Yang-Baxter maps and integrability

Alexander Veselov, Loughborough University, UK

Complement to the lectures at UK-Japan Winter School, Manchester 2010
History

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

E.K. Sklyanin

Classical limits of SU(2)-invariant solutions of the Yang-Baxter equation.

V.G. Drinfeld

On some unsolved problems in quantum group theory.

Dynamical point of view:

A.P. Veselov

Yang-Baxter maps and integrable dynamics.

Yang-Baxter equation in quantum theory and statistical mechanics

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:
Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

Yang-Baxter equation in quantum theory and statistical mechanics

Set-theoretical solutions of quantum Yang-Baxter equation:

Dynamical point of view:

Quantum Yang-Baxter equation

\[R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12} \]

where
\[R : \mathcal{V} \otimes \mathcal{V} \to \mathcal{V} \otimes \mathcal{V} \]

is a linear operator.

\[\frac{1}{2} \left(\sum_{i,j=1}^{n} R_{ij} \right) = \frac{1}{2} \left(\sum_{i,j=1}^{n} R_{ij} \right) \]

Figure: Yang-Baxter relation

Important consequence: Transfer-matrices
\[T(\lambda) = \text{tr} 0 R_{01} \ldots R_{0n} \]

commute:
\[T(\lambda) T(\mu) = T(\mu) T(\lambda) \]
Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)
C.N. Yang (1967), R. Baxter (1972)

$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$

where $R : V \otimes V \to V \otimes V$ is a linear operator
Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

\[R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12} \]

where \(R : V \otimes V \rightarrow V \otimes V \) is a linear operator

Figure: Yang-Baxter relation
Quantum Yang-Baxter equation

C.N. Yang (1967), R. Baxter (1972)

\[R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12} \]

where \(R : V \otimes V \rightarrow V \otimes V \) is a linear operator

Figure: Yang-Baxter relation

Important consequence: **Transfer-matrices** \(T(\lambda) = tr_0 R_{0n} \ldots R_{01} \) commute:

\[T(\lambda) T(\mu) = T(\mu) T(\lambda). \]
Let X be any set and R be a map:

$$R : X \times X \rightarrow X \times X.$$
Let X be any set and R be a map:

$$R : X \times X \rightarrow X \times X.$$

The map R is called **Yang-Baxter map** if it satisfies the Yang-Baxter relation

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}.$$
Let X be any set and R be a map:

$$R : X \times X \to X \times X.$$

The map R is called **Yang-Baxter map** if it satisfies the Yang-Baxter relation

$$R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}.$$

The **reversible Yang-Baxter maps** additionally satisfy the relation

$$R_{21} R = Id.$$
Yang-Baxter maps (= Set-theoretical solutions of YBE)

Let X be any set and R be a map:

$$R : X \times X \to X \times X.$$

The map R is called **Yang-Baxter map** if it satisfies the Yang-Baxter relation

$$R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}.$$

The **reversible Yang-Baxter maps** additionally satisfy the relation

$$R_{21} R = Id.$$

Figure: Reversibility
One can consider also the parameter-dependent Yang-Baxter maps $R(\lambda, \mu)$ with λ, μ from some parameter set Λ, satisfying

$$R_{12}(\lambda_1, \lambda_2)R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3) = R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3)R_{12}(\lambda_1, \lambda_2)$$

and reversibility condition

$$R_{21}(\mu, \lambda)R(\lambda, \mu) = Id.$$
One can consider also the **parameter-dependent Yang-Baxter maps** $R(\lambda, \mu)$ with λ, μ from some parameter set Λ, satisfying

$$R_{12}(\lambda_1, \lambda_2)R_{13}(\lambda_1, \lambda_3)R_{23}(\lambda_2, \lambda_3) = R_{23}(\lambda_2, \lambda_3)R_{13}(\lambda_1, \lambda_3)R_{12}(\lambda_1, \lambda_2)$$

and reversibility condition

$$R_{21}(\mu, \lambda)R(\lambda, \mu) = Id.$$

Although this case can be considered as a particular case of the previous one by introducing $\tilde{X} = X \times \Lambda$ and $\tilde{R}(x, \lambda; y, \mu) = R(\lambda, \mu)(x, y)$ it is often convenient to keep the parameter separately.
Example 1: Interaction of matrix solitons

