0 = 0

dϕ1

dz
+ ϕ1(ϕ2 − ϕ0) + 2µ1 = 0 (1)

dϕ2

dz
+ ϕ2(ϕ0 − ϕ1) + 2µ2 = 0

where µ0, µ1 and µ2 are constants, with constraints

µ0 + µ1 + µ2 = 1, ϕ0 + ϕ1 + ϕ2 = −2z (2)

Eliminating ϕ1 and ϕ2, then ϕ = ϕ0 satisfies PIV

d2ϕ

dz2 =
1

2ϕ

(
dϕ

dz

)2

+ 3
2ϕ

3 + 4zϕ2 + 2[z2 + (µ1 − µ2)]ϕ−
2µ2

0

ϕ

The system (1) is associated with the affine Weyl groupA(1)
2 and has the simple rational

solutions
(i) (ϕ0, ϕ1, ϕ2) = (−2z, 0, 0), (µ0, µ1, µ2) = (1, 0, 0)
(ii) (ϕ0, ϕ1, ϕ2) = (−2

3z,−
2
3z,−

2
3z), (µ0, µ1, µ2) = (1

3,
1
3,

1
3)

Rational solutions arising from (i) are expressed in terms of generalized Hermite poly-
nomialsHm,n(z) and from (ii) in terms of generalized Okamoto polynomialsQm,n(z).

UK-Japan Winter School, London, 7 January 2013 64



Theorem (Noumi & Yamada [1998])
Rational solutions of the symmetric PIV system

dϕ0

dz
+ ϕ0(ϕ1 − ϕ2) + 2µ0 = 0

dϕ1

dz
+ ϕ1(ϕ2 − ϕ0) + 2µ1 = 0

dϕ2

dz
+ ϕ2(ϕ0 − ϕ1) + 2µ2 = 0

either have the form

(ϕ0, ϕ1, ϕ2) =

(
d

dz
ln
Hm+1,n

Hm,n
,

d

dz
ln

Hm,n

Hm,n+1
,−2z +

d

dz
ln
Hm,n+1

Hm+1,n

)
for parameters

(µ0, µ1, µ2) = (n,−m− n,m + 1)

or

(ϕ0, ϕ1, ϕ2) =

(
−2

3z +
d

dz
ln
Qm+1,n

Qm,n
,−2

3z +
d

dz
ln

Qm,n

Qm,n+1
,−2

3z +
d

dz
ln
Qm,n+1

Qm+1,n

)
for parameters

(µ0, µ1, µ2) = (n− 1
3,−m− n + 2

3,m + 2
3)

withHm,n(z) the generalized Hermite polynomials andQm,n(z) generalized Okamoto
polynomials.
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Symmetric PIV Hierarchy
(Noumi & Yamada [1998])

The symmetric hierarchy of PIV associated with the affine Weyl group of type A(1)
2n is

dϕj
dz

+ ϕj

n∑
r=1

(ϕj+2r−1 − ϕj+2r) + 2µj = 0, j = 0, 1, . . . , 2n (1)

with constraints
2n∑
j=0

ϕj = −2z,

2n∑
j=0

µj = 1 (2)

where µj are complex constants. The system (1) has the simple rational solutions

ϕ0 = ϕ1 = . . . = ϕ2k = − z/(2k + 1), ϕ2k+1 = . . . = ϕ2n = 0, k = 0, 1, . . . , n

with

µ0 = µ1 = . . . = µ2k = 1/(2k + 1), µ2k+1 = . . . = µ2n = 0, k = 0, 1, . . . , n

Special cases are

(i) ϕ0 = −2z, ϕ1 = . . . = ϕ2n = 0, µ0 = 1, µ1 = . . . = µ2n = 0
(ii) ϕ0 = ϕ1 = . . . = ϕ2n = −2z/(2n + 1), µ0 = µ1 = . . . = µ2n = 1/(2n + 1)

