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Linear Equations–I

Three of the Basic Types: Representatives

Elliptic PDE:

Laplace’s Equation: ∆xu = 0

Parabolic PDE:

Heat Equation: ∂tu−∆xu = 0

Hyperbolic PDE:

Wave Equation: ∂ttu−∆xu = 0

Transport Equation: ∂tu+ b · ∇xu = 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x = (x1, · · · , xn), ∆x =

∑n
j=1

∂2

∂x2j
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Linear Equations–II

Mixed Hyperbolic-Parabolic Type

∂tu+ b(x) · ∇xu−∇x · (A(x)∇xu) = 0, A(x) = (aij(x))d×d ≥ 0

Mixed Hyperbolic-Elliptic Type

Lavrentyev Equation:

∂xxu+ sign(x)∂yyu = 0

Tricomi Equation (hyperbolic degeneracy at x = 0):

∂xxu+ x∂yyu = 0

Keldysh Equation (parabolic degeneracy at x = 0):

x∂xxu+ ∂yyu = 0
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Outline

1 Nonlinear PDEs of Mixed Hyperbolic-Parabolic Type

2 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Fluid Mechanics

3 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Differential
Geometry

4 Nonlinear PDEs of No Type in Differential Geometry
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Nonlinear PDEs of Mixed Hyperbolic-Parabolic Type

Anisotropic Degenerate Diffusion-Convection Equations

∂tu+∇x · f(u) = ∇x · (A(u)∇xu) u ∈ R, x ∈ Rd

for the unknown function u : R+ × Rd −→ R, where

f ∈ Liploc(R;Rd) is the convection flux function
A(u) = (aij(u)) ≥ 0 is the symmetric diffusion matrix so that

A(u) = σ(u)σ(u)>, σ(u) = (σjk(u))

where σk(u) = (σ1k(u), . . . , σdk(u))> ∈ L∞loc(R;Rd), k = 1, . . . , d

Applications

Viscous-inviscid two phase flows, · · · · · ·
Sedimentation-consolidation processes, fluids in porous media · · · · · ·

Example:

∂tu+∇x · f(u) = ∆xu+

{u > 0}: Viscous phase
{u < 0}: Inviscid phase
{u = 0}: Free boundary interface separating the two phases
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Diffusion Dominated Case: Degenerate Parabolic Eqs.

∂tu+∇x · f(u) = ∇x · (A(u)∇xu) u ∈ R, x ∈ Rd

Degenerate points in u are isolated:

The set {u : rank(A(u)) < d} contains only isolated points

Well-Posedness

Caffarelli-Friedman, Brézis-Crandall, Vázquez, · · · · · ·
Bénilan, DeBenedetto, Giding, Jäger, · · · · · ·
· · · · · ·

Similarity Solutions, · · ·
Barenblatt, · · · · · ·

Parabolic Approaches
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Diffusion Vanished Case: Hyperbolic Conservation Laws

In this case, the equation becomes a scalar hyperbolic conservation law

∂tu+∇x · f(u) = 0, u|t=0 = u0(x)

Linear Case: E.g. Transport equation: ∂tu+ a ∂xu = 0, a 6= 0 const.

u(t, x) = u0(x− at).

Well-posed in any norms
If u0(x+ P ) = u0(x), then u(t, x) is oscillatory as t→∞: No Limit

Nonlinear Case: E.g. Burgers equation: ∂tu+ ∂x(u
2

2 ) = 0

Well-posed in BV,L∞, L1: Oleinik, Lax, Volpert, Kruzkov, · · ·
Lions-Perthame-Tadmor, · · ·

Decay of period solutions in L∞: Lax (d = 1)
Engquist-E (d = 2), Chen-Frid(d ≥ 2)

If L
(
{ξ : τ + f ′(ξ) · κ = 0}

)
= 0 for any |τ |2 + |κ|2 = 1,

then u −→ ū := 1
|P |
∫
P u0(x)dx inL1

Hyperbolic Approaches
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Isotropic Degenerate Parabolic-Hyperbolic Equations

Isotropic Case (A(u) = β′(u)I): ∂tu+∇x · f(u) = ∆xβ(u)
Solutions u ∈ L∞

One-dimensional case d = 1:

Wu-Yin 1989

Bénilan-Touré 1995

Multidimensional case d ≥ 1:

Regularity: β(u(t,x)) ∈ C DiBenedetto 1982

u ∈ L∞: Carrillo 1999 −→ Karlsen-Risebro 2001
Mascia-Porretta-Terracina 2002

u ∈ L∞loc: Chen-DiBenedetto: SIAM J. Math. Anal. 2001
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Anisotropic Degenerate Parabolic-Hyperbolic Equations

General Case & Solutions u ∈ L1

Goal: Identify and/or develop Unified Approaches to deal with
both parabolic and hyperbolic phases

Chen-Perthame: Kinetic Approach
Ann. I. H. Poincaré–Anal. Non Linéaire, 20 (2003), 645–668

Proc. Amer. Math. Soc. 137 (2009), 3003–3011

Motivations/Connections:
Boltzmann Equation, Large Particle Systems
⇒ Euler Equations, Navier-Stokes Equations

∂tχ+ ξ · ∇xχ = Q(χ, χ)

Earlier Works on Numerical Methods for Conservation Laws:
Brenier, Giga-Miyawake, Croisille-Delorme, Deshpande, Kanel,
Perthame, Xu-Prendergast, · · ·

Earlier Works on Kinetic Formulation, esp. for Hyperbolic Conservation
Laws: Lions-Perthame-Tadmor 1991, 1994....
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Kinetic Function

Cauchy Problem{
∂tu+∇x · f(u) = ∇x · (A(u)∇xu) u ∈ R, x ∈ Rd,
u|t=0 = u0(x) ∈ L1(Rd)

Introduce the kinetic function: Quasi-Maxwellian χ on R2:

χ(ξ;u) =


+1 for 0 < ξ < u,
−1 for u < ξ < 0,
0 otherwise.

Then

u ∈ L∞([0,∞);L1(Rd))⇒ χ ∈ L∞([0,∞);L1(Rd+1))
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Kinetic Solutions u ∈ L∞([0,∞);L1(Rd))

(i) Kinetic Equation:

∂t χ(ξ;u) + f ′(ξ) · ∇xχ(ξ;u)−∇x · (A(ξ)∇xχ(ξ;u))

= ∂ξ(m+ n)(t,x; ξ) in D′(R+ × Rd+1)

holds with initial data: χ(ξ;u)|t=0 = χ(ξ;u0),

for some measures m(t,x; ξ) ≥ 0 and n(t,x; ξ) ≥ 0:

∫
R ψ(ξ)n(t,x; ξ) dξ =

∑d
k=1

(
∇x · βψk (u(t,x))

)2 ∈ L2([0,∞)× Rd)

with βψk (u) =
∫ u√

ψ(v)σk(v)dv for any ψ ∈ C∞0 (R) with ψ ≥ 0;

(ii) The following inequality is satisfied:∫∞
0

∫
Rd(m+ n)(t,x; ξ) dt dx→ 0 as |ξ| → ∞;

(iii) For any nonnegative ψ1, ψ2 ∈ C∞0 (R),√
ψ1(u(t,x))∇x · βψ2

k (u(t,x)) = ∇x · βψ1ψ2

k (u(t,x)) a.e.
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Remarks on Kinetic Solutions

L1: Well-posed space for kinetic solutions and well-defined space
for the kinetic equation, although f(u),A(u) /∈ L1 generally.

If u ∈ L∞, then u is an entropy solution:
For any η ∈ C2, η′′(u) ≥ 0, multiplying η′(ξ) both sides of the
kinetic equation and then integrating in ξ ∈ R yields

∂tη(u) +∇ · (q(u)−A(u)∇η(u))
= −

∫
R η
′′(ξ)(m+ n)(t,x; ξ)dξ ≤ 0.

In particular, take η(u) = ±u to yield the PDE.

Existence of a kinetic solution when u0 ∈ W 2,1 ∩H1 ∩ L∞(Rd)
can be achieved by the vanishing viscosity method.

When A(u) = β′(u)I, condition (iv) automatically holds, which
is actually a chain rule.

Condition (iii) implies that m+ n has no support at u =∞.
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L1–Stability Theorem and Remarks

Theorem (Chen-Perthame: Ann. I. H. Poincaré–AN 2003)

Let u, v ∈ L∞([0,∞);L1(Rd)) be kinetic solutions with initial data
u0, v0 ∈ L1(Rd) respectively. Then

‖u(t, ·)− u0(·)‖L1(Rd) → 0 as t→ 0;

‖u(t, ·)− v(t, ·)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd).