Matrix KdV equation

\[\frac{\partial U}{\partial t} + 3UU_x + 3U_x U + U_{xxx} = 0 \]

has the soliton solution of the form

\[U = 2\lambda^2 P \text{sech}^2(\lambda x - 4\lambda^3 t), \]

where "polarisation" \(P \) must be a projector: \(P^2 = P \).
Example 1: Interaction of matrix solitons

Matrix KdV equation

\[U_t + 3UU_x + 3U_xU + U_{xxx} = 0 \]

has the soliton solution of the form

\[U = 2\lambda^2 P \text{sech}^2(\lambda x - 4\lambda^3 t), \]

where "polarisation” \(P \) must be a projector: \(P^2 = P \).

The change of polarisations \(P \) after the soliton interaction is non-trivial:

\[\tilde{L}_1 = (I + \frac{2\lambda_2}{\lambda_1 - \lambda_2} P_2)L_1, \]

\[\tilde{L}_2 = (I + \frac{2\lambda_1}{\lambda_2 - \lambda_1} P_1)L_2, \]

where \(L \) is the image of \(P \) (Goncharenko, AV (2003)).

Darboux transformation

\[
L = -\frac{d^2}{dx^2} + u(x) = A^* A \rightarrow L_1 = AA^*.
\]

\[
A = \frac{d}{dx} - f(x), \quad A = -\frac{d}{dx} - f(x).
\]
Example 2: KdV and Adler map

Darboux transformation

\[L = -\frac{d^2}{dx^2} + u(x) = A^* A \rightarrow L_1 = AA^*. \]

\[A = \frac{d}{dx} - f(x), \quad A = -\frac{d}{dx} - f(x). \]

\[(f_i + f_{i+1})' = f_i^2 - f_{i+1}^2 + \alpha_i, \quad i = 1, \ldots, 2m + 1. \]
Example 2: KdV and Adler map

Darboux transformation

\[L = -\frac{d^2}{dx^2} + u(x) = A^* A \rightarrow L_1 = AA^*. \]

\[A = \frac{d}{dx} - f(x), \quad A = -\frac{d}{dx} - f(x). \]

\[(f_i + f_{i+1})' = f_i^2 - f_{i+1}^2 + \alpha_i, \ i = 1, \ldots, 2m + 1. \]

V. Adler (1993): symmetry of dressing chain

\[\tilde{f}_1 = f_2 - \frac{\beta_1 - \beta_2}{f_1 + f_2} \]

\[\tilde{f}_2 = f_1 - \frac{\beta_2 - \beta_1}{f_1 + f_2} \]
Geometric realisation: Recuttings of polygon

1
2
3
4
5
Geometric realisation: Recuttings of polygon
Geometric realisation: Recuttings of polygon
Define the \textbf{transfer maps}

\[T_i^{(n)} : X^n \to X^n, \ i = 1, \ldots, n \]

by

\[T_i^{(n)} = R_{i+n} R_{i+n-1} \cdots R_{i+1}, \]

where the indices are considered modulo \(n \). In particular

\[T_1^{(n)} = R_{1n} R_{1n-1} \cdots R_{12}. \]
Define the **transfer maps**

\[T_i^{(n)} : X^n \to X^n, \; i = 1, \ldots, n \]

by

\[T_i^{(n)} = R_{i+n-1} R_{i+n-2} \cdots R_{i+1}, \]

where the indices are considered modulo \(n \). In particular \(T_1^{(n)} = R_{1n} R_{1n-1} \cdots R_{12} \).

