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Introduction

Aim:

What and why border collision bifurcations?

How to prove systems are chaotic

Border collisions: normal forms and chaos

border collisions and chaos: snapback repellers

Bringing together two fundamental ideas in
continuous but noninvertible discrete dynamical systems
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Border collisions: what?

Suppose that phase space (think of the plane) is divided into open
connected regions separated by codimension one hyperplanes (boundary)
@� and such that

in each region the dynamics is de�ned by a smooth invertible map
depending smoothly on parameters;

the maps are continuous across @� but derivatives are not;

then a border collision bifurcation occurs at a parameter value if @�
intersects the boundary of an invariant set (e.g. �xed point, periodic
orbit,...) of the system.

Examples in hybrid systems, models of friction.... see Chris Budd's
lectures.

Paul Glendinning School of Mathematics and CICADA, Manchester

Snapback repellers and border collision bifurcations



Introduction Border Collisions Proving chaos Border collision: normal form Border collision and snapback repellers

Border collision: interesting example

The fully chaotic skew tent map is:

f (x) =

�
sx if 0 < x � s�1

s

s�1
(1� x) if s�1 � x < 1

with s > 1. Now de�ne a system by

xn+1 = (1� ")f (xn) + "f (yn)
yn+1 = "f (xn) + (1� ")f (yn)

with (x ; y) 2 [0; 1]� [0; 1]. Studied by Pikovsky and Grassberger (1991)
and their conjectures later proved by Glendinning (2001) { blowout
bifurcations (cf. Milnor attractors and Prof Kaneko's talk).

Unit square divided into four regions by the lines x = s�1 and y = s�1 on
which the dynamics is linear; and the diagonal line (synchronized state)
x = y is invariant and on this line the dynamics is given by the skew tent
map itself.
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Example of dynamics: s = 1:8

For small " (" = 0:24 is shown) typical trajectories �ll a lozenge:

For larger " most trajectories tend to the synchronized state although the
lozenge persists (containing a dense set of periodic orbits), and at still
larger " (" � 1=2s) the lozenge disappears and the synchronized state (the
diagonal) attracts all solutions.
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Creation of the lozenge

Figure shows the volume of the lozenge as a function of the parameter "
with s = 1:8.

It jumps!

How? A plethora of border collision bifurcations (including some novel
ones we are still in the process of analyzing) immediately after the initial
loss of transverse stability of the synchronized state create the required
orbits. (Ivan's thesis!)
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Mechanisms to create chaos (invertible case)

Two-dimensional invertible dynamics: the basic mechanism is the creation
of a horseshoe, and the simplest way to do this is via a homoclinic orbit
where

a homoclinic orbit is an orbit which approaches the same �xed point (or
periodic orbit) of the map in both forwards and backwards time.

In other words it is in the intersection of the stable and unstable manifolds
of the �xed point (or periodic orbit) leading to a homoclinic tangle.
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Mechanisms to create chaos (non-invertible case): I

Can of course have the same essential mechanism as the invertible case: a
�xed point with one dimensional stable and unstable manifolds which
intersect.

(from Banerjee, Ranjan and Grebogi, 2000)
But there is another way....
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Snapback repellers

Suppose a �xed point is unstable (has a two-dimensional local unstable
manifold in R2). If the system is invertible, then no orbit can tend to this
point in forwards time. But if it is non-invertible this becomes possible.

1D Example: xn+1 = T (xn) = 4xn(1� xn) x = 0 is �xed and unstable,
but T (1

2
) = 1 and T (1) = 0, and there exists (choosing preimages of the

left branch) points yn ! 0 such that T n(yn) =
1
2
).

It is no coincidence that this occurs when the map is fully chaotic!
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Marotto, 1978, 2005

Marotto de�ned a snapback repeller of a non-invertible map F on R2 to
be a �xed point p such that

1 the eigenvalues s� of the Jacobian at p satisfy js+j � js�j > 1;

2 there is a point x0 6= p such that F (x0) = p; and

3 there exists a sequence xi in which tends to p as i !1 such that
F (xi+1) = xi , i = 1; 2; 3; ::: and F (x1) = x0.

Theorem: If F has a snapback repeller then there exists a chaotic
invariant set.