Remarks

Existence for u0 ∈ L1: There exists a sequence
uε0 ∈W 2,1 ∩H1 ∩ L∞(Rd) such that ‖uε0 − u0‖L1(Rd) → 0 as ε→ 0.
Then there exists a corresponding sequence of kinetic solutions
uε ∈ L∞([0,∞);L1(Rd)). The L1-stability theorem implies that {uε}
is a Cauchy sequence so that there exists u ∈ L∞([0,∞);L1(Rd))
satisfying that uε(t,x)→ u(t,x) in L1 when ε→ 0.
When u0 ∈ L∞(Rd), then the kinetic solution u ∈ L∞ is the unique
entropy solution.
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Ideas of Proof for the L1-Stability—Formal Proof

u(t,x)∼ m(t,x; ξ) ≥ 0
n(t,x; ξ) = δ(ξ − u(t,x))

∑K
k=1(∇x · βk(u(t,x)))2

v(t,x)∼ p(t,x; ξ) ≥ 0
q(t,x; ξ) = δ(ξ − v(t,x))

∑K
k=1(∇x · βk(v(t,x)))2

Step 1. Microscopic Contraction Function:

Q(t,x; ξ) = |χ(ξ;u)|+ |χ(ξ; v)| − 2χ(ξ;u)χ(ξ; v) ≥ 0
Then ∫

R
Q(t,x; ξ)dξ = |u(t,x)− v(t,x)|

Step 2. Multiplying the Kinetic Equation by sign(ξ):

∂t|χ(ξ;u)|+ f ′(ξ) · ∇x|χ(ξ;u)| − ∇x · (A(ξ)∇χ(ξ;u))
= sign(ξ)∂ξ(m+ n)(t,x; ξ).

Then
d
dt

∫
Rd+1 |χ(ξ;u)|dxdξ = −2

∫
Rd(m+ n)(t,x; 0)dx,

d
dt

∫
Rd+1 |χ(ξ; v)|dxdξ = −2

∫
Rd(p+ q)(t,x; 0)dx.
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Ideas of Proof: Conti.

Step 3. Multiplying the Eq. for u by χ(ξ; v) and the Eq. for v by χ(ξ;u),
and then adding together yield

d

dt

∫
Rd+1

(−2χ(ξ;u)χ(ξ; v))dxdξ

= 4
∑
i,j

∫
Rd+1

aij(ξ)∂xiχ(ξ;u)∂xjχ(ξ; v)dxdξ

−2

∫
Rd+1

{(m+ n)(t,x; ξ)(δ(ξ − v)− δ(ξ))

+(p+ q)(t,x; ξ)(δ(ξ − u)− δ(ξ))}dxdξ
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Ideas of Proof: Conti.

Step 4. Combining Step 2 with Step 3 yields

d
dt

∫
Rd |u(t,x)− v(t,x)|dx

= d
dt

∫
Rd+1 Q(t,x; ξ)dxdξ

= 4
∑
i,j

∫
Rd+1 aij(ξ)∂xiχ(ξ;u) ∂xjχ(ξ; v)dxdξ

−2
∫
Rd+1{(m+ n)(t,x; ξ) δ(ξ − v)

+(p+ q)(t,x; ξ) δ(ξ − u)}dxdξ
≤ 4

∑
i,j

∫
Rd+1 aij(ξ)∂xiu ∂xjv δ(ξ − u)δ(ξ − v)dxdξ

−2
∑
k

∫
Rd+1 δ(ξ − u)δ(ξ − v)

(
(∇x · βk(u))2 + (∇x · βk(v))2

)
dxdξ

≤ 4
∑
i,j

∫
Rd+1 aij(ξ)∂xiu ∂xjv δ(ξ − u)δ(ξ − v)dxdξ

−4
∑
k,i,j

∫
Rd+1 δ(ξ − u)δ(ξ − v)σki(u)σkj(v)∂xiu ∂xjv dxdξ

= 0.
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Rigorous Proof: Regularization, Truncation, and Limits

(i) ε = (ε1, ε2): ϕε(t,x) = 1
ε1
ϕ1( t

ε1
) 1
εd2
ϕ2( x

ε2
)

for ϕj ≥ 0,
∫
ϕj = 1, supp(ϕ1) ⊂ (−1, 0)

Set
χε := χε(ξ;u(t,x)) = (χ ∗(t,x) ϕε)(t,x; ξ),

mε := m ∗(t,x) ϕε, nε := n ∗(t,x) ϕε.

(ii) ψδ(ξ) = 1
δψ( ξδ ): Set χε,δ := χε ∗ ψδ.

(iii) ξ-Truncation: KR(ξ) = K( ξR)→ 1 as R→∞
for 0 ≤ K(ξ) ≤ 1;K(ξ) = 1 as |ξ| ≤ 1/2;K(ξ) = 0 as |ξ| ≥ 1.

Sending δ → 0 first and R→∞ second lead to

d

dt

∫
Rd+1

Qε(t,x; ξ)dxdξ ≤ 0 for any ε,

where Qε(t,x; ξ) = |χε(ξ;u)|+ |χε(ξ; v)| − 2χε(ξ;u)χε(ξ; v).
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Decay of Periodic Kinetic Solutions in L∞

Theorem (Chen-Perthame: PAMS 2009)

Let u0(x + Piei) = u0(x) be periodic with period TP := Πd
i=1[0, Pi] ⊂ Rd with

Pi > 0 and (ei)1≤i≤d the basis of Rd. Let the flux function f(u) and the diffusion
matrix A(u) satisfy the “nonlinearity-diffusivity” condition: For any δ > 0,

sup
|τ |+|κ|≥δ

∫
|ξ|≤‖u0‖∞

λ dξ

λ+ |τ + f ′(ξ) · κ|2 + (κ>A(ξ)κ)2
:= ωδ(λ) −−−−→

λ→0
0.

Then the kinetic solution u(t,x) ∈ L∞ is asymptotically decay:∫
TP

∣∣∣u(t,x)− 1
|TP |

∫
TP
u0(x)dx

∣∣∣ dx −→ 0 when t→∞.

For smooth coefficients, the “nonlinearity-diffusivity” condition is equivalent to

L
(
{ξ ∈ R : τ + f ′(ξ) · κ = 0,

∑d
i,j=1 aij(ξ)κiκj = 0}

)
= 0, ∀ τ2 + |κ|2 = 1

The well-posedness theory =⇒ There exists a unique entropy solution
u ∈ L∞([0,∞)× Rd) such that

u(t,x) is TP -periodic a.e. and ‖u(t, ·)‖L∞ ≤ ‖u0‖L∞
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Ideas of Proof—I: W.O.L.G., assume
∫
TP u0(x)dx = 0

Step 1. The well-posedness theory and the averaging compactness result
=⇒ The unique periodic entropy solution u(t, x) ∈ L∞ satisfies
(i) For any t2 > t1 > 0,∫

TP
|u(t2,x)| dx ≤

∫
TP
|u(t1,x)| dx,∫

TP
|u(t2,x)|2 dx ≤

∫
T
|u(t1,x)|2 dx (energy estimate).

=⇒ The function I(t) :=
∫
TP |u(t,x)|2 dx is a non-increasing, bounded

function, which implies that the following limit exists:

lim
t→∞

I(t) = I(∞) =: I∞ ∈ [0,∞).

Question: I∞ = 0 ??
(ii) When the flux function f(u) and the diffusion matrix A(u) satisfy

the nonlinearity-diffusivity condition, then the solution operator
u(t, ·) = Stu0(·) : L∞ → L1

loc is locally compact for t > 0.

Averaging Compactness: Lions-Perthame-Tadmor 1994; Also see

Perthame-Souganidis 1998, Jabin-Perthame 2002, Tadmor-Tao 2007
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Ideas of Proof for the Decay—II

Step 2. Translations. Set vk(t,x) := u(t+ k,x).
Then we find that, for t ≥ −k,

(i) ‖vk(t, ·)‖L∞ = ‖u(t+ k, ·)‖L∞ ≤ ‖u0‖L∞ ;

(ii) vk(t,x) is also a periodic entropy solution;

(iii)
∫
TP vk(t,x) dx =

∫
TP u0(x) dx = 0;

(iv) for each k > 0, χ(ξ; vk(t,x)) satisfies

∂tχ(ξ; vk) + f ′(ξ) · ∇xχ(ξ; vk)−∇x ·
(
A(ξ)∇xχ(ξ; vk)

)
= ∂ξ(m

k + nk)(t,x, ξ) in D′((−k,∞)× Rd+1)

Step 1 (ii) applied to vk,

there exists a subsequence vkj and
v(t,x) ∈ L∞

(
Rd+1

)
, with

∫
T v(t,x)dx = 0, such that

vkj (t,x)→ v(t,x) a.e. (t,x) ∈ Rd+1 as j →∞.
χ(ξ; vkj (t,x))→ χ(ξ; v(t,x)) a.e. (t,x, ξ) as j →∞.
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Ideas of Proof for the Decay—III

Step 3. The kinetic equation =⇒∫ T

−T

∫
TP

(mk + nk)(t,x, ξ) dtdxdξ ≤ 1

2

(
I(k − T )− I(k + T )

)
≤ 1

2
|TP |‖u0‖2L∞

=⇒ There exists a subsequence kj and a measure M(t,x, ξ) such that

(mkj + nkj )(t,x, ξ) ⇀ M(t,x, ξ) ≥ 0 weakly in M as j →∞.