For any reversible Yang-Baxter map \(R \) the transfer maps \(T_i^{(n)} \) **commute with each other**:

\[T_i^{(n)} T_j^{(n)} = T_j^{(n)} T_i^{(n)} \]

and satisfy the property

\[T_1^{(n)} T_2^{(n)} \cdots T_n^{(n)} = \text{Id}. \]

Conversely, if \(T_i^{(n)} \) satisfy these properties then \(R \) is a reversible YB map.
Commutativity of the transfer maps

Figure: Commutativity of the transfer maps
Recutting of polygons: dynamics
Some other initial data
Some other initial data
Matrix $A(x, \lambda, \zeta)$ with spectral parameter $\zeta \in \mathbb{C}$ is called **Lax matrix** of the map R if it satisfies the relation

$$A(x, \lambda; \zeta)A(y, \mu; \zeta) = A(\tilde{y}, \mu; \zeta)A(\tilde{x}, \lambda; \zeta),$$

whenever $(\tilde{x}, \tilde{y}) = R(\lambda, \mu)(x, y)$.

Define monodromy matrix $M = A(x_n, \lambda_n, \zeta)A(x_{n-1}, \lambda_{n-1}, \zeta) \ldots A(x_1, \lambda_1, \zeta)$. The transfer maps T^n_i preserve the spectrum of M for all ζ. The coefficients of the characteristic polynomial $\chi = \det(A(x, \lambda, \zeta) - \mu I)$ are the integrals of the transfer-dynamics.
Matrix $A(x, \lambda, \zeta)$ with spectral parameter $\zeta \in \mathbb{C}$ is called Lax matrix of the map R if it satisfies the relation

$$A(x, \lambda; \zeta)A(y, \mu; \zeta) = A(\tilde{y}, \mu; \zeta)A(\tilde{x}, \lambda; \zeta),$$

whenever $(\tilde{x}, \tilde{y}) = R(\lambda, \mu)(x, y)$.

Define monodromy matrix

$$M = A(x_n, \lambda_n, \zeta)A(x_{n-1}, \lambda_{n-1}, \zeta) \ldots A(x_1, \lambda_1, \zeta).$$

The transfer maps $T_i^{(n)}$ preserve the spectrum of M for all ζ. The coefficients of the characteristic polynomial

$$\chi = \det(M(x, \lambda, \zeta) - \mu I)$$

are the integrals of the transfer-dynamics.
Suris, AV (2003):
Suppose that the Yang-Baxter map $R(\lambda, \mu)$ has the following special form:

$$\tilde{x} = B(y, \mu, \lambda)[x], \quad \tilde{y} = A(x, \lambda, \mu)[y]$$

for some action of $GL(N)$ on X. Then both $A(x, \lambda, \zeta)$ and $B^T(x, \lambda, \zeta)$ are Lax matrices for R.
Suris, AV (2003):
Suppose that the Yang-Baxter map $R(\lambda, \mu)$ has the following special form:

$$\tilde{x} = B(y, \mu, \lambda)[x], \quad \tilde{y} = A(x, \lambda, \mu)[y]$$

for some action of $GL(N)$ on X. Then both $A(x, \lambda, \zeta)$ and $B^T(x, \lambda, \zeta)$ are Lax matrices for R.

Indeed, LHS gives $z_{12} = A(y_1, \mu, \nu)A(x_2, \lambda, \nu)[z]$, while the RHS gives $z_{12} = A(x, \lambda, \nu)A(y, \mu, \nu)[z]$.
For Adler map

\[\tilde{x} = y - \frac{\lambda - \mu}{x + y} \]

\[\tilde{y} = x - \frac{\mu - \lambda}{x + y} \]

we can write

\[\tilde{y} = x - \frac{\mu - \lambda}{x + y} = \frac{x^2 + xy - (\mu - \lambda)}{x + y} = A(x, \lambda, \mu)[y], \]

so we come to the Lax matrix

\[A = \begin{pmatrix} x & x^2 + \lambda - \zeta \\ 1 & x \end{pmatrix}, \]

(which was actually known from the theory of the dressing chain).
Bianchi (1880s):

