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Overview

In yesterday’s talk we covered the first two parts of the plan

• Some properties of the Cantor set

• Ways to characterise fractals

◦ Hyperbolic iterated function systems (IFSs)

◦ Semi-infinite strings of symbols seen as a metric space

◦ Topological equivalence with the Cantor set

◦ Non-hyperbolic IFSs

◦ Digital forcing/controlling of an inverted pendulum

Now let’s move on to discuss iterated function systems.
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A Simple Digital Channel

• First order system driven by a clocked ran-
dom pulse sequence:

dy

dt
= −γy + ξ(t)

ξ(t) =
∑

p

apg(t − pτ)

• {ap} ∈ {0, 1}N are the input symbols

• g is supported on (0, τ).

• Symbols input at constant rate, τ−1.

• In the examples, g is a raised cosine.

• In the numerical example γτ = log 3

• Plotting the samples {yn
def
= y(nτ)} gives a

Cantor set.
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What is going on here?

■ Integrate the ODE for one sample period, τ .
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What is going on here?

■ Integrate the ODE for one sample period, τ .
■ Depending on the symbol the output changes as:

y 7→ f0(y) = λy

y 7→ f1(y) = λy + b

where λ = e−γτ and b = e−γτ
∫ τ

0
eγtg(t)dt
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What is going on here?

■ Integrate the ODE for one sample period, τ .
■ Depending on the symbol the output changes as:

y 7→ f0(y) = λy

y 7→ f1(y) = λy + b