Since I(t) converges, we have I(k − T )− I(T + k)→ 0 as k →∞, which
implies M(Rd+2) = 0. Letting k →∞ in the kinetic equation, then
χ(ξ; v) is a TP -periodic solution in D′(R× Rd+1) of

∂tχ+ f ′(ξ) · ∇xχ−∇x ·
(
A(ξ)∇xχ

)
= 0.

Multiplying the above equation by ξ and then integrating dxdξ, we have∫
TP

|v(t,x)|2dx = I∞ ∈ [0,∞), ∀ t ∈ R,

where I∞ = I(∞) is a constant, independent of t.
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Ideas of Proof for the Decay—IV

Step 4. The rest of the proof consists in showing that

such a function χ(ξ; v) is very particular and is in fact constant;

v(t,x) ≡ 0 a.e. for (t,x) ∈ R× Rd.

=⇒ I∞ = 0

=⇒ The proof is complete.
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Ideas of Proof for the Decay—V

Step 5. Claim: v(t,x) ≡ 0 a.e. for (t,x) ∈ R× Rd.

For a time-truncation function φ(t), 0 ≤ φ(t) ≤ 1, so that φχ belongs to
L2(R× TP × R), we have

∂t(φχ) + f ′(ξ) · ∇x(φχ)−∇x ·
(
A(ξ)∇x(φχ)

)
= χ∂tφ in D′(Rd+2).

Since φχ and χφt are periodic in x, we take the global Fourier transform
in t ∈ R and the local Fourier transform in x ∈ TP to obtain

ĝ(τ,κ; ξ) for (φχ)(t,x, ξ) and ĥ(τ,κ; ξ) for (χ∂tφ)(t,x, ξ) in L2,

where the frequencies κ = (κ1, · · · , κd) are discrete:

κi = n2π
Pi
, n = 0,±1,±2, · · · .

That is, for example, ĝ(τ,κ; ξ) = 1
|T|
∫
R
∫
T(φχ)(t,x, ξ) e−i(τt+κ·x)dtdx

so that (φχ)(t,x, ξ) = 1
2π

∑
κ

∫
R ĝ(τ,κ; ξ) ei(τt+κ·x)dτ.

Taking the global Fourier transform in t ∈ R and the local Fourier
transform in x ∈ T in the kinetic equation, we obtain(

i
(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

)
ĝ = ĥ.
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R ĝ(τ,κ; ξ) ei(τt+κ·x)dτ.

Taking the global Fourier transform in t ∈ R and the local Fourier
transform in x ∈ T in the kinetic equation, we obtain(

i
(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

)
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Ideas of Proof for the Decay—VI

Step 5.–Conti: Following usual ideas from the kinetic averaging lemmas,
we may introduce a free parameter λ > 0 (to be chosen later on) and
write (√

λ+ i
(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

)
ĝ = ĥ+

√
λĝ.

This leads to

ĝ = (ĥ+
√
λĝ)

1√
λ+ i

(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

.

Integrating in ξ and using the Cauchy-Schwarz inequality, we find

|φ̂v|2(τ,κ)

≤ 2
(∫

R
ĥ2dξ + λ

∫
R
ĝ2dξ

) ∫
R

∣∣∣ 1√
λ+ i

(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

∣∣∣2dξ.
The nonlinearity-diffusivity condition gives that, when κ 6= 0,

|φ̂v|2 ≤ Cωδ(λ)

λ

∫
R
ĥ2dξ + Cωδ(λ)

∫
R
|ĝ|2dξ for any δ ∈ (0, δ0).
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|ĝ|2dξ for any δ ∈ (0, δ0).

Gui-Qiang G. Chen (Oxford) Nonlinear PDEs of Mixed Type 7–11 January 2013 24 / 102



Ideas of Proof for the Decay—VI

Step 5.–Conti: Following usual ideas from the kinetic averaging lemmas,
we may introduce a free parameter λ > 0 (to be chosen later on) and
write (√

λ+ i
(
τ + f ′(ξ) · κ

)
+ κ>A(ξ)κ

)
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ĝ = (ĥ+
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Ideas of Proof for the Decay—VII

Step 5.–Conti: Notice that the frequencies κ are discrete and may
include κ = 0; When κ 6= 0, there exists δ0 > 0 such that |κ| ≥ δ0. Since

v(t,x) has mean zero in x over TP , we have φ̂v(τ, 0) = 0.

Thus,∑
κ6=0

∫
R
|φ̂v|2dτ ≤ Cωδ(λ)

λ

∑
κ 6=0

∫
R2

ĥ2dξdτ + Cωδ(λ)
∑
κ 6=0

∫
R2

|ĝ|2dξdτ

≤ Cωδ(λ)

λ

∫
R×T×R

(χφt)
2dtdxdξ + Cωδ(λ)

∫
R×T×R

|φχ|2dtdxdξ.
=⇒∫
R×TP

|φv|2dtdx ≤ Cωδ(λ)

λ

∫
R×T
|φt|2|v|dtdx+Cωδ(λ)

∫
R×TP

|φ|2|v|dtdx.

=⇒

I∞
∫
R |φ|2dt ≤ Cωδ(λ)

(∫
T
|v|2dx

)1/2( 1

λ

∫
R
|φt|2dt+

∫
R
|φ|2dt

)
≤ C

√
I∞ωδ(λ)

( 1

λ

∫
R
|φt|2dt+

∫
R
|φ|2dt

)
(∗)
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Ideas of Proof for the Decay—VII

Step 5.–Conti: Notice that the frequencies κ are discrete and may
include κ = 0; When κ 6= 0, there exists δ0 > 0 such that |κ| ≥ δ0. Since

v(t,x) has mean zero in x over TP , we have φ̂v(τ, 0) = 0. Thus,∑
κ6=0

∫
R
|φ̂v|2dτ ≤ Cωδ(λ)

λ

∑
κ 6=0

∫
R2

ĥ2dξdτ + Cωδ(λ)
∑
κ 6=0

∫
R2

|ĝ|2dξdτ

≤ Cωδ(λ)

λ

∫
R×T×R

(χφt)
2dtdxdξ + Cωδ(λ)

∫
R×T×R

|φχ|2dtdxdξ.
=⇒∫
R×TP

|φv|2dtdx ≤ Cωδ(λ)

λ

∫
R×T
|φt|2|v|dtdx+Cωδ(λ)
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R×TP

|φ|2|v|dtdx.

=⇒

I∞
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T
|v|2dx

)1/2( 1

λ
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R
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≤ C

√
I∞ωδ(λ)
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λ
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Ideas of Proof for the Decay—VIII

Step 5.–Conti:

I∞
∫
R |φ|2dt ≤ C

√
I∞ωδ(λ)

(
1
λ

∫
R |φt|2dt+

∫
R |φ|2dt

)
(∗)

Choosing first λ small and then
∫
R |φt|2 small, we conclude from (*) that

I∞ = 0, that is, v(t, x) ≡ 0 a.e. (t, x) ∈ R× Rd.
On the contrary, if I∞ > 0,

then we can choose λ small enough so that
Cωδ(λ)/

√
I∞ ≤ 1

2 and find from (*) that√
I∞

∫
R
|φ|2dt ≤ 2C

ωδ(λ)

λ

∫
R
|φt|2dt.

It remains to choose a sequence of functions φB(t) = 1 for |t| ≤ B, with

B a given large number and φ′B(t) = 2B−|t|
B for B ≤ |t| ≤ 2B, and

φB(t) = 0 for |t| ≥ 2B. In the above inequality, we find√
I∞ ≤ C

ωδ(λ)

λ

1

B2
,

where C > 0 is a constant independent of B and λ. When B tends to ∞,
this implies that I∞ must vanish, which is a contradiction.
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Further Results

L1-Error Estimates and Continuous Dependence
Chen-Karlsen: Trans. Amer. Math. Soc. 2006

More General Degenerate Diffusion-Convection-Reaction Equations

∂tu+∇ · f(t,x;u) = ∇ · (A(t,x;u)∇u) + c(t,x;u)

Chen-Karlsen: Comm. Pure Appl. Anal. 2005: Kinetic Equations:

∂tχ(ξ;u) + fu(t,x; ξ) · ∇χ(ξ;u)−∇ · (A(t,x; ξ)∇χ(ξ;u))
+(
∑

j fxj (t,x; ξ)− c(t,x; ξ))∂uχ(ξ;u) = ∂ξ(m+ n)(t,x; ξ).