Superposition of Bäcklund transformations:

\[
\begin{align*}
&v \quad \rightarrow \quad v_1 \\
&\downarrow \quad \quad \quad \quad \downarrow \\
&v_2 \quad \rightarrow \quad v_{12}
\end{align*}
\]
Bianchi (1880s):

Superposition of Bäcklund transformations:

\[\begin{align*}
 &v \quad \longrightarrow \quad v_1 \\
 &\downarrow \quad \quad \quad \quad \downarrow \\
 &v_2 \quad \longrightarrow \quad v_{12}
\end{align*} \]

Bianchi’s important observation was the results of these commuting transformations satisfy an algebraic relation.
Bianchi (1880s):

Superposition of Bäcklund transformations:

\[\begin{align*}
\nu & \longrightarrow \nu_1 \\
\downarrow & \quad \downarrow \\
\nu_2 & \longrightarrow \nu_{12}
\end{align*} \]

Bianchi's important observation was the results of these commuting transformations satisfy an **algebraic relation**.

In KdV case the Darboux transformations satisfy

\[(\nu_{12} - \nu)(\nu_1 - \nu_2) = \beta_1 - \beta_2,\]

which is the discrete KdV equation.
Discrete integrability: 3D consistency condition

Yang-Baxter versus 3D consistency condition

Figure: “Cubic” representation of the Yang–Baxter relation
Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

$$(v_{12} - v)(v_1 - v_2) = \beta_1 - \beta_2$$

is invariant under the translation $v \rightarrow v + \text{const}$.
Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

\[(v_{12} - v)(v_1 - v_2) = \beta_1 - \beta_2\]

is invariant under the translation \(v \rightarrow v + \text{const.}\).

The invariants

\[x_1 = v_1 - v, \quad x_2 = v_{1,2} - v_1, \quad y_1 = v_{1,2} - v_2, \quad y_2 = v_2 - v,\]

satisfy the relation

\[x_1 + x_2 = y_1 + y_2\]

and the equation itself:

\[(x_1 + x_2)(x_1 - y_2) = \beta_1 - \beta_2.\]
Papageorgiou, Tongas, AV (2006): symmetry approach

Discrete KdV equation

$$(v_{12} - v)(v_1 - v_2) = \beta_1 - \beta_2$$

is invariant under the translation $v \rightarrow v + \text{const.}$

The invariants

$$x_1 = v_1 - v, \quad x_2 = v_{1,2} - v_1, \quad y_1 = v_{1,2} - v_2, \quad y_2 = v_2 - v,$$

satisfy the relation

$$x_1 + x_2 = y_1 + y_2$$

and the equation itself:

$$(x_1 + x_2)(x_1 - y_2) = \beta_1 - \beta_2.$$

This leads to the following YB map

$$y_1 = x_2 + \frac{\beta_1 - \beta_2}{x_1 + x_2}, \quad y_2 = x_1 - \frac{\alpha_1 - \beta_2}{x_1 + x_2},$$

which is nothing else but the Adler map.
Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group G: $\phi_\lambda : X \to G$ and define the correspondence $R(\lambda, \mu) : X \times X \to X \times X$ by the relation

$$\phi_\lambda(x) \phi_\mu(y) = \phi_\mu(\tilde{y}) \phi_\lambda(\tilde{x}).$$
Weinstein and Xu (1992), Reshetikhin, AV (2005)

Suppose that X can be embedded as a symplectic leaf in a Poisson Lie group G: $\phi_\lambda : X \to G$ and define the correspondence $R(\lambda, \mu) : X \times X \to X \times X$ by the relation

$$\phi_\lambda(x)\phi_\mu(y) = \phi_\mu(\tilde{y})\phi_\lambda(\tilde{x}).$$

Define the symplectic structure $\Omega^{(N)}$ on $X^{(N)}$ as

$$\Omega^{(N)} = \omega_{\lambda_1} \oplus \omega_{\lambda_2} \oplus \ldots \oplus \omega_{\lambda_N}.$$