Several recent papers make this clearer, more precise and more general
(heteroclinic loops).
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Sketch Proof

Figure: The geometry of a simple snap-back repeller.
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Normal form (Nusse and Yorke, 1992)

Suppose that a �xed point strikes @� at parameter � = 0. Aim to work
with leading order terms (constants and linear): choose coordinates so
that @� is the y�axis, x = 0, then assuming no degeneracies the map
takes the form (with x = (x ; y))

xn+1 =

(
ALxn +mL if xn � 0

ARxn +mR if xn � 0

locally.
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Impose continuity on x = 0

xn+1 =

(
ALxn +m if xn � 0

ARxn +m if xn � 0

(i.e. mL = mR = m) and

if AL =

�
A B

C D

�
then AR =

�
a B

c D

�
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Linear transform keeping x = 0 invariant, shift y , � = 0
has border collision

xn+1 =

(
ALxn +m if xn � 0

ARxn +m if xn � 0

m = (�; 0)T and

AL =

�
TL 1
�DL 0

�
and AR =

�
TR 1
�DR 0

�

This is the normal form for the standard border collision bifurcation.
(Note that by rescaling can set � 2 f�1; 0; 1g.)
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Simple Remarks

Fixed Points

x�� =
�

1� T� + D�
; y�� = �D�x

�

� ; � = L;R

and xR� exists provided xR� > 0, with a similar inequality for the existence
of xL�.

Image of left/right half plane
If xn > 0 then yn+1 = �DRxn. So if DR > 0 (resp. DR < 0) then the
image of the right half plane is the lower (resp. upper) half plane.
If xn < 0 then yn+1 = �DLxn. So if DL > 0 (resp. DL < 0) then the
image of the left half plane is the upper (resp. lower) half plane.

Local non-invertibility if DLDR < 0.
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Area contraction

If jD�j < 1, � = R; L, then both maps contract areas and so we expect to
see stable objects. Sequences of papers in the late 1990s and early 2000s
by the Maryland group (particularly Banerjee, Yorke and Grebogi), and
Bristol/Bath established a basic pattern of results including

`no bifurcation': border crossing;

`saddlenode' style bifurcation;

�xed point to stable periodic orbit;

�xed point to many periodic orbits;

Lozi-type chaotic attractor ('Robust Chaos')
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Area expansion

The possibility that (e.g.) DR > 1 might be interesting had not been
considered { possibly because it was thought either uninteresting or could
be obtained from the modulus less than one case by reversing time. The
example at the start shows it might be interesting, and it certainly cannot
be obtained by time reversal.
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Snapback repellers

Fix
DR > 1; DL < 0

and
TR > 2; T 2

R > 4DR ; 1� TR + DR > 0

which ensures that there is an unstable node in x > 0 for � > 0. Since
DL < 0 this �xed point has a preimage in x < 0 and it is then a case of
ensuring this in turn has a preimage in x > 0 and then that the backward
orbit of this latter point remains in x > 0, where it tends to the �xed
point. We obtain some tiresome inequalities which are su�cient for the
existence of a snapback repeller and hence chaos!
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The tiresome inequalities

Suppose that

DR > 1; DL < 0; TR > 2; T 2
R > 4DR ; 1� TR + DR > 0

as before. If, in addition,

TRDL � TLDR � DLDR > 0

(which ensures that the preimage in x < 0 of the �xed point in x > 0 has
y < 0) and

s+DR(DR � DL) + (s+TR � DR)(TRDL � TLDR) � 0

where s+ is the larger eigenvalue of AR (which ensures that the preimages
converge back to the �xed point in x > 0) then there is a snapback
repeller in the normal form if � > 0.
Paul Glendinning School of Mathematics and CICADA, Manchester
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Application to the Pikovsky-Grassberger example

One of the simplest border collisions in this example is for orbits of period
three. If s = 1:8 and " = 0:18, then there are two period 3 orbits, one
with a point close to x = s�1 � 0:555 at (0:553; 0:737) and the other with
a point at (0:559; 0:736). As " increases these tend to the boundary, one
from the left and the other from the right, and there is a border collision
at " � 0:1845. For the third iterate of the map these are repelling �xed
points, and (again for the third iterate) TL � �9:83, DL � 21:77,
TR � �1:44 and DR � �27:21.

In this case we checked analytically that the �xed point (of the third
iterate) in x < s�1 is a snapback repeller.
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The proof of the pudding...

We therefore expect to see orbits with each iterate in x > s�1 separated
by several iterates in x < s�1.

Figure: Bifurcating orbits in the (�; x) plane for the third iterate of the map for
the border collision with s = 1:8. Except for the period three orbit in x < a

�1,
each orbit has one point in x > s

�1 and n in x < s
�1; orbits with n = 0; 1; 2; 3; 4

are shown (periods 3 to 15 for the map).Paul Glendinning School of Mathematics and CICADA, Manchester
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Conclusion

interesting bifurcations in non-invertible/hybrid systems (border
collision);

snapback repellers a way of proving existence of complicated
trajectories;

snapback repellers occur in (area expanding) border collisions.
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