Other Related Notions and Regularity Results of Weak Solutions

Bendahmane-Karlsen: Renormalized Solutions, SIMA 2004
Perthame-Souganidis: Dissipative Solutions, SIMA 2005, 2006

Tadmor-Terence Tao: Regularity of Solutions, CPAM 2008

Initial-Boundary Value Problems
· · · · · ·
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Outline

1 Nonlinear PDEs of Mixed Hyperbolic-Parabolic Type

2 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Fluid Mechanics

3 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Differential
Geometry

4 Nonlinear PDEs of No Type in Differential Geometry
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Bow Shock in Space generated by a Solar Explosion
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Blast Wave from a TNT Surface Explosion
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Shock Waves generated by Transonic Aircrafts
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Shock Waves generated by Supersonic Aircrafts
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Shock Reflection-Diffraction

? Shock Wave Patterns around a Wedge (airfoils, inclined ramps, · · · )
Gui-Qiang G. Chen (Oxford) Nonlinear PDEs of Mixed Type 7–11 January 2013 33 / 102



Ernst Mach: 1878

Complexity of Reflection-Diffraction Configurations:

Über den verlauf von funkenwellenin der ebene und im raume,
Sitzungsber. Akad. Wiss. Wien, 78 (1878), 819–838.
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John von Neumann: 1943

1. Oblique Reflection of Shocks, Explos. Res. Rep. 12 (1943),

Navy Dept., Bureau of Ordnance, Washington, DC., USA.

2. Refraction, Intersection, and Reflection of Shock Waves,
NAVORD Rep. 203-45 (1945), Navy Dept., Bureau of Ordnance,

Washington, DC, USA.

3. Collected Works, Vol. 6, Pergamon Press, 1963.
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Richard Courant and Kurt Otto Friedrichs: 1948

Supersonic Flow and Shock Waves,
Springer-Verlag: New York, 1948. xvi+464 pp.
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Experimental Analysis: 1940s–

Walker Bleakney: Palmer Physical Laboratory
Princeton University, USA

Irvine Israel Glass: Institute for Aerospace Studies
University of Toronto, Canada

LeRoy Freame Henderson: School of Aerospace, Mechanical and
Mechatronic Engineering, University of Sydney, Australia

Tatiana V. Bazhenova: Joint Institute of High Temperatures
Russian Academy of Sciences, Moscow, Russia

Kazuyoshi Takayama: Institute of Fluid Science
Tohoku University, Japan

· · · · · ·
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x/t

y/
t

1.0746 1.0748 1.075 1.0752 1.0754 1.0756
0.4098

0.41

0.4102

0.4104

0.4106

0.4108

Supersonic

Subsonic

A New Mach Reflection-Diffraction Pattern:

A. M. Tesdall and J. K. Hunter: TSD, 2002
A. M. Tesdall, R. Sanders, and B. L. Keyfitz: NWE, 2006; Full Euler, 2008

B. Skews and J. Ashworth: J. Fluid Mech. 542 (2005), 105-114
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Shock Reflection-Diffraction Patterns

Gabi Ben-Dor Shock Wave Reflection Phenomena
Springer-Verlag: New York, 307 pages, 1992.

Experimental results before 1991
Various proposals for transition criteria

Peter O. K. Krehl History of Shock Waves, Explosions and Impact
A Chronological and Biographical Reference
2009, XXII, 1288 p. 1200 illus., 300 in color.

Milton Van Dyke An Album of Fluid Motion
The parabolic Press: Stanford, 176 pages, 1982.

Various photographs of shock wave reflection phenomena
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Scientific Issues

Structure of the Shock Reflection-Diffraction Patterns
Transition Criteria among the Patterns
Dependence of the Patterns on the Parameters

wedge angle θw, adiabatic exponent γ ≥ 1

incident-shock-wave Mach number Ms

· · · · · ·
Interdisciplinary Approaches:

Experimental Data and Photographs

Large or Small Scale Computing
Colella, Berger, Deschambault, Glass, Glaz, Woodward,....
Anderson, Hindman, Kutler, Schneyer, Shankar, ...

Yu. Dem’yanov, Panasenko, ....

Asymptotic Analysis
Lighthill, Keller, Majda, Hunter, Rosales, Tabak, Gamba, Harabetian...

Morawetz: CPAM 1994

Rigorous Mathematical Analysis?? (Global Solutions)

Existence, Stability, Regularity, Bifurcation, · · · · · ·
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2-D Riemann Problem for Hyperbolic Conservation Laws

∂t U +∇x · F(U) = 0, x = (x1, x2) ∈ R2

or ∂tA(U,Ut,∇xU) +∇x ·B(U,Ut,∇xU) = 0

t=0

0

U

U
U

U
U

N

N-1

1

2
3

Books and Survey Articles:
Chang-Hsiao 1989, Glimm-Majda 1991, Li-Zhang-Yang 1998, Zheng 2001
Chen-Wang 2002, Serre 2005, Chen 2005, Dafermos 2010, · · ·

Numerical Solutions: Glimm-Klingenberg-McBryan-Plohr-Sharp-Yaniv 1985
Lax-Liu 1998, Schulz-Rinne-Collins-Glaz 1993, Chang-Chen-Yang 1995, 2000
Kurganov-Tadmor 2002, · · ·

Theoretical Roles: Asymptotic States and Attractors

Local Structure and Building Blocks...
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Riemann Solutions I

Gui-Qiang G. Chen (Oxford) Nonlinear PDEs of Mixed Type 7–11 January 2013 45 / 102



Riemann Solutions II
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Riemann Solutions vs General Entropy Solutions

Asymptotic States and Attractors
Observation (C–Frid 1998):

Let R(xt ) be the unique piecewise Lipschitz continuous Riemann
solution with Riemann data: R|t=0 = R0( x

|x|)

Let U(t,x) be a bounded entropy solution with initial data:

U |t=0 = R0(
x

|x|) +P0(x), R0 ∈ L∞(Sd−1), P0 ∈ L1 ∩L∞(Rd)

The corresponding self-similar sequence UT (t,x) := U(Tt, Tx) is
compact in L1

loc(R
d+1
+ )

=⇒ ess lim
t→∞

∫
Ω
|U(t, tξ)−R(ξ)| dξ = 0 for any Ω ⊂ Rd

Building Blocks and Local Structure
* Local structure of entropy solutions
* Building blocks for numerical methods
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Full Euler Equations: (t,x) ∈ R3
+ := (0,∞)× R2


∂t ρ+∇x · (ρv) = 0 (conservation of mass)

∂t(ρv) +∇x · (ρv ⊗ v) +∇xp = 0 (conservation of momentum)

∂t(
1

2
ρ|v|2 + ρe) +∇x ·

(
(
1

2
ρ|v|2 + ρe+ p)v

)
= 0 (conservation of energy)

Constitutive Relations: p = p(ρ, e)

ρ–density, v = (v1, v2)>–fluid velocity, p–pressure
e–internal energy, θ–temperature, S–entropy

For a polytropic gas: p = (γ − 1)ρe, e = cvθ, γ = 1 + R
cv
> 1

p = p(ρ, S) = κργeS/cv , e = e(ρ, S)
κ

γ − 1
ργ−1eS/cv ,

R > 0 may be taken to be the universal gas constant divided by the effective
molecular weight of the particular gas
cv > 0 is the specific heat at constant volume

γ > 1 is the adiabatic exponent, κ > 0 is any constant under scaling
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Euler Equations for Potential Flow: v = ∇Φ

{
∂tρ+∇x · (ρ∇xΦ) = 0, (conservation of mass)

∂tΦ + 1
2 |∇xΦ|2 + ργ−1

γ−1 =
ργ−1
0
γ−1 , (Bernoulli’s law)

or, equivalently,

∂tρ(∂tΦ,∇xΦ, ρ0) +∇x ·
(
ρ(∂tΦ,∇xΦ, ρ0)∇xΦ

)
= 0,

with

ρ(∂tΦ,∇xΦ, ρ0) =
(
ργ−1

0 − (γ − 1)(∂tΦ +
1

2
|∇xΦ|2)

) 1
γ−1 .

