January 8, 2009

Random complex dynamics and

 singular functions on the complex planeHiroki Sumi
Osaka University, Japan

E-mail: sumi@math.sci.osaka-u.ac.jp
http://www.math.sci.osaka-u.ac.jp/~sumi/

The contents of this talk are included in my preprint: H. Sumi, Random complex dynamics and semigroups of holomorphic maps, preprint 2008, available from http://arxiv.org/abs/0812.4483 or my webpage: http://www.math.sci.osaka-u.ac.jp/~sumi/.

Some preprints of mine are available from the above webpage.

1 Introduction

First, we consider the random dynamics on \mathbb{R}.

- Let $h_{1}(x)=3 x$ and $h_{2}(x)=3(x-1)+1(x \in \mathbb{R})$.
- We take an initial value $x \in \mathbb{R}$, and at every step, we choose the map h_{1} with probability $1 / 2$ and h_{2} with probability $1 / 2$, and map the point under the chosen map h_{j}.
- Let $T_{+\infty}(x)$ be the probability of tending to $+\infty$ starting with the initial value $x \in \mathbb{R}$.

Then,....

$T_{+\infty}$ is continuous on \mathbb{R}, varies only on the Cantor middle third set (which is a thin fractal set), and monotone. $T_{+\infty}$ is called the devil's staircase. This is a typical example of singular functions.

2

Consider the same thing for the system:
$h_{1}(x):=2 x$ with probability p
$h_{2}(x):=2(x-1)+1$ with probability $1-p$,
where $0<p<1$.
Let $T_{+\infty}(x, p)$ be the probability of tending to $+\infty$ starting with the initial value $x \in \mathbb{R}$.

Then,.......

The graph of $x \mapsto T_{+\infty}(x, p)$.
(From left) $p=0.1, p=0.25$.

The function $x \mapsto T_{+\infty},(x, p)$ restricted to $[0,1]$ is called Lebesgue's singular function with parameter p.

In this talk, we consider a similar story on the complex plane.

2 Preliminaries

Definition 2.1.

- We denote by $\widehat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\} \cong S^{2}$ the Riemann sphere and denote by d the spherical distance on $\hat{\mathbb{C}}$.
- We set

Rat: $=\{h: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \mid h$ is a non-const. rational map $\}$ endowed with the distance η defined by $\eta(f, g):=\sup _{z \in \hat{\mathbb{C}}} d(f(z), g(z))$.

- We set
$\mathcal{P}:=\{g: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}} \mid g$ is a polynomial map, $\operatorname{deg}(g) \geq 2\}$ endowed with the relative topology from Rat.
- Note that Rat and \mathcal{P} are semigroups where the semigroup operation is functional composition.
- A subsemigroup G of Rat is called a rational semigroup.
- A subsemigroup G of \mathcal{P} is called a polynomial semigroup.

Definition 2.2. Let G be a rational semigroup.

- We set
$F(G):=$
$\{z \in \hat{\mathbb{C}} \mid \exists \operatorname{nbd} U$ of z s.t. G is equicontinuous on $U\}$, where we say that G is equicontinuous on U if
$\forall x \in U, \forall \epsilon>0, \exists \delta>0$ s.t.
$d(x, y)<\delta, y \in U \Rightarrow \forall g \in G, d(g(x), g(y))<\epsilon$.
This $F(G)$ is called the Fatou set of G.
- We set $J(G):=\hat{\mathbb{C}} \backslash F(G)$.

This is called the Julia set of G.

Lemma 2.3. Let G be a rational semigroup. Then $F(G)$ is open and $J(G)$ is compact. Moreover, for each $h \in G$,

$$
h(F(G)) \subset F(G) \quad \text { and } \quad h^{-1}(J(G)) \subset J(G) .
$$

However, the equality $h^{-1}(J(G))=J(G)$ does not hold in general.

Remark 2.4. The fact we do not have $h^{-1}(J(G))=J(G)$ is the difficulty in this theory. However, we 'utilize' this fact for the study of the random complex dynamics.

Definition 2.5.

- When a semigroup G is generated by $\left\{g_{1}, \ldots, g_{m}\right\}$, we write $G=\left\langle g_{1}, \ldots, g_{m}\right\rangle$.
- For an $h \in$ Rat, we set $J(h):=J(\langle h\rangle)$.

Definition 2.6. For a topological space X, we denote by $\mathfrak{M}_{1}(X)$ the space of all Borel probability measures on X endowed with the weak topology.