Rational solutions arising from (i) are expressed in terms of symmetric Hermite poly-
nomials and from (ii) in terms of symmetric Okamoto polynomials.
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Roots of symmetric Hermite polynomials associated withA(1)
4

(PAC & Filipuk [2008])

–6

–4

–2

0

2

4

6

–4 –2 0 2 4 6 –6

–4

–2

0

2

4

6

–4 –2 0 2 4 6

UK-Japan Winter School, London, 7 January 2013 67



Roots of symmetric Okamoto polynomials associated withA(1)
4

(PAC & Filipuk [2008])
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Numerics and Asymptotics for the Fourth Painlevé Equation

d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w

• In the special case when α = 2ν + 1 and β = 0, we make the transformation

w(z) = 2
√

2u2(x), x =
√

2 z

This yields
d2u

dx2
= 3u5 + 2xu3 + (1

4x
2 − ν − 1

2)u

which is a nonlinear harmonic oscillator.
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The parabolic cylinder function Dν(x) satisfies

d2Dν

dx2
= (1

4x
2 − ν − 1

2)Dν

Dν(x) ∼ xν exp
(
−1

4x
2
)
, as x→ +∞

When ν = n ∈ N,
Dn(x) = Hen(x) exp

(
−1

4x
2
)

which are bound state solutions that decay exponentially as x → ±∞, where Hen(x)
is the Hermite polynomial defined by

Hen(x) = (−1)n exp(1
2x

2)
dn

dxn
{

exp(−1
2x

2)
}
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Asymptotics of PIV — Nonlinear Harmonic Oscillator
Consider the special case of PIV wherew(z) = 2

√
2u2(x) and x =

√
2 z, with α = 2ν+1

and β = 0, i.e.
d2u

dx2
= 3u5 + 2xu3 + (1

4x
2 − ν − 1

2)u (1)

and the boundary condition
u(x)→ 0, as x→ +∞ (2)

This equation has solutions have exponential decay as x → ±∞ and so are nonlinear
analogues of bound state solutions for the linear harmonic oscillator.

Let uk(x) denote the unique solution of (1) which is asymptotic to kDν(x), i.e.
d2uk
dx2

= 3u5
k + 2xu3

k + (1
4x

2 − ν − 1
2)uk

with boundary condition
uk(x) ∼ kDν(x), as x→ +∞

where Dν(x) is the parabolic cylinder function which satisfies
d2Dν

dx2
= (1

4x
2 − ν − 1

2)Dν

with boundary condition
Dν(x) ∼ xν exp

(
−1

4x
2
)
, as x→ +∞
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Theorem (Bassom, PAC, Hicks & McLeod [1992])
Let uk(x) be the unique solution of

d2uk
dx2

= 3u5
k + 2xu3

k + (1
4x

2 − ν − 1
2)uk, uk(x) ∼ kDν(x), as x→ +∞

• The solution uk(x) exists for all real x provided that 0 ≤ k < k∗, where

k2
∗ =

1

2
√

2π Γ(ν + 1)

In this case, if ν = n ∈ N, then as x→ −∞

uk(x) ∼
k exp(−1

4x
2)Hn

(
1
2

√
2x
)

2n/2
√

1− 2
√

2π n! k2

whilst if ν /∈ N, then for some d and θ0 ∈ R, as x→ −∞

uk(x) = (−1)[ν+1]
(
−1

6x
)1/2

+ d|x|−1/2 sin

(
x2

2
√

3
− 4d2

√
3

ln |x| − θ0

)
+O

(
|x|−3/2

)
• If k = k∗, then as x→ −∞

uk∗(x) ∼
(
−1

2x
)1/2

• If k > k∗ then uk(x) has a pole at a finite x0, depending on k, so as x ↓ x0

uk(x) ∼ (x− x0)
−1/2
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Theorem (Its & Kapaev [1998], Wong & Zhang [2009])
Let uk(x) be the unique solution of