The potential flow equations and the full Euler equations coincide in
important regions of the solution and are very close each other in the other
regions in the configuration of regular shock reflection-diffraction.
Aerodynamics/Gas Dynamics: Fundamental PDE
J. Hadamard: Leçons sur la Propagation des Ondes, Hermann: Paris 1903,
· · ·
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Discontinuities of Solutions: Entropy Solutions

∂t U +∇x · F (U) = 0, x = (x1, x2) ∈ R2

An oriented surface Γ with unit normal n = (nt, n1, n2) ∈ R3 in the
(t,x)-space is a discontinuity of a piecewise smooth entropy solution U
with

U(t,x) =

{
U+(t,x), (t,x) · n > 0,

U−(t,x), (t,x) · n < 0,

if the Rankine-Hugoniot Condition is satisfied

(U+ − U−, F (U+)− F (U−)) · n = 0 along Γ.

The surface (Γ,n) is called a Shock Wave if the Entropy Condition (i.e.,
the Second Law of Thermodynamics) is satisfied:

(η(U+)− η(U−), q(U+)− q(U−)) · n ≥ 0 along Γ,

where (η(U), q(U)) = (−ρS,−ρvS).
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Two Types of Discontinuities

Shock Waves:

Characteristic Discontinuities: Vortex Sheets/Entropy Waves
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Initial-Boundary Value Problem: 0 < ρ0 < ρ1, u1 > 0

Initial condition at t = 0:

(v, p, ρ) =

{
(0, 0, p0, ρ0), |x2| > x1 tan θw, x1 > 0,

(u1, 0, p1, ρ1), x1 < 0;

Slip boundary condition on the wedge bdry: v · ν = 0.

 

(1) (0)

Shock

X

X

2

1

Invariant under the Self-Similar Scaling: (t,x) −→ (αt, αx), α 6= 0
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Self-Similar Solutions for the Full Euler Equations
(v, p, ρ)(t,x) = (v, p, ρ)(ξ, η), (ξ, η) = (x1

t
, x2
t

)



(ρU)ξ + (ρV )η + 2ρ = 0,

(ρU2 + p)ξ + (ρUV )η + 3ρU = 0,

(ρUV )ξ + (ρV 2 + p)η + 3ρV = 0,

(U(
1

2
ρq2 +

γp

γ − 1
))ξ + (V (

1

2
ρq2 +

γp

γ − 1
))η + 2(

1

2
ρq2 +

γp

γ − 1
) = 0,

where q =
√
U2 + V 2 and (U, V ) = (v1− ξ, v2− η) is the pseudo-velocity.

Eigenvalues: λ0 = V
U (repeated), λ± =

UV±c
√
q2−c2

U2−c2 ,

where c =
√
γp/ρ is the sonic speed

When the flow is pseudo-subsonic: q < c, the system consists of

2-transport equations: Compressible vortex sheets
2-nonlinear equations of mixed hyperbolic-elliptic type: Two kinds of
transonic flow: Transonic shocks and sonic curves
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Boundary Value Problem in the Unbounded Domain

Slip boundary condition on the wedge boundary:

(U, V ) · ν = 0 on ∂D

Asymptotic boundary condition as ξ2 + η2 →∞:

(U + ξ, V + η, p, ρ)→
{

(0, 0, p0, ρ0), ξ > ξ0, η > ξ tan θw,

(u1, 0, p1, ρ1), ξ < ξ0, η > 0.
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Normal Reflection

When θw = π
2 , the reflection becomes the normal reflection, for

which the incident shock normally reflects and the reflected shock is
also a plane.

(1)

(2) location of 

incident shock

reflected 

  shock

sonic circ
le

sonic circle

elliptic

hyperbolic
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von Neumann Criterions & Conjectures (1943)

Local Theory for Regular Reflection (cf. Chang-C. 1986)
∃ θd = θd(Ms, γ) ∈ (0, π2 ) such that, when θW ∈ (θd,

π
2 ), there exist

two states (2) = (Ua2 , V
a
2 , p

a
2 , ρ

a
2) and (U b2 , V

b
2 , p

b
2, ρ

b
2) such that

|(Ua2 , V a2 )| > |(U b2 , V b2 )| and |(U b2 , V b2 )| < cb2.

Stability as θW → π
2 (C-Feldman 2005): Choose (2) = (Ua2 , V

a
2 , p

a
2 , ρ

a
2)

Sonic Conjecture: There exists a Regular Reflection Configuration

when θW ∈ (θs,
π
2 ), for θs > θd such that |(Ua2 , V a2 )| > ca2 at A.

Detachment Conjecture: There exists a Regular Reflection

Configuration when the wedge angle θW ∈ (θd,
π
2 ).

Subsonic?

Sonic Circle

   of (2)

Reflected 

  shock

Incident

 shock

A

_
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Detachment Criterion vs Sonic Criterion θc > θs: γ = 1.4

Courtesy of W. Sheng and G. Yin: ZAMP, 2008
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Global Theory?

(2)

 

 

(1)

(0)

D
S

subsonic?
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Euler Eqs. under Decomposition: (U, V ) = ∇ϕ+W, ∇ ·W = 0



∇ · (ρ∇ϕ) + 2ρ+∇ · (ρ∇W ) = 0,

∇(
1

2
|∇ϕ|2 + ϕ) +

1

ρ
∇p = (∇ϕ+W ) · ∇W + (∇2ϕ+ I)W,

∇ · ((∇ϕ+W )ω) + ω +∇× (
1

ρ
∇p) = 0,

(∇ϕ+W ) · ∇S = 0.

S = cv ln(pρ−γ)–Entropy; ω = curlW = curl(U, V )–Vorticity

When S = const., W = 0, and ω = 0 on a curve transverse to the fluid direction,

then, in the region of the fluid trajectories past the curve,
W = 0, S = const. ⇒ W = 0, p = const. ργ

Then we obtain the Potential Flow Equation (by scaling):
∇ · (ρ∇ϕ) + 2ρ = 0,

1

2
(|∇ϕ|2 + ϕ) +

ργ−1

γ − 1
= const. > 0.
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Potential Flow Dominates the Regular Reflection, provided
that ϕ ∈ C1,1 across the Sonic Circle

Potential Flow Equation :

{
∇ · (ρ∇ϕ) + 2ρ = 0,
1
2 |∇ϕ|2 + ϕ+ ργ−1

γ−1 =
ργ−1
0
γ−1 , γ > 1
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Potential Flow Equation

∇ · (ρ(∇ϕ, ϕ, ρ0)∇ϕ) + 2ρ(∇ϕ, ϕ, ρ0) = 0

Incompressible: ρ = const. =⇒ ∆ϕ+ 2 = 0

Elliptic: |∇ϕ| < c∗(ϕ, ρ0) :=
√

2
γ+1(ργ−1

0 − (γ − 1)ϕ)

Hyperbolic: |∇ϕ| > c∗(ϕ, ρ0) :=
√

2
γ+1(ργ−1

0 − (γ − 1)ϕ)

Second-order nonlinear equations of
mixed hyperbolic-elliptic type
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Simpler Nonlinear Models and Equations of Mixed Type

Transonic Small Disturbance Equation:(
(u− x)ux +

u

2

)
x

+ uyy = 0

or, for v = u− x, v vxx + vyy + l.o.t. = 0
Analysis: Morawetz, Hunter, Canic-Keyfitz-Lieberman-Kim, · · ·

Pressure-Gradient Equations, Nonlinear Wave Equations

Y. Zheng, Canic-Keyfitz-Kim-Jegdic, C-Deng-Xiang (2011), · · ·

Steady Potential Flow Equation of Aerodynamics

∇ · (ρ(∇ϕ, ρ0)∇ϕ) = 0

Elliptic: |∇ϕ| < c∗(ρ0) :=
√

2
γ+1ρ

γ−1
0

Hyperbolic: |∇ϕ| > c∗(ρ0)
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Steady Potential Flow Equation of Aerodynamics

∇ · (ρ(∇ϕ, ρ0)∇ϕ) = 0

Pure Elliptic Case: Subsonic Flow past an Obstacle

Shiffman, L. Bers, Finn-Gilbarg, G. Dong, · · ·
Degenerate Elliptic Case: Subsonic-Sonic Flows

Shiffman, Chen-Dafermos-Slemrod-Wang, Elling-Liu, Xin, · · ·
Pure Hyperbolic Case (even 2-D Full Euler Eqs.):

Gu, Li, Schaeffer, S. Chen, Xin-Yin, Y. Zheng, · · ·
T.-P. Liu-Lien, S. Chen-Zhang-Wang, Chen-Zhang-Zhu, · · ·
Elliptic-Hyperbolic Mixed Case

Transonic Nozzles: Chen-Feldman, S. Chen, Xin-Yin, J. Chen, Yuan...
Wedge or Conical Body: S. Chen, B. Fang, Chen-Fang, · · ·
Transonic Flow past an Obstacle: Morawetz, Chen-Slemrod-Wang,...
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Global Theory?