Remark 2.7. If X is a compact metric space, then $\mathfrak{M}_{1}(X)$ is a compact metric space.

From now on, we take a $\tau \in \mathfrak{M}_{1}$ (Rat) and we consider the (i.i.d.) random dynamics on $\hat{\mathbb{C}}$ such that at every step we choose a map $h \in$ Rat according to τ.

Definition 2.8. Let $\tau \in \mathfrak{M}_{1}$ (Rat).

1. We endow
$(\text { Rat })^{\mathbb{N}}=\left\{\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \ldots\right) \mid \forall j, \gamma_{j} \in\right.$ Rat $\}$ with the product topology.
2. We set $\tilde{\tau}:=\otimes_{j=1}^{\infty} \tau \in \mathfrak{M}_{1}\left((\text { Rat })^{\mathbb{N}}\right)$.
3. We denote by $\operatorname{supp} \tau$ the topological support of τ (hence $\operatorname{supp} \tau$ is a closed subset of Rat).
4. Let G_{τ} be the rational semigroup generated by $\operatorname{supp} \tau$.
5. We set $C(\hat{\mathbb{C}}):=\{\varphi: \hat{\mathbb{C}} \rightarrow \mathbb{C} \mid \varphi$ is conti. $\}$ endowed with the sup. norm $\left\|\|_{\infty}\right.$.
6. Let $M_{\tau}: C(\hat{\mathbb{C}}) \rightarrow C(\hat{\mathbb{C}})$ be the operator defined by:

$$
M_{\tau}(\varphi)(z):=\int_{\operatorname{Rat}} \varphi(g(z)) d \tau(g)
$$

where $\varphi \in C(\hat{\mathbb{C}}), z \in \widehat{\mathbb{C}}$.
7. We set

$$
C(\hat{\mathbb{C}})^{*}:=\{\rho: C(\hat{\mathbb{C}}) \rightarrow \mathbb{C} \mid \rho \text { is linear and continuous }\}
$$ endowed with the weak topology.

8. Let $M_{\tau}^{*}: C(\hat{\mathbb{C}})^{*} \rightarrow C(\hat{\mathbb{C}})^{*}$ be the dual of M_{τ}. That is, $M_{\tau}^{*}(\rho)(\varphi):=\rho\left(M_{\tau}(\varphi)\right)$ for each $\rho \in C(\hat{\mathbb{C}})^{*}$ and for each $\varphi \in C(\widehat{\mathbb{C}})$.

Note that $M_{\tau}^{*}\left(\mathfrak{M}_{1}(\hat{\mathbb{C}})\right) \subset \mathfrak{M}_{1}(\hat{\mathbb{C}})$.

Remark: Let $\Phi: \widehat{\mathbb{C}} \rightarrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$ be the map defined by $\Phi(z):=\delta_{z}$, where δ_{z} denotes the Dirac measure at z.

Note that $\Phi: \hat{\mathbb{C}} \rightarrow \mathfrak{M}_{1}(\hat{\mathbb{C}})$ is a topological embedding.
For an $h \in$ Rat, if we set $\tau=\delta_{h}$, then we have the following commutative diagram:

12
9. We set
$F_{\text {meas }}(\tau):=$
$\left\{\mu \in \mathfrak{M}_{1}(\hat{\mathbb{C}}) \mid \exists \operatorname{nbd} B\right.$ of μ in $\mathfrak{M}_{1}(\hat{\mathbb{C}})$

$$
\text { s.t. }\left\{\left.\left(M_{\tau}^{*}\right)^{n}\right|_{B}: B \rightarrow \mathfrak{M}_{1}(\hat{\mathbb{C}})\right\}_{n \in \mathbb{N}}
$$

is equicontinuous on $B\}$.
10. We set $J_{\text {meas }}(\tau):=\mathfrak{M}_{1}(\hat{\mathbb{C}}) \backslash F_{\text {meas }}(\tau)$.

The following is the key to investigating the random complex dynamics.

Definition 2.9. Let G be a rational semigroup. We set

$$
J_{\mathrm{ker}}(G):=\bigcap_{h \in G} h^{-1}(J(G))
$$

This is called the kernel Julia set of G.
Remark 2.10. $J_{\text {ker }}(G)$ is a compact subset of $J(G)$.
Moreover, for each $h \in G, h\left(J_{\text {ker }}(G)\right) \subset J_{\text {ker }}(G)$.

Lemma 2.11. Let Γ be a compact subset of \mathcal{P}. If the interior of Γ with respect to the topology of \mathcal{P} is not empty, then the polynomial semigroup G generated by Γ satisfies that $J_{\mathrm{ker}}(G)=\emptyset$.

The above lemma implies that from a point of view, for most $\tau \in \mathfrak{M}_{1}(\mathcal{P})$ with compact support, we have $J_{\mathrm{ker}}\left(G_{\tau}\right)=\emptyset$.

Question 2.12. What happens if $J_{\mathrm{ker}}\left(G_{\tau}\right)=\emptyset$?

3 Results

Theorem 3.1 (Theorem A, Cooperation Principle).
Let $\tau \in \mathfrak{M}_{1}$ (Rat) be such that $\operatorname{supp} \tau$ is compact.
Suppose that $J_{\mathrm{ker}}\left(G_{\tau}\right)=\emptyset$.
Then,

$$
F_{\text {meas }}(\tau)=\mathfrak{M}_{1}(\widehat{\mathbb{C}}) .
$$

In other words, if all the maps in $\operatorname{supp} \tau$ cooperate, then
"the chaos of the averaged system disappears" even if $J\left(G_{\tau}\right) \neq \emptyset$.

Remark: If $h \in$ Rat with $\operatorname{deg}(h) \geq 2$, then $J_{\text {meas }}\left(\delta_{h}\right) \neq \emptyset$.

Notation: $\forall \tau \in \mathfrak{M}_{1}($ Rat $)$, let \mathcal{U}_{τ} be the space of all finite linear spans of unitary eigenvectors of $M_{\tau}: C(\widehat{\mathbb{C}}) \rightarrow C(\widehat{\mathbb{C}})$. Let $\mathcal{B}_{0, \tau}:=\left\{\varphi \in C(\hat{\mathbb{C}}) \mid M_{\tau}^{n}(\varphi) \rightarrow 0\right.$ as $\left.n \rightarrow \infty\right\}$.

Theorem 3.2 (Theorem B).
Let $\tau \in \mathfrak{M}_{1}$ (Rat) be such that supp τ is compact.
Suppose that $J_{\mathrm{ker}}\left(G_{\tau}\right)=\emptyset$ and $J\left(G_{\tau}\right) \neq \emptyset$.
Then, there exists a direct sum decomposition

$$
C(\hat{\mathbb{C}})=\mathcal{U}_{\tau} \oplus \mathcal{B}_{0, \tau} .
$$

Moreover, $\operatorname{dim}_{\mathbb{C}} \mathcal{U}_{\tau}<\infty$.
Furthermore, for each $\varphi \in \mathcal{U}_{\tau}$ and for each connected component U of $F\left(G_{\tau}\right),\left.\varphi\right|_{U}$ is constant.

Definition 3.3. Let $\tau \in \mathfrak{M}_{1}(\mathcal{P})$.
For any $z \in \hat{\mathbb{C}}$, we set
$T_{\infty, \tau}(z):=\tilde{\tau}\left(\left\{\gamma \in \mathcal{P}^{\mathbb{N}} \mid \gamma_{n} \circ \cdots \circ \gamma_{1}(z) \rightarrow \infty\right.\right.$ as $\left.\left.n \rightarrow \infty\right\}\right)$,
where $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \ldots\right)$.
$T_{\infty, \tau}(z)$ is the probability of tending to $\infty \in \hat{\mathbb{C}}$ starting with the initial value $z \in \widehat{\mathbb{C}}$
with respect to the random dynamics on $\hat{\mathbb{C}}$ such that at every step we choose a map $h \in \mathcal{P}$ according to τ.

By the result $F_{\text {meas }}(\tau)=\mathfrak{M}_{1}(\hat{\mathbb{C}})$ in Theorem 3.1, we obtain the following Theorem 3.4.

Theorem 3.4. Let $\tau \in \mathfrak{M}_{1}(\mathcal{P})$ be such that $\operatorname{supp} \tau$ is compact. Suppose that $J_{\mathrm{ker}}\left(G_{\tau}\right)=\emptyset$. Then, $T_{\infty, \tau}: \widehat{\mathbb{C}} \rightarrow[0,1]$ is continuous on the whole $\hat{\mathbb{C}}$. Moreover, for each connected component U of $F\left(G_{\tau}\right)$, $\left.T_{\infty, \tau}\right|_{U}$ is constant. Furthermore, $M_{\tau}\left(T_{\infty, \tau}\right)=T_{\infty, \tau}$.

Remark 3.5. If $h \in \mathcal{P}, \tau=\delta_{h}$, then $T_{\infty, \tau}(\hat{\mathbb{C}})=\{0,1\}$, and at every point of $J(h)(\neq \emptyset), T_{\infty, \tau}$ is not continuous.

Remark 3.6. From Theorem 3.4 it follows that if $J_{\text {ker }}\left(G_{\tau}\right)=\emptyset$, then $T_{\infty, \tau}$ is continuous on $\hat{\mathbb{C}}$ and the set of varying points is included in $J\left(G_{\tau}\right)$. Such a function $T_{\infty, \tau}$ is called

a devil's coliseum

provided that $T_{\infty, \tau} \not \equiv 1$. In fact, $T_{\infty, \tau}$ is a complex analogue of the devil's staircase.
$g_{1}(z):=z^{2}-1, g_{2}(z):=\frac{z^{2}}{4}, h_{1}:=g_{1}^{2}, h_{2}:=g_{2}^{2} . G:=\left\langle h_{1}, h_{2}\right\rangle . G \in \mathcal{G}_{\text {dis }}$.
The figure of $J(G)$. \#Con $(J(G))>\aleph_{0}$.

$g_{1}(z):=z^{2}-1, g_{2}(z):=\frac{z^{2}}{4}, h_{1}:=g_{1}^{2}, h_{2}:=g_{2}^{2}, \tau:=\frac{1}{2} \delta_{h_{1}}+\frac{1}{2} \delta_{h_{2}}$.
The graph of $z \mapsto T_{\tau, \infty}(z)$.
(Devil's Coliseum (Complex analogue of devil's staircase).)

The graph of $z \mapsto 1-T_{\tau, \infty}(z)$.

We consider the non-differentiability of non-constant elements $\varphi \in \mathcal{U}_{\tau}$ at the Julia set $J\left(G_{\tau}\right)$.

Theorem 3.7 (Theorem C).

- Let $h_{1}, h_{2} \in \mathcal{P}$ and let $G=\left\langle h_{1}, h_{2}\right\rangle$.
- Let $0<p_{1}, p_{2}<1$ with $p_{1}+p_{2}=1$ and we set $\tau:=\sum_{i=1}^{2} p_{i} \delta_{h_{i}} \in \mathfrak{M}_{1}(\mathcal{P})$.
- Let

$$
P(G):=\overline{\bigcup_{h \in G}\{\text { all critical values of } h: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}\}}(\subset \hat{\mathbb{C}})
$$

- We assume that
(a) G is hyperbolic (i.e. $P(G) \subset F(G)$),
(b) $h_{1}^{-1}(J(G)) \cap h_{2}^{-1}(J(G))=\emptyset$, and
(c) $\exists z \in \mathbb{C}$ s.t. $\bigcup_{h \in G}\{h(z)\}$ is bounded in \mathbb{C}.

Then, we have all of the following statements $1, \ldots, 4$.

1. $J_{\mathrm{ker}}(G)=\emptyset$.
2. $T_{\infty, \tau} \in \mathcal{U}_{\tau}$ and $T_{\infty, \tau}$ is non-constant.
3. $\operatorname{dim}_{H}(J(G))<2$, where dim_{H} denotes the Hausdorff dimension with respect to the Euclidian distance.
4. $\exists \mu \in \mathfrak{M}_{1}(J(G))$ satisfying all of the following.

- $\operatorname{supp} \mu=J(G)$,
- for each $z \in J(G), \mu(\{z\})=0$, and
- $\exists A \subset J(G)$ with $\mu(A)=1$ s.t.
$\forall z \in A, \forall$ non-const. $\varphi \in \mathcal{U}_{\tau}$,
pointwise Hölder exponent of φ at z

$$
\begin{aligned}
& :=\inf \left\{\alpha \in \mathbb{R} \left\lvert\, \lim _{y \rightarrow z} \frac{|\varphi(y)-\varphi(z)|}{|y-z|^{\alpha}}=\infty\right.\right\} \\
& =\frac{\text { entropy of }\left(p_{1}, p_{2}\right)}{\text { "averaged Lyapunov exponent" }}<1
\end{aligned}
$$

and φ is not differentiable at z.
In particular, $\exists A$: uncountable dense subset of $J(G)$ s.t.
$\forall z \in A$, \forall non-const. $\varphi \in \mathcal{U}_{\tau}, \varphi$ is not differentiable at z.

Remark 3.8. In the proof of statement 4 of the previous theorem, we use

- Birkhoff's ergodic theorem (ergodic theory),
- Koebe distortion theorem (function theory), and
- Green's function and calculation of Lyapunov exponent (potential theory).

4 Example

Proposition 4.1. Let $h_{1} \in \mathcal{P}$ be hyperbolic.

- Suppose that $K\left(h_{1}\right)$ is connected and $\operatorname{int} K\left(h_{1}\right) \neq \emptyset$, where $K\left(h_{1}\right):=\left\{z \in \mathbb{C} \mid\left\{h_{1}^{n}(z)\right\}_{n \in \mathbb{N}}\right.$ is bounded $\}$.
- Let $b \in \operatorname{int} K\left(h_{1}\right)$.
- Let $d \in \mathbb{N}$ with $d \geq 2$ be s.t. $\left(\operatorname{deg}\left(h_{1}\right), d\right) \neq(2,2)$.

Then $\exists c>0$ s.t. $\forall a \in \mathbb{C}$ with $0<|a|<c$, setting $h_{2}(z)=a(z-b)^{d}+b$, $\left\{h_{1}, h_{2}\right\}$ satisfies the assumption of Theorem C, i.e.,
(a) $G=\left\langle h_{1}, h_{2}\right\rangle$ is hyperbolic,
(b) $h_{1}^{-1}(J(G)) \cap h_{2}^{-1}(J(G))=\emptyset$, and
(c) $\exists z \in \mathbb{C}$ s.t. $\bigcup_{h \in G}\{h(z)\}_{26}$ is bounded in \mathbb{C}.

5 Summary

- We simultaneously develop the theory of random complex dynamics and that of the dynamics of semigroups of holomorphic maps.
- Both fields are related to each other very deeply.
- While we study these fields, singular functions on the complex plane (devil's coliseums) appear.

Supplement: we give a precise definition of μ and give a detail in statement of 4 in Theorem C.

- Let $\Gamma=\left\{h_{1}, h_{2}\right\}$ and for each $(\gamma, y) \in \Gamma^{\mathbb{N}} \times \mathbb{C}$, we set

$$
\begin{aligned}
& \mathcal{G}_{\gamma}(y):=\lim _{n \rightarrow \infty} \frac{1}{\operatorname{deg}\left(\gamma_{n} \circ \cdots \circ \gamma_{1}\right)} \log ^{+}\left|\gamma_{n} \circ \cdots \circ \gamma_{1}(y)\right|, \\
& \text { where } \log ^{+}(a):=\max \{\log a, 0\} \text { for each } a>0 .
\end{aligned}
$$

- For each $\gamma \in \Gamma^{\mathbb{N}}$, let $\mu_{\gamma}:=d d^{c} \mathcal{G}_{\gamma} \in \mathfrak{M}_{1}(J(G))$, where $d^{c}:=\frac{i}{2 \pi}(\bar{\partial}-\partial)$. We set $\mu:=\int_{\Gamma^{\mathbb{N}}} \mu_{\gamma} d \tilde{\tau}(\gamma) \in \mathfrak{M}_{1}(J(G))$.
- For each $\gamma \in \Gamma^{\mathbb{N}}$,
let $\Omega(\gamma):=\sum_{c} \mathcal{G}_{\gamma}(c)$, where c runs over all critical points of γ_{1} in \mathbb{C}.

4. $\operatorname{supp} \mu=J(G)$,

- for each $z \in J(G), \mu(\{z\})=0$, and
- $\exists A \subset J(G)$ with $\mu(A)=1$ s.t.
$\forall z \in A, \forall$ non-constant $\varphi \in \mathcal{U}_{\tau}$,
pointwise Hölder exponent of φ at z

$$
\begin{aligned}
& :=\inf \left\{\alpha \in \mathbb{R} \left\lvert\, \overline{\lim }_{y \rightarrow z} \frac{|\varphi(y)-\varphi(z)|^{\top}}{|y-z|^{\alpha}}=\infty\right.\right\} \\
& =\frac{-\left(\sum_{i=1}^{2} p_{i} \log p_{i}\right)}{\sum_{i=1}^{2} p_{i} \log \left(\operatorname{deg}\left(h_{i}\right)\right)+\int_{\Gamma^{\mathbb{N}}} \Omega(\gamma) d \tilde{\tau}(\gamma)}<1
\end{aligned}
$$

and φ is not differentiable at z.
In particular, $\exists A$: uncountable dense subset of $J(G)$ s.t.
$\forall z \in A$, \forall non-constant $\varphi \in \mathcal{U}_{\tau}$,
φ is not differentiable at z.