Then $R(\lambda, \mu)$ is a reversible Yang-Baxter Poisson correspondence and transfer dynamics is Poisson with respect to $\Omega^{(N)}$.
Other relations: "box-ball" systems, geometric crystals

Hatayama, Hikami, Inoue, Kuniba, Noumi, Okado, Takagi, Tokihiro, Yamada (2000-): Takahashi-Satsuma "box-ball" systems and Kashiwara’s crystal theory

Yang-Baxter map:

\[R : X \times X \rightarrow X \times X, \quad X = \mathbb{C}^n \]

\[\tilde{x}_j = x_j \frac{P_j}{P_{j-1}}, \quad \tilde{y}_j = y_j \frac{P_{j-1}}{P_j}, \quad j = 1, \ldots, n, \]

where

\[P_j = \sum_{a=1}^{n} \left(\prod_{k=1}^{a-1} x_{j+k} \prod_{k=a+1}^{n} y_{j+k} \right). \]

with the subscripts \(j + k \) taken modulo \(n \).
Adler, Bobenko, Suris (2004):

Quadrirational case, $X = \mathbb{C}P^1$

\begin{align*}
 &u = \alpha yP, \quad v = \beta xP, \quad P = \frac{(1 - \beta)x + \beta - \alpha + (\alpha - 1)y}{\beta(1 - \alpha)x + (\alpha - \beta)yx + \alpha(\beta - 1)y}, \quad (1) \\
 &u = \frac{y}{\alpha} P, \quad v = \frac{x}{\beta} P, \quad P = \frac{\alpha x - \beta y + \beta - \alpha}{x - y}, \quad (2) \\
 &u = \frac{y}{\alpha} P, \quad v = \frac{x}{\beta} P, \quad P = \frac{\alpha x - \beta y}{x - y}, \quad (3) \\
 &u = yP, \quad v = xP, \quad P = 1 + \frac{\beta - \alpha}{x - y}, \quad (4) \\
 &u = y + P, \quad v = x + P, \quad P = \frac{\alpha - \beta}{x - y}, \quad (5)
\end{align*}
Figure: A quadrirational map on a pair of conics
Yang-Baxter property = Geometric theorem

Yang-Baxter property = Geometric theorem

Papageorgiou, Suris, Tongas, V (2009):

\[u = yQ^{-1}, \quad v = xQ, \quad Q = \frac{(1 - \beta)xy + (\beta - \alpha)y + \beta(\alpha - 1)}{(1 - \alpha)xy + (\alpha - \beta)x + \alpha(\beta - 1)}, \]
\[(6) \]

\[u = yQ^{-1}, \quad v = xQ, \quad Q = \frac{\alpha + (\beta - \alpha)y - \beta xy}{\beta + (\alpha - \beta)x - \alpha xy}, \]
\[(7) \]

\[u = \frac{y}{\alpha}Q, \quad v = \frac{x}{\beta}Q, \quad Q = \frac{\alpha x + \beta y}{x + y}, \]
\[(8) \]

\[u = yQ^{-1}, \quad v = xQ, \quad Q = \frac{\alpha xy + 1}{\beta xy + 1}, \]
\[(9) \]

\[u = y - P, \quad v = x + P, \quad P = \frac{\alpha - \beta}{x + y}. \]
\[(10) \]

The last map is the Adler map.
Some open questions

- Classification

Some open questions

▶ Classification

▶ Soliton interaction ⇒ Integrable hierarchy

Some open questions

- Classification

- Soliton interaction \Rightarrow Integrable hierarchy

- Alternative transfer-dynamics
 - Papageorgiou, AV: transfer KdV correspondences
Some open questions

- Classification

- Soliton interaction \(\Rightarrow\) Integrable hierarchy

- Alternative transfer-dynamics
 Papageorgiou, AV: transfer KdV correspondences

- Discrete hierarchies and tropicalization
 Inoue, Takenawa (2008): tropical algebraic geometry