Evolution of Phenotype as selection of Dynamical Systems

- 1 Phenotypic Fluctuation (Plasticity) versus Evolution
- 2 Phenotypic Fluctuation versus Genetic Variation consistency between Genetic and Phenotypic Levels
- 3 Evolution of Robustness to Developmental Noise and to Mutation
- 4 Sympatric speciation:
- Fixation of Bifurcation of Phenotype to Genes

- Underlying Motivation as Dynamical Systems
- Dynamical Systems Model in Biology (development/gene expression,,,)
 Study the behavior : OK as mathematics/physics, but
- In biology, choice of such dynamical systems itself is an essential issue
- (+) selection of dynamical systems rule through evolution, which is based on dynamics itself

→ constraint in choice of rule, 'smooth dynamics'

 (*) Selection of 'restricted' low-dimensional dynamical systems from higher-dimensional space through development

- Mathematical Theory for Evolution and Development? (case under fixed environment, without interaction) simplified
- Development = Dynamical Systems
- Gene = Rule (parameter etc) of the DS
- Phenotype = State value at attractor of the DS
- Evolution = Selection of Phenotype which leads to selection of Gene (only gene is transferred to the next generation) 'Walk in the 'Model(rule/parameter) space'
 Proposal: choice of model assimilates DS

Starting point: Phenotypic Fluctuation \rightarrow evolution?

- Even in isogenic individuals (clones) there is large phenotypic fluctuation :recognized extensively Exp + Model+Theory
- Relevance of this fluctuation to evolution? Gene(rule for dynamics)
 ---(gene expression) development dynamics ---→ Phenotype (with fluctuation)
 → selection

umber distribution of the proteins measured by fluorescent intensity.

Artificial selection experiment with bacteria

Selection to increase the fluorescence of protein in bacteria

Schematic drawing of selection process

Fluctuation ---- Variance of phenotype of clone Organisms with larger phenotypic fluctuation have higher evolution speed; Evolvability $\leftarrow \rightarrow$ Fluctuation Remind of fluctuation—response relation in physics: Force to change a variable x; response ratio = (shift of x) / force fluctuation of x (without force) response ratio proportional to fluctuation originated by Einstein ...

Generalization::(mathematical formulation) plasticty~response ratio of some variable x against change of parameter a versus fluctuation of x

P(x;a) x variable, a: control parameter
change of the parameter a
$$\rightarrow$$

peak of P(x;a) (i.e.,average) shifts
 $\frac{\langle x \rangle_{a+\Delta a} - \langle x \rangle_{a}}{\Delta a} \propto \langle (\delta x)^{2} \rangle_{a} = \langle (x-\langle x \rangle)^{2} \rangle$

Evolution speed per mutation rate *c* isogenic pheňotype fluctuatior

Fluctuation-response relationship (generalized form)

Gaussian distribution of x; under the parameter a

$$P(x; a_0) = N_0 exp(-\frac{(x - X_0)^2}{2\alpha_0}),$$
 at a=a0

Change the parameter from a0 to a

$$P(x:a) = Nexp(-\frac{(x - X_0)^2}{2\alpha(a)} + v(x,a))$$

 $v(a, x) = C(a - a_0)(x - X_0) + \dots$, with C as a constant,

$$P(x:a) = N(a)exp(-\frac{(x-X_0)^2}{2\alpha(a)} + C(a-a_0)(x-X_0)),$$

generalized force $C(a-a_0)(x-X_0)$ to shift the distribution.

$$P(x, a_0 + \Delta a) = N' exp(-\frac{(x - X_0 - C\Delta a\alpha(a_0 + \Delta a))^2}{2\alpha(a_0 + \Delta a)})$$

Hence, we get

$$\frac{\langle x \rangle_{a=a_0+\Delta a} - \langle x \rangle_{a=a_0}}{\Delta a} = C\alpha(a_0 + \Delta a),$$

Noting that $\alpha = \langle (\delta x)^2 \rangle$

$$\frac{\langle x \rangle_{a=a_0+\Delta a} - \langle x \rangle_{a=a_0}}{\Delta a} = C \langle (\delta x)^2 \rangle,$$

Approximate formula; trivial by itself

Non-trivial point : representation by P(x;a) **x** : phenotype a ; enviroment etc

Sato, Ito, Yomo, KK, PNAS 2003

Toy Cell Model with Catalytic Reaction Network 'Crude but whole cell model'

C.Furusawa & KK、PRL2003

■ k species of chemicals $X_0 \cdots X_{k-1}$ number --- $n_0 n_1 \dots n_{k-1}$

random catalytic reaction network with the path rate p for the reaction $X_i + X_j - > X_k + X_j$

some chemicals are penetrable through the membrane with the diffusion coefficient D

■ resource chemicals are thus transformed into impenetrable chemicals, leading to the growth in N= Σ n_i, when it exceeds N_{max} the cell divides into two

 $dX1/dt \propto X0X4$; rate equation; Stochastic model here

In continuum description, the following rate eqn., but we mostly use stochastic simulation

$$dn_i/dt = \sum_{j,\ell} \operatorname{Con}(j, i, \ell) \epsilon n_j n_\ell/N^2$$

-
$$\sum_{j',\ell'} \operatorname{Con}(i, j', \ell') \epsilon n_i n_{\ell'}/N^2$$

+
$$D\sigma_i(\overline{n_i}/V - n_i/N),$$

where Con(*i*, *j*, ℓ) is 1 if there is a reaction $i + \ell \rightarrow j + \ell$, and 0 otherwise, whereas σ_i takes 1 if the chemical *i* is penetrable, and 0 otherwise. The third term describes the transport of chemicals through the membrane, where $\overline{n_i}$ is

• Confirmation by numerical evolution experiment by the reaction-net cell model

Mutate the network ('gene') with mutation rate μ , (rewire the path of the network with the rate) and select such network

having highest concentration c of a specific chemical

phenotype $x = \log (n_s)$

- 1. Prepare initial mother cells.
- 2. From each parent cell, mutant cells are generated by randomly replacing reaction paths, with mutation rate μ
- 3. reaction dynamics of all mutants are simulated to determine phenotype x
- 4. Top 5% cells with regard to phenotype x are selected as parent cells of next generation

Confirmation of Fluctuation Dissipation Theorem by reaction-network cell model

..... Not yet over

C

New mystery? phenotype fluctuation of clone vs evolution speed in contrast to evolution speed ∝ phenotypic fluctuation by genetic variation(Vg): (fundamental theorem of natural selection; established)

isogenic phenotypic fluctuation Vip

Kers

gene

pheno fluct by gene variation Vg? (fluct by noise \propto variation in 'equation')

Vip \propto evolution speed (exp (?), model) Vg \propto evolution speed (Fisher) a simple derivation(?)

 $P_n(q)$ distribution $\overline{g}_{m} = \int g P_{n}(g) dg$ (growth rate ~fitness) $P_{n+1}(g) = \frac{gP_n(g)}{\int gP_n(g)dg} = \frac{gP_n(g)}{J_n}$ $\overline{g_{n+1}} - \overline{g_n} = \frac{\int g^2 P_n(g) dg}{\overline{g_n}} - \overline{g_n} = \frac{1}{\overline{g_n}} \left(\int g^2 P_n(g) dg - \left(\int g_n g(g) dg - \left(\int g_n g(g$ $=\frac{1}{3\pi}\left(Sg_{n}\right)^{2}$ (Fisher?)

Phenotype fluct. (Vp) vs Gene Fluct. (Vg) in the evolution of toy cell model

Vp: fluct. for given network, Vg: fluct. by network variation

variance of log(x), x is the concentration of the molecule cf. also true for each molecules species (common proportional coefficient, (Furusawa, private comm.)

Phenotype : concentration of selected (target) chemical

Consider 2-variable distrb P(x=phenotype,a=genotype) =exp(-V(x,a)) Keep a single-peak (stability condition).

KK, Furusawa, 2006 JTB

 $(\partial^2 V/\partial a^2)^{-1} \ge 0; \quad (\partial^2 V/\partial x^2)^{-1} \ge 0.$ $(\partial^2 V/\partial x^2)(\partial^2 V/\partial a^2) - (\partial^2 V/\partial a \partial x)^2 \ge 0.$

Hessian condition

Up to this point pheno (x) and geno (a) are treated in the same way. Then given a, the peak (average) phenotype is x0(a)--function of a --

 $\partial V / \partial x |_{x=x0} = 0$

Phenomenological Theory for these experimental observations?

Consider P(phenotype,genotype) distribution P(x,a) or P(x,a)=exp(-V(x,a))

Condition to keep single peak

(evolutionary stability).

$$P(x,a) = \widehat{N} \exp\left[-\frac{(x-X_0)^2}{2\alpha(a)} + \frac{C(a-a_0)(x-X_0)}{\alpha} - \frac{1}{2\mu}(a-a_0)^2\right]$$

$$P(x,a) = \widehat{N} \exp\left[-\frac{(x-X_0 - C(a-a_0))^2}{2\alpha(a)} + \left(\frac{C^2}{2\alpha(a)} - \frac{1}{2\mu}\right)(a-a_0)^2\right]$$

$$\mu \leq \frac{\alpha}{C^2} \equiv \mu_{max}.$$

$$\overline{x}_a \equiv \int x P(x,a) dx = X_0 + C(a-a_0).$$

$$V_g = \frac{\mu C^2}{1-\mu C^2/\alpha} \qquad \overline{V_{ip}} = \frac{\alpha}{1-\mu C^2/\alpha}$$

$$\overline{V_{ig}} = \frac{\alpha}{\mu_{max}}.$$

$$\overline{V_{ig}} \leq \overline{V_{ip}}.$$

$$V_{ig} = \frac{\mu}{\mu_{max}}.$$

$$\overline{V_{ig}} = \frac{\mu}{\mu_{max}}.$$

From Stability condition \rightarrow Vip \geq Vig is derived Vg increases with the mutation rate if the increase continues, there is critical mutation rate **µ c** at which Vip ~Vig Error catastrophe \rightarrow evolution stops Here, Vig \neq Vg Vig for distribution for a given phenotype Vg for all population but for small μ OR def Vp as average of Vip, Then Vp \geq Vg $V_g \approx V_{ig} \approx \frac{M}{M_c} V_{ip}$ Wip ~ Vg ~ evolution speed consistent

(i) Vip \geq Vg (from stability condition) (**) (ii)error catastrophe at Vip ~ Vg (**) (where the evolution does not progress) (iii) Vg~(μ / μ max)Vip \propto μ Vip (\propto evolution speed) at least for small μ ***** Consistent with the experiments, but,,,, Existence of P(x,a) assumption ??;; + Robust Evolution assumption ?? + Why isogenetic phenotypic fluctuation leads to robust evolution?

(**) to be precisely Vig, variance those from a given phentype x: but Vig \sim Vg if μ is small

Gene expression dynamics model:: Relevance of Noise to evolution? Simple Model:Gene-net(dynamics of stochastic gene expression) → on/off state

Xi – expression of gene i : on off

$$dx_i/dt = \tanh[\beta \sum_{j>k}^M J_{ij}x_j] - x_i + \sigma \eta(t),$$

 $<\eta(t)\eta(t')>=\delta(t-t').\delta$ ij

Activation Repression Jij=1,-1,0

Gaussian white

M;total number of genes, \mathbf{k} : output genes Noise strength $\boldsymbol{\sigma}$ Fitness: Starting from off of all genes, after development genes xi i=1,2,...,k should be on (Target Gene Pattern)

Fitness F = - (Number of off x_i)

Genetic Algorithm

Mutate networks and Select those with higher <F> Choose top n networks among total N, and mutate with rate μ to keep N networks \mathcal{H}_{21}

Result of evolution

Top:reaches the fittest

faster for lower noise

Lowest; cannot evolve

for low noise(

Fitness Distribution $\sigma < \sigma c$ --low fitness mutants distributed $\sigma > \sigma c$ - eliminated through evolution

Existence of critical noise level σ c below which low-fitness mutants accumulate (error catastrophe)

Why?; difference in basin structure

 $\sigma > \sigma c \rightarrow$ large basin for target attractor (robust, Δ (distance to basin boudary) $\sigma < \sigma c \rightarrow$ only tiny basin around target orbit Δ remains small

why threshold?

choose paths to avoid turning pts within σ (noise)

Mutation \rightarrow touches turning points within range of μ

small $\sigma \rightarrow$ an orbit with small Δ can reach the target

Discussion: Evolution of Robustness

- Robustness ----- Insensitivity of Fitness (Phenotype) to system's change
- ← against noise during 'developmental process
- ← against parameter change by mutation
- Developmental Robustness to noise ---- Vip
- Robustness to mutation in evolution ----Vg
- For $\sigma > \sigma c$, both decrease, i.e., robustness/
- Noise is necessary for evolution of robustness
- Vip ∝ Vg →Developmental robustness and genetic (evolutionary) robustness are linked (or embedded) WADDINGTON genetic assimilation
 - ? Extension of Structural Stability Needed?

- Generality of our result; For a system satisfying:
- (1) fitness is determined after developmental dynamics
- (2) developmental dynamics is complex
- (3) effective equivalence between mutations and noise with regards to the consequence to fitness
- -- under noise smooth dynamic landscape is formed ('Funnel')

Symbiotic Sympatric Speciation Kk, Yomo 2000 ProcRoySoc

- So far, no interaction, evolution under fixed environment -- – single-peaked distribution
- Speciation \rightarrow change to double peaked distribution
- ** Allopatric vs Sympatric (S fundamental? Difficult?)
- Our scenario for sympatric speciation (confirmed by several models):
- (1) Isologous divesification (interaction-induced phenotype differentiation);

homogeneous state is destabilized by the interaction e.g., by the increase in resources

(2) Amplification of the difference through geno-pheno relation

Two groups form symbiotic relationship, and coevolve (3) Genetic Fixation and Isolation of Differentiated Group consolidated to genotypes

Model with Evolution :

Each unit Phenotype :: Variable $X = (X_1, X_2, ..., X_k)$

Mutation ---- small change in parameter in reproduction

Competition for survival:

(remove some units (either randomly or under some condition))

Concentration of chemical 3

Concentration of chemical3

Distinct types are formed through instability in 'developmental dynamics' and interaction (both types are necessary)

Example of numerical simulation

Phenoptype(variable)

Gene (parameter)

Characteristics of the Symbiotic Sympatric Speciation

*Valid (possible) in the presence of strong interaction

*Robust speciation; two groups coevolve; works under sexual and asexual cases as well (indeed, hybrid sterility is resulted)

*Genetic separation always follows if there appears interaction-induced phenotypic differentiation

*Relevance of the phenotypic differentiation, rather than genetic change, to genetic diversification (cf Baldwin effect or genetic assimilation)

Stage I→II→III→IV→V

Complex Systems Biology

Understand Universal features of Biological System with

--Mutual dependence between parts and whole (dynamic, flexible, and reproducible)

Consistency between different levels