d2uk
dx2

= 3u5
k + 2xu3

k + (1
4x

2 − ν − 1
2)uk

with boundary condition

uk(x) ∼ kDν(x), as x→ +∞
If 0 ≤ k < k∗, with

k2
∗ =

1

2
√

2π Γ(ν + 1)

and ν /∈ N, then as x→ −∞

uk(x) = (−1)[ν+1]
(
−1

6x
)1/2

+ d|x|−1/2 sin

(
x2

2
√

3
− 4d2

√
3

ln |x| − θ0

)
+O

(
|x|−3/2

)
where the connection formulae are

d2(k; ν) = −1
4

√
3 π−1 ln(1− |µ|2)

θ0(k; ν) = 1
3

√
3 d2 ln 3 + arg

{
Γ
(
−2

3i
√

3 d2
)}

+ (2
3ν + 7

12)π + arg(µ)

with

µ(k; ν) = 1 +
2ikπ3/2 exp(−iπν)

Γ(−ν)
.
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d2uk

dx2 = 3u5
k + 2xu3

k + (1
4x

2 − ν − 1
2)uk, uk(x) ∼ kDν(x), as x→ +∞
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Numerical Solutions of PIV (Reeger & Fornberg [2012])

Solid lines: numerical solutions, dashed-dotted lines: −2
3z and dashed lines: −2z.
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The first two bound state solutions are

uk(x; 0) =
k exp(−1

4x
2)√

1− k2ψ(x)
≡ Ψk(x), uk(x; 1) =

[
x + 2Ψ2

k(x)
]
Ψk(x)√

1− 2xΨ2
k(x)− 4Ψ4

k(x)

where ψ(x) =
√

2π erfc
(

1
2

√
2x
)

[note that ψ(∞) = 0 and ψ(−∞) = 2
√

2π].
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For n ∈ Z+, uk(x;n) exists for all x, has n distinct zeros and decays exponentially to
zero as x→ ±∞ with asymptotic behaviour

uk(x;n) ∼


k exp(−1

4x
2), as x→∞

k exp(−1
4x

2)√
1− 2

√
2π n! k2

, as x→ −∞
k2 <

1

2
√

2π n!
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The corresponding solutions of PIV

d2w

dz2
=

1

2w

(
dw

dz

)2

+
3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w

have the form

w(z; 1, 0) = Ψ(z; ξ) =
2ξ exp(−z2)√
π[1− ξ erfc(z)]

w(z; 3, 0) = − Ψ(Ψ + 2z)2

Ψ2 + 2zΨ− 2

w(z; 5, 0) =
4Ψ(Ψ2 + 3zΨ + 2z2 − 1)

(Ψ2 + 2zΨ− 2)[zΨ3 + (4z2 + 3)Ψ2 + 2z(2z2 + 3)Ψ− 4]
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Some Open Problems
• Study exact (rational, algebraic and special function) solutions of Painlevé equations.

This is particularly important with regard to applications of the Painlevé equations,
as illustrated by semi-classical orthogonal polynomials and vortex dynamics.

• Is there an analytical explanation and interpretation of the computational results for
the special polynomials associated with rational solutions of the Painlevé equations?
I Is there an interlacing property for the roots in the complex plane?
I Do these special polynomials have applications, e.g. in numerical analysis?

• Study asymptotics and connection formulae for the Painlevé equations using the
isomonodromy method, for example the construction of uniform asymptotics around
a nonlinear Stokes ray.

Objectives
• To provide a complete classification and unified structure of the special properties

which the Painlevé equations (and Painlevé σ-equations) possess — the presently
known results are rather fragmentary and non-systematic.

• Develop algorithmic procedures for the classification of equations with the Painlevé
property; this is straightforward for linear equations but significantly more difficult
for nonlinear equations.

• Develop software for numerically studying the Painlevé equations which utilizes the
fact that they are integrable equations solvable using isomonodromy methods.
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Some Books on Painlevé Equations

UK-Japan Winter School, London, 7 January 2013 80


