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1 Introduction
First, we consider the random dynamics on R.

• Let h1(x) = 3x and h2(x) = 3(x − 1) + 1 (x ∈ R).

• We take an initial value x ∈ R, and at every step,

we choose the map h1 with probability 1/2 and

h2 with probability 1/2, and map the point under the

chosen map hj .

• Let T+∞(x) be the probability of tending to +∞ starting

with the initial value x ∈ R.

Then,....
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T+∞ is continuous on R, varies only on the Cantor middle

third set (which is a thin fractal set), and monotone.

T+∞ is called the devil’s staircase. This is a typical

example of singular functions.
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Consider the same thing for the system:

h1(x) := 2x with probability p

h2(x) := 2(x − 1) + 1 with probability 1 − p,

where 0 < p < 1.

Let T+∞(x, p) be the probability of tending to +∞
starting with the initial value x ∈ R.

Then,.......
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The graph of x 7→ T+∞(x, p).

(From left) p = 0.1, p = 0.25.
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The function x 7→ T+∞,(x, p) restricted to [0, 1] is called

Lebesgue’s singular function with parameter p.
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In this talk, we consider a similar story on the complex

plane.



2 Preliminaries
Definition 2.1.

• We denote by Ĉ := C ∪ {∞} ∼= S2 the Riemann sphere

and denote by d the spherical distance on Ĉ.

• We set

Rat:={h : Ĉ → Ĉ | h is a non-const. rational map}
endowed with the distance η defined by

η(f, g) := supz∈Ĉ d(f(z), g(z)).

• We set

P := {g : Ĉ → Ĉ | g is a polynomial map, deg(g) ≥ 2}
endowed with the relative topology from Rat.
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• Note that Rat and P are semigroups where the

semigroup operation is functional composition.

• A subsemigroup G of Rat is called

a rational semigroup.

• A subsemigroup G of P is called

a polynomial semigroup.
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Definition 2.2. Let G be a rational semigroup.

• We set

F (G) :=
{z ∈ Ĉ | ∃ nbd U of z s.t. G is equicontinuous on U},

where we say that G is equicontinuous on U if

∀x ∈ U,∀ε > 0,∃δ > 0 s.t.

d(x, y) < δ, y ∈ U ⇒ ∀g ∈ G, d(g(x), g(y)) < ε.

This F (G) is called the Fatou set of G.

• We set J(G) := Ĉ \ F (G).
This is called the Julia set of G.
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Lemma 2.3. Let G be a rational semigroup. Then F (G) is

open and J(G) is compact. Moreover, for each h ∈ G,

h(F (G)) ⊂ F (G)　 and　 h−1(J(G)) ⊂ J(G).

However, the equality h−1(J(G)) = J(G) does not hold in

general.

Remark 2.4. The fact we do not have h−1(J(G)) = J(G)
is the difficulty in this theory. However, we ‘utilize’ this fact

for the study of the random complex dynamics.
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Definition 2.5.

• When a semigroup G is generated by {g1, . . . , gm},
we write G = 〈g1, . . . , gm〉.

• For an h ∈ Rat, we set J(h) := J(〈h〉).
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Definition 2.6. For a topological space X, we denote by

M1(X) the space of all Borel probability measures on X

endowed with the weak topology.

Remark 2.7. If X is a compact metric space, then M1(X)
is a compact metric space.

From now on, we take a τ ∈ M1(Rat) and we consider the

(i.i.d.) random dynamics on Ĉ such that at every step we

choose a map h ∈ Rat according to τ.
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Definition 2.8. Let τ ∈ M1(Rat).

1. We endow

(Rat)N = {γ = (γ1, γ2, . . . , γn, . . .) | ∀j, γj ∈ Rat}
with the product topology.

2. We set τ̃ := ⊗∞
j=1τ ∈ M1((Rat)N).

3. We denote by supp τ the topological support of τ (hence

supp τ is a closed subset of Rat).

4. Let Gτ be the rational semigroup generated by supp τ.
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5. We set C(Ĉ) := {ϕ : Ĉ → C | ϕ is conti.} endowed with

the sup. norm ‖ ‖∞.

6. Let Mτ : C(Ĉ) → C(Ĉ) be the operator defined by:

Mτ (ϕ)(z) :=
∫
Rat

ϕ(g(z)) dτ(g),

where ϕ ∈ C(Ĉ), z ∈ Ĉ.
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7. We set

C(Ĉ)∗:= {ρ : C(Ĉ) → C | ρ is linear and continuous}

endowed with the weak topology.

8. Let M∗
τ : C(Ĉ)∗ → C(Ĉ)∗ be the dual of Mτ .

That is, M∗
τ (ρ)(ϕ) := ρ(Mτ (ϕ)) for each ρ ∈ C(Ĉ)∗ and

for each ϕ ∈ C(Ĉ).

Note that M∗
τ (M1(Ĉ)) ⊂ M1(Ĉ).
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Remark: Let Φ : Ĉ → M1(Ĉ) be the map defined by

Φ(z) := δz, where δz denotes the Dirac measure at z.

Note that Φ : Ĉ → M1(Ĉ) is a topological embedding.

For an h ∈ Rat, if we set τ = δh, then we have the

following commutative diagram:

Ĉ h−−−−→ Ĉ

Φ

y yΦ

M1(Ĉ)
M∗

τ−−−−→ M1(Ĉ).
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9. We set

Fmeas(τ) :=
{µ ∈ M1(Ĉ) | ∃ nbd B of µ in M1(Ĉ)
　 　　 　　　s.t.{(M∗

τ )n|B : B → M1(Ĉ)}n∈N
　　　　　　　　　 is equicontinuous on B}.

10. We set Jmeas(τ) := M1(Ĉ) \ Fmeas(τ).
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The following is the key to investigating the random

complex dynamics.

Definition 2.9. Let G be a rational semigroup. We set

Jker(G) :=
⋂

h∈G

h−1(J(G)).

This is called the kernel Julia set of G.

Remark 2.10. Jker(G) is a compact subset of J(G).
Moreover, for each h ∈ G, h(Jker(G)) ⊂ Jker(G).
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Lemma 2.11. Let Γ be a compact subset of P. If the

interior of Γ with respect to the topology of P is not

empty, then the polynomial semigroup G generated by Γ
satisfies that Jker(G) = ∅.

The above lemma implies that from a point of view,

for most τ ∈ M1(P) with compact support,

we have Jker(Gτ ) = ∅.

Question 2.12. What happens if Jker(Gτ ) = ∅?
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3 Results
Theorem 3.1 (Theorem A, Cooperation Principle).

Let τ ∈ M1(Rat) be such that supp τ is compact.

Suppose that Jker(Gτ ) = ∅.
Then,

Fmeas(τ) = M1(Ĉ).

In other words, if all the maps in supp τ cooperate, then

“the chaos of the averaged system disappears”

even if J(Gτ ) 6= ∅.

Remark: If h ∈ Rat with deg(h) ≥ 2, then Jmeas(δh) 6= ∅.
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Notation: ∀τ ∈ M1(Rat), let Uτ be the space of all finite

linear spans of unitary eigenvectors of Mτ : C(Ĉ) → C(Ĉ).
Let B0,τ := {ϕ ∈ C(Ĉ) | Mn

τ (ϕ) → 0 as n → ∞}.

Theorem 3.2 (Theorem B).

Let τ ∈ M1(Rat) be such that supp τ is compact.

Suppose that Jker(Gτ ) = ∅ and J(Gτ ) 6= ∅.
Then, there exists a direct sum decomposition

C(Ĉ) = Uτ ⊕ B0,τ .

Moreover, dimC Uτ < ∞.

Furthermore, for each ϕ ∈ Uτ and for each connected

component U of F (Gτ ), ϕ|U is constant.
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Definition 3.3. Let τ ∈ M1(P).
For any z ∈ Ĉ, we set

T∞,τ (z) := τ̃({γ ∈ PN | γn ◦ · · · ◦ γ1(z) → ∞ as n → ∞}),

where γ = (γ1, γ2, . . . , γn, . . .).

T∞,τ (z) is the probability of tending to ∞ ∈ Ĉ
starting with the initial value z ∈ Ĉ
with respect to the random dynamics on Ĉ such that

at every step we choose a map h ∈ P according to τ.
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By the result Fmeas(τ) = M1(Ĉ) in Theorem 3.1, we

obtain the following Theorem 3.4.

Theorem 3.4. Let τ ∈ M1(P) be such that supp τ is

compact. Suppose that Jker(Gτ ) = ∅.
Then, T∞,τ : Ĉ → [0, 1] is continuous on the whole Ĉ.

Moreover, for each connected component U of F (Gτ ),
T∞,τ |U is constant. Furthermore, Mτ (T∞,τ ) = T∞,τ .

Remark 3.5. If h ∈ P, τ = δh, then T∞,τ (Ĉ) = {0, 1},
and at every point of J(h) (6= ∅), T∞,τ is not continuous.
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Remark 3.6. From Theorem 3.4 it follows that if

Jker(Gτ ) = ∅, then T∞,τ is continuous on Ĉ and the set of

varying points is included in J(Gτ ). Such a function T∞,τ

is called

a devil’s coliseum

provided that T∞,τ 6≡ 1. In fact, T∞,τ is a complex

analogue of the devil’s staircase.
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We consider the non-differentiability of non-constant

elements ϕ ∈ Uτ at the Julia set J(Gτ ).