(2)

 

 

(1)

(0)

D
S

subsonic?
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Setup of the Problem for ψ := ϕ− ϕ2 in Ω

div (ρ(∇ψ,ψ, ξ, η, ρ0)(∇ψ − (ξ − u2, η − v2))) + l.o.t. = 0 (∗)
∇ψ · ν|wedge = 0
ψ|Γsonic = 0 =⇒ ψν |Γsonic = 0
Rankine-Hugoniot Conditions on Shock S:

[ψ]S = 0
[ρ(∇ψ,ψ, ξ, η, ρ0)(∇ψ − (ξ − u2, η − v2)) · ν]S = 0 (**)

Free Boundary Problem:

∃S = {ξ = f(η)} such that f ∈ C1,α, f ′(0) = 0 and

Ω+ = {ξ > f(η)} ∩D= {ψ < ϕ1 − ϕ2} ∩D,
S = {ψ = ϕ1 − ϕ2} ∩D (free boundary as a level set)

ψ ∈ C1,α(Ω+) ∩ C2(Ω+)

{
solves (*) in Ω+,
is subsonic in Ω+

with (ψ,ψν)|Γsonic = 0, ∇ψ · ν|wedge = 0
(ψ, f) satisfy the R-H Condition: Free Boundary Condition (**)
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Theorem (Global Theory for Shock Reflection-Diffraction
C.–Feldman: PNAS 2005; Annals of Math. 2010)

∃ θc = θc(ρ0, ρ1, γ) ∈ (0, π2 ) such that, when θW ∈ (θc,
π
2 ), there exist

(ϕ, f) satisfying

ϕ ∈ C∞(Ω) ∩ C1,α(Ω̄) and f ∈ C∞(P1P2) ∩ C2({P1P2});

ϕ ∈ C1,1 across the sonic circle P1P4;

ϕ −→ ϕNR in W 1,1
loc as θW → π

2 .

⇒ Φ(t,x) = tϕ(xt ) + |x|2
2t , ρ(t,x) =

(
ργ−1

0 − (γ − 1)(Φt + 1
2 |∇Φ|2)

) 1
γ−1

form a solution of the IBVP.

(0)

(1)

(2)

Incident
Shock

Sonic Circle

Reflected
Shock

ξ

P1

P4

θω

Ω

P2 P3

P0

Gui-Qiang G. Chen (Oxford) Nonlinear PDEs of Mixed Type 7–11 January 2013 67 / 102



Approach for the Large Wedge-Angle Case

Cutoff Techniques by Shiffmanization

⇒ Elliptic Free-Boundary Problem with Elliptic Degeneracy on Γsonic

Iteration Scheme for the Free Boundary Problem

Chen-Feldman: J. Amer. Math. Soc. 2003

Domain Decomposition

Near Γsonic; Away from Γsonic

C1,1 Parabolic Estimates near the Degenerate Elliptic
Curve Γsonic

Corner Singularity Estimates

In particular, when the Elliptic Degenerate Curve Γsonic Meets
the Free Boundary, i.e., the Transonic Shock

Removal of the Cutoff

Require the Elliptic-Parabolic Estimates
with respect to the Large Wedge-Angle
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Near Γsonic away from P1: Mixed Elliptic-Hyperbolic Type

Linear: 2xψxx + 1
c22
ψyy − ψx ∼ 0

ψ∼Ax3/2 + h.o.t. when x ∼ 0

Nonlinear: (2x− (γ + 1)ψx)ψxx + 1
c22
ψyy−ψx ∼ o(x2)

Ellipticity: ψx ≤ 2x
γ+1

Apriori Estimate: |ψx| ≤ 4x
3(γ+1)

More precisely, for Ω′ = Ω ∩ {x < ε} with small ε > 0,∑
0≤k+l≤2

sup
z∈Ω′

(
xk+l/2−2|∂kx∂lyψ(z)|

)
+
∑
k+l=2

sup
z,z̃∈Ω′,z 6=z̃

(
min(x, x̃)α−l/2

|∂kx∂lyψ(z)− ∂kx∂lyψ(z̃)|
δ

(par)
α (z, z̃)

)
≤ C.

Asymptotics: ψ “∼” x2

2(γ+1) + h.o.t. when x ≈ 0
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Optimal Regularity and Sonic Conjecture

Theorem (Optimal Regularity; Bae-Chen-Feldman: Invent. Math. 2009):
ϕ ∈ C1,1 but NOT in C2 across P1P4;
ϕ ∈ C∞(Ω\(P1P4∪{P3}))∩C2,α(Ω\{P1, P3})∩C1,1(Ω\{P3})∪C1,α(Ω)
f ∈ C∞(P1P2) ∩ C2(P1P2).

=⇒ C-Feldman 2011: The global existence and the optimal
regularity hold up to the sonic wedge-angle θs for any γ ≥ 1
for u1 < c1; u1 ≥ c1. (the von Neumann’s sonic conjecture)

(0)

(1)

(2)

Incident
Shock

Sonic Circle

Reflected
Shock

ξ

P1

P4

θω

Ω

P2 P3

P0
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Existence for θw ∈ (θsonic,
π
2 )

Incident
 shock

(0)(1)

(2)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1

c1 > u1

Issues: As the wedge angle becomes smaller, prove the shock does
not hit

(i) Wedge boundary,

(ii) Symmetry line Σ,

(iii) Sonic circle ∂Bc1(O1) of state (1), where O1 = (u1, 0),

(iv) Vertex point P3.

() September 15, 2010 1 / 2
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Existence for θw ∈ (θsonic,
π
2 )

Incident
 shock

(0)(1)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1

c1 < u1

Issues: As the wedge angle becomes smaller, prove the shock does
not hit

(i) Wedge boundary,

(ii) Symmetry line Σ,

(iii) Sonic circle ∂Bc1(O1) of state (1), where O1 = (u1, 0),

(iv) Vertex point P3. This is unclear in the case c1 < u1.

() September 15, 2010 1 / 1
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Existence for θw ∈ (θsonic,
π
2 )

Incident
 shock

(0)(1)

Sonic circle

of state (1)

P0P1

P2 = P3

P4

c1 < u1

attached

Is attached case possible for regular reflection?

For irregular Mach reflection attached case appears to be
possible, see Fig. 238 (page 144) of

M. Van Dyke, An Album of Fluid Motion,
The Parabolic Press: Stanford, 1982.

() September 15, 2010 1 / 1
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Existence for θw ∈ (θsonic,
π
2 )

Incident
 shock

(0)(1)

(2)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1

c1 ≥ u1

Theorem (C-Feldman). If ρ1 > ρ0 > 0, γ > 1 satisfy u1 ≤ c1,
then a regular reflection solution ϕ as our Theorem (2005) exists
for all wedge angles θw ∈ (θsonic,

π
2 ).

The solution satisfies all properties stated in our Theorem (2005).
In particular, ϕ is C1,1 near and across the sonic arc P1P4, and

the shock is a C2 curve, and ϕ2 ≤ ϕ ≤ ϕ1 in Ω.
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Existence for θw ∈ (θsonic,
π
2 )

Incident
 shock

(0)(1)

Sonic circle
of state (1)

Sonic circle
of  state (2)

Ω P0

P1

P2

P3

P4

ΣO1

c1 < u1

Theorem (C-Feldman). If ρ1 > ρ0 > 0, γ > 1 satisfy u1 > c1,
then a regular reflection solution ϕ as in our Theorem (2005)
exists for all wedge angles θw ∈ (θc,

π
2 ), where

-either θc = θsonic,

-or θc > θsonic and for θw = θc there exists an attached weak

solution of regular reflection-diffraction problem.
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Large Angle =⇒ Sonic Angle θsonic: Admissible Solutions

Incident
 shock

(2)

Sonic circle
of state (1)

Sonic circle
of  state (2)

(1) (0)

Ω P0

P1

P2

P3

P4

ΣO1

S0

S1

The solution ϕ is called an admissible solution if
1 ϕ ∈ C 1(P0P1P2P3P4), and P0P1P2 is C 1 curve,
2 Equation is (strictly) elliptic in Ω \ P1P4.
3 ϕ2 ≤ ϕ ≤ ϕ1 in Ω.
4 ϕ1 − ϕ in Ω monotonically non-increases in directions S0 and S1.

() September 15, 2010 1 / 1
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Large Wedge Angle =⇒ Sonic Angle θsonic

Class of Admissible Solutions including the Global Solutions
Constructed for the Large Wedge-Angle Case

Apriori Estimates

Separation of the Diffracted Shock from the Wedge,
the Symmetric Line, the Sonic Circle

Boundedness of the Diffracted Shock

Compactness

· · · · · ·
· · · · · ·
Continuity Method/Degree Theory

=⇒ Existence of Admissible Solutions for the Wedge Angle
Up to the Sonic Angle or the Attached Angle

=⇒ von Neumann’s Sonic Conjecture: Chen-Feldman 2011

=⇒ von Neumann’s Detachment Conjecture: C-Feldman,Nov.2012
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Large Angles =⇒ Sonic Angle θsonic
Approach: Apriori Estimates and Compactness

(a) Establish the strict inequalities in (iii) and the strict monotonicities in
(iv) (thus ϕ1 − ϕ strictly decreases for a cone of directions, thus the
shocks are Lipschitz graphs with uniform Lip estimates)

(b) Establish uniform bounds on diam(Ω), ‖ϕ‖C0,1(Ω), the monotonicity
of ϕ− ϕ2 near the sonic arc;

(c) Establish a uniform positive lower bound for the distance from the
shock to the wedge, the sonic circle of state (1), and the uniform
separation of the shock and the symmetry line;

(d) Make uniform regularity estimates for the solution and its shock in
weighted/scaled Hölder norms (including near the sonic arc, which
imply C1 across the sonic arc);

(e) Prove that the uniform limit of admissible solutions is an admissible
solution, and the uniform limit of the sequence of shocks is a shock.

Continuity Method/Degree Theory=⇒Existence of Admissible Solutions
for Large Wedge-Angle: =⇒ von Neumann’s Sonic Conjecture
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Mach Reflection: Full Euler Equations

? Right space for vorticity ω?

? Chord-arc z(s) = z0 +
∫ s

0 e
ib(s)ds, b ∈ BMO?
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Self-Similar Solutions for the Full Euler Equations
(v, p, ρ)(t,x) = (v, p, ρ)(ξ, η), (ξ, η) = (x1

t
, x2
t

)



(ρU)ξ + (ρV )η + 2ρ = 0,

(ρU2 + p)ξ + (ρUV )η + 3ρU = 0,

(ρUV )ξ + (ρV 2 + p)η + 3ρV = 0,

(U(
1

2
ρq2 +

γp

γ − 1
))ξ + (V (

1

2
ρq2 +

γp

γ − 1
))η + 2(

1

2
ρq2 +

γp

γ − 1
) = 0,

where q =
√
U2 + V 2 and (U, V ) = (v1− ξ, v2− η) is the pseudo-velocity.

Eigenvalues: λ0 = V
U (repeated), λ± =

UV±c
√
q2−c2

U2−c2 ,

where c =
√
γp/ρ is the sonic speed

When the flow is pseudo-subsonic: q < c, the system consists of

2-transport equations: Compressible vortex sheets
2-nonlinear equations of mixed hyperbolic-elliptic type: Two kinds of
transonic flow: Transonic shocks and sonic curves
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Further Problem 1: Shock Diffraction by the Wedge Corner

Experimental/Asymptotic Results: Bargman (1945), Lighthill (1949),
Fletcher (1951), · · ·

Rigorous Results: Nonlinear Wave System: Chen-Deng-Xiang 2011
Potential Flow Equation: Chen-Xiang 2012
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Further Problem 2: Supersonic Flow onto a Solid Wedge

? Two Steady Solutions with Shocks around the Solid Wedge

Courant-Friedrichs (1948): “The question arises which of the two actually
occurs. It has frequently been stated that the strong one is unstable and that,
therefore, only the weak one could occur.
A convincing proof of this instability has apparently never been given”.

von Neumann’s celebrated panel discussions (Aug. 17, 1949) on

the existence and uniqueness of multiplicity of solutions of the aerodynamical

equations: von Neumann, Burgers, Heisenberg, Liepmann, von Karman......
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Shock Problem: Supersonic Flow onto a Solid Wedge

? Two Steady Solutions with Shocks around the Solid Wedge

von Neumann’s celebrated panel discussions (Aug. 17, 1949):
Chairman: Dr. J. von Neumann, Discussion on the existence and uniqueness

or multiplicity of solutions of the aerodynamical equations,
Bull. Amer. Math. Soc. 47 (2010), 145–154.
Members: von Neumann, Burgers, Heisenberg, Liepmann, von Karman...

Serre, D.: von Neumann’s comments about existence and uniqueness
for the initial-boundary value problem in gas dynamics,
Bull. Amer. Math. Soc. 47 (2010), 139–144.

Liu, T.-P.: Multi-dimensional gas flow: some historical perspectives,

Bull. Institute of Math., Academia Sinica, 6 (2011), 269–291.
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Shock Problem: Prandtl-Meyer Reflection Configuration

Elling-Liu’s Numerical Simulations (2009)

? There Exists a Global Solution of the Prandtl-Meyer Reflection
Configuration when the wedge angle is less than the sonic angle so that
the state behind of the attached shock at the tip of wedge is supersonic.
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Boundary Value Problem in the Unbounded Domain

Slip boundary condition on the wedge boundary:

Dϕ · ν = 0 on ∂W

Asymptotic boundary condition as r :=
√
ξ2 + η2 →∞:

Dϕ− (u∞ − ξ,−η)→ 0 η > ξ tan θw, ξ > 0.

Locations of two shocks SO and SN are apriori known.

*Ref: Bae-Chen-Feldman: arXiv 0389822 (2011); Preprint 2012
Also cf. Elling-Liu: CPAM 2009
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Outline

1 Nonlinear PDEs of Mixed Hyperbolic-Parabolic Type

2 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Fluid Mechanics

3 Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Differential
Geometry

4 Nonlinear PDEs of No Type in Differential Geometry
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Nash Isometric Embedding Theorem  
                                   (Ck embedding theorem,            ) 3≥k

the Subject of the  
Hollywood  Movie   
A Beautiful Mind 

   Important for Applications 

Lowest Target Dimension? 

Optimal or Assigned Regularity? 
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*Nonlinear  PDEs of Mixed Elliptic-Hyperbolic Equations: Sign of 
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Surfaces with Gauss Curvature of Changing Sign

K<0

K>0

Gauss Curvature K on a Torus:
Toroidal Shell or Doughnut Surface
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Fluid Dynamics Formalism for Isometric Embedding

Set L = ρv2 + p, M = −ρuv, N = ρu2 + p, q2 = u2 + v2.
Choose p as the Chaplygin type gas: p = −1/ρ.

The Codazzi Equations become the Momentum Equations:{
∂x(ρuv) + ∂y(ρv

2 + p) = −(ρv2 + p)Γ
(2)
22 − 2ρuvΓ

(2)
12 − (ρu2 + p)Γ

(2)
11 ,

∂x(ρu2 + p) + ∂y(ρuv) = −(ρv2 + p)Γ
(1)
22 − 2ρuvΓ

(1)
12 − (ρu2 + p)Γ

(1)
11 ,

and the Gauss Equation becomes the Bernoulli Relation:

p = −
√
q2 +K.

Define the sound speed: c2 = p′(ρ). Then c2 = 1/ρ2 = q2 +K.

c2 > q2 and the “flow” is subsonic when K > 0,
c2 < q2 and the “flow” is supersonic when K < 0,
c2 = q2 and the “flow” is sonic when K = 0.

?? Existence/Continuity of Isometric Embedding
⇐ Weak Convergence Methods: Compensated Compactness

Chen-Slemrod-Wang: Commun. Math. Phys. 2010
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(1)
22 − 2ρuvΓ

(1)
12 − (ρu2 + p)Γ

(1)
11 ,

and the Gauss Equation becomes the Bernoulli Relation:

p = −
√
q2 +K.

Define the sound speed: c2 = p′(ρ). Then c2 = 1/ρ2 = q2 +K.
c2 > q2 and the “flow” is subsonic when K > 0,
c2 < q2 and the “flow” is supersonic when K < 0,
c2 = q2 and the “flow” is sonic when K = 0.

?? Existence/Continuity of Isometric Embedding
⇐ Weak Convergence Methods: Compensated Compactness

Chen-Slemrod-Wang: Commun. Math. Phys. 2010
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Gauss-Codazzi-Ricci System for Isometric Embedding of
d-D Riemannian Manifolds into RN : d ≥ 3

Gauss equations: hajih
a
kl − hakihajl = Rijkl

Codazzi equations:

∂halj
∂xk

−
∂hakj
∂xl

+ Γmlj h
a
km − Γmkjh

a
lm + κakbh

b
lj − κalbhbkj = 0

Ricci equations:

∂κalb
∂xk

− ∂κakb
∂xl

− gmn
(
hamlh

b
kn − hamkhbln

)
+ κakcκ

c
lb − κalcκckb = 0

*Rijkl is the Riemann curvature tensor, κakb = −κbka is the coefficients of
the connection form (torsion coefficients) on the normal bundle; the
indices a, b, c run from 1 to N , and i, j, k, l,m, n run from 1 to d ≥ 3.

*The Gauss-Codazzi-Ricci system has no type,
neither purely hyperbolic nor purely elliptic for general
Riemann curvature tensor Rijkl

*Bryant-Griffiths-Yang (1983): Duke Math. J., 102 pages.

*Chen-Slemrod-Wang (2012): Positive Symmetry & Entropy
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Weak Continuity & Rigidity
of the Gauss-Codazzi-Ricci System
and the Embedded Surfaces in Geometry

Theorem (Chen-Slemrod-Wang: Proc. Amer. Math. Soc. 2010)

Let (ha,εij , κ
a,ε
lb ) be a sequence of solutions to the

Gauss-Codazzi-Ricci system, which is uniformly bounded
in Lp, p > 2. Then the weak limit vector field (haij, κ

a
lb) of

the sequence (ha,εij , κ
a,ε
lb ) in Lp is still a solution to the

Gauss-Codazzi-Ricci system.

There exists a minimizer (haij, κ
a
lb) for the minimization

problem:

min
S
‖(h, κ)‖pLp(Ω) := min

S

∫
Ω

√
|g|
(
|hijhij|

p
2 + |κlbκlb|

p
2

)
dx,

where S is the set of weak solutions to the system.
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Observations: Div-Curl Structure of the GCR System

div (

k︷ ︸︸ ︷
0, · · · , 0, ha,εlj , 0, · · · ,−h

a,ε
kj︸ ︷︷ ︸

l

, 0, · · · , 0) = R1, curl (ha,ε1j , h
a,ε
2j , · · · , ha,εdj ) = R2,

div (

k︷ ︸︸ ︷
0, · · · , 0, κa,εlb , 0, · · · ,−κ

a,ε
kb︸ ︷︷ ︸

l

, 0, · · · , 0) = R3, curl (κa,ε1b , κ
a,ε
2b , · · · , κ

a,ε
db ) = R4,

div (

k︷ ︸︸ ︷
0, · · · , 0, hb,εli , 0, · · · ,−h

b,ε
ki︸ ︷︷ ︸

l

, 0, · · · , 0) = R5, curl (hb,ε1i , h
b,ε
2i , · · · , hb,εdi ) = R6,

div (

k︷ ︸︸ ︷
0, · · · , 0, κb,εlc , 0, · · · ,−κ

b,ε
kc︸ ︷︷ ︸

l

, 0, · · · , 0) = R7, curl (κb,ε1c , κ
b,ε
2c , · · · , κb,εdc ) = R8.
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Lemma (Div-Curl Lemma: Murat 1978, Tartar 1979)

Let Ω ⊂ Rd, d ≥ 2, be open bounded. Let p, q > 1 such that 1
p + 1

q = 1.
Assume that, for any ε > 0, two fields

uε ∈ Lp(Ω;Rd), vε ∈ Lq(Ω;Rd)

satisfy the following:

i uε ⇀ u weakly in Lp(Ω;Rd) as ε→ 0;

ii vε ⇀ v weakly in Lq(Ω;Rd) as ε→ 0;

iii div uε are confined in a compact subset of W−1,p
loc (Ω;R);

iv curl vε are confined in a compact subset of W−1,q
loc (Ω;Rd×d).

Then the scalar product of uε and vε are weakly continuous:

uε · vε −→ u · v

in the sense of distributions.

*Various variations of this lemma for different applications/purposes.
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Observations: Div-Curl Structure of the GCR System

div (

k︷ ︸︸ ︷
0, · · · , 0, ha,εlj , 0, · · · ,−h

a,ε
kj︸ ︷︷ ︸

l

, 0, · · · , 0) = R1, curl (ha,ε1j , h
a,ε
2j , · · · , ha,εdj ) = R2,

div (

k︷ ︸︸ ︷
0, · · · , 0, κa,εlb , 0, · · · ,−κ

a,ε
kb︸ ︷︷ ︸

l

, 0, · · · , 0) = R3, curl (κa,ε1b , κ
a,ε
2b , · · · , κ

a,ε
db ) = R4,

div (

k︷ ︸︸ ︷
0, · · · , 0, hb,εli , 0, · · · ,−h

b,ε
ki︸ ︷︷ ︸

l

, 0, · · · , 0) = R5, curl (hb,ε1i , h
b,ε
2i , · · · , hb,εdi ) = R6,

div (

k︷ ︸︸ ︷
0, · · · , 0, κb,εlc , 0, · · · ,−κ

b,ε
kc︸ ︷︷ ︸

l

, 0, · · · , 0) = R7, curl (κb,ε1c , κ
b,ε
2c , · · · , κb,εdc ) = R8.

Weak Convergence: Div-Curl =⇒
ha,εlj h

b,ε
ki − h

a,ε
kj h

b,ε
li ⇀ haljh

b
ki − hakjhbli,

κa,εkb κ
b,ε
lc − κ

a,ε
lb κ

b,ε
kc ⇀ κakbκ

b
lc − κalbκbkc,

κa,εkb h
b,ε
li − κ

a,ε
lb h

b,ε
ki ⇀ κakbh

b
li − κalbhbki

in the sense of distributions as ε→ 0
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Weak Continuity & Rigidity
of the Gauss-Codazzi-Ricci System
and the Embedded Surfaces in Geometry

Theorem (Chen-Slemrod-Wang: Proc. Amer. Math. Soc. 2010)

Let (ha,εij , κ
a,ε
lb ) be a sequence of solutions to the

Gauss-Codazzi-Ricci system, which is uniformly bounded
in Lp, p > 2. Then the weak limit vector field (haij, κ

a
lb) of

the sequence (ha,εij , κ
a,ε
lb ) in Lp is still a solution to the

Gauss-Codazzi-Ricci system.

There exists a minimizer (haij, κ
a
lb) for the minimization

problem:

min
S
‖(h, κ)‖pLp(Ω) := min

S

∫
Ω

√
|g|
(
|hijhij|

p
2 + |κlbκlb|

p
2

)
dx,

where S is the set of weak solutions to the system.
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Weak Continuity of Nonlinear Functions/Functionals

Rigidity of Embedded Surfaces in Geometry:

The weak limit of isometrically embedded surfaces is still an
isometrically embedded surface in Rd for any Riemann
curvature tensor Rijkl without restriction

Motivation/Connection: Theory of Polyconvexity in
Nonlinear Elasticity by Ball (1977):

Weak Continuity of Determinants, · · ·
Stronger Compactness Framework for the
Gauss-Codazzi-Ricci System (CSD 2010): Given any
sequence of approximate solutions to this system which is
uniformly bounded in L2 and has reasonable bounds on the
errors made in the approximation (the errors are confined in a
compact subset of H−1

loc ), then the approximating sequence has
a weakly convergent subsequence whose limit is still a solution
of the Gauss-Codazzi-Ricci system.
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Concluding Remarks

Nonlinear Partial Differential Equations of Mixed
Hyperbolic-Elliptic Type, or even No Type,

naturally arise in many fundamental problems in

Fluid Mechanics
Differential Geometry
Materials Science: Phase Transition, ...
Relativity: Non-Vacuum State, Matter, ...

Optimization, Dynamical Systems
......

The solution to these fundamental problems in the areas
greatly requires a deep understanding of

Nonlinear Partial Differential Equations of
Mixed Hyperbolic-Elliptic Type
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Concluding Remarks: Conti.

During the last half century, the two different types of nonlinear
PDEs have been separately studied.
Focus: Mathematical tools to understand different properties

of solutions; Great progress has been made.

With these achievements, it is the time to initiate a
comparable attack:

To analyze systematically nonlinear PDEs of mixed type;
To explore unified mathematical approaches, ideas, and

techniques to deal with such problems.
In particular, we have presented several fundamental examples of
such PDEs, which indicate that some of the mixed-type
problems have been ready to be tractable.

Many important mixed-type problems are wide open and
very challenging, which require further new ideas,
approaches, techniques, ..., and deserve our special
attention and true effort.

Gui-Qiang G. Chen (Oxford) Nonlinear PDEs of Mixed Type 7–11 January 2013 102 / 102


	Nonlinear PDEs of Mixed Hyperbolic-Parabolic Type
	Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Fluid Mechanics
	Nonlinear PDEs of Mixed Hyperbolic-Elliptic Type in Differential Geometry
	Nonlinear PDEs of No Type in Differential Geometry