Theorem 3.7 (Theorem C).

• Let h1, h2 ∈ P and let G = 〈h1, h2〉.

• Let 0 < p1, p2 < 1 with p1 + p2 = 1 and we set

τ :=
∑2

i=1 piδhi
∈ M1(P).
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• Let

P (G) :=
⋃

h∈G

{ all critical values of h : Ĉ → Ĉ} (⊂ Ĉ).

• We assume that

(a) G is hyperbolic (i.e. P (G) ⊂ F (G)),

(b) h−1
1 (J(G)) ∩ h−1

2 (J(G)) = ∅, and

(c) ∃z ∈ C s.t.
⋃

h∈G{h(z)} is bounded in C.
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Then, we have all of the following statements 1,. . . ,4.

1. Jker(G) = ∅.

2. T∞,τ ∈ Uτ and T∞,τ is non-constant.

3. dimH(J(G)) < 2, where dimH denotes the Hausdorff

dimension with respect to the Euclidian distance.
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4. ∃µ ∈ M1(J(G)) satisfying all of the following.

• suppµ = J(G),
• for each z ∈ J(G), µ({z}) = 0, and

• ∃A ⊂ J(G) with µ(A) = 1 s.t.

∀z ∈ A, ∀non-const. ϕ ∈ Uτ ,

pointwise Hölder exponent of ϕ at z

:= inf{α ∈ R | limy→z
|ϕ(y)−ϕ(z)|

|y−z|α = ∞}

= entropy of (p1,p2)

“averaged Lyapunov exponent” < 1

and ϕ is not differentiable at z.

In particular, ∃A : uncountable dense subset of J(G) s.t.

∀z ∈ A, ∀non-const. ϕ ∈ Uτ , ϕ is not differentiable at z.
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Remark 3.8. In the proof of statement 4 of the previous

theorem, we use

• Birkhoff’s ergodic theorem (ergodic theory),

• Koebe distortion theorem (function theory), and

• Green’s function and calculation of Lyapunov exponent

(potential theory).
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4 Example

Proposition 4.1. Let h1 ∈ P be hyperbolic.

• Suppose that K(h1) is connected and intK(h1) 6= ∅,
where K(h1) := {z ∈ C | {hn

1 (z)}n∈Nis bounded}.
• Let b ∈ intK(h1).
• Let d ∈ N with d ≥ 2 be s.t. (deg(h1), d) 6= (2, 2).

Then ∃c > 0 s.t. ∀a ∈ C with 0 < |a| < c,

setting h2(z) = a(z − b)d + b,

{h1, h2} satisfies the assumption of Theorem C, i.e.,

(a) G = 〈h1, h2〉 is hyperbolic,

(b) h−1
1 (J(G)) ∩ h−1

2 (J(G)) = ∅, and

(c) ∃z ∈ C s.t.
⋃

h∈G{h(z)} is bounded in C.
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5 Summary

• We simultaneously develop the theory of random complex

dynamics and that of the dynamics of semigroups of

holomorphic maps.

• Both fields are related to each other very deeply.

• While we study these fields, singular functions on the

complex plane (devil’s coliseums) appear.
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Supplement: we give a precise definition of µ and give a

detail in statement of 4 in Theorem C.



• Let Γ = {h1, h2} and for each (γ, y) ∈ ΓN × C, we set

Gγ(y) := lim
n→∞

1
deg(γn ◦ · · · ◦ γ1)

log+ |γn ◦ · · · ◦ γ1(y)|,

where log+(a) := max{log a, 0} for each a > 0.

• For each γ ∈ ΓN,

let µγ := ddcGγ ∈ M1(J(G)), where dc := i
2π (∂ − ∂).

We set µ :=
∫
ΓN µγ dτ̃(γ) ∈ M1(J(G)).

• For each γ ∈ ΓN,

let Ω(γ) :=
∑

c Gγ(c), where c runs over all critical

points of γ1 in C.
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4. • suppµ = J(G),
• for each z ∈ J(G), µ({z}) = 0, and

• ∃A ⊂ J(G) with µ(A) = 1 s.t.

∀z ∈ A, ∀non-constant ϕ ∈ Uτ ,

pointwise Hölder exponent of ϕ at z

:= inf{α ∈ R | limy→z
|ϕ(y)−ϕ(z)|

|y−z|α = ∞}

= −(
P2

i=1 pi log pi)
P2

i=1 pi log(deg(hi))+
R

ΓN Ω(γ) dτ̃(γ)
< 1

and ϕ is not differentiable at z.

In particular, ∃A: uncountable dense subset of J(G) s.t.

∀z ∈ A, ∀non-constant ϕ ∈ Uτ ,

ϕ is not differentiable at z.
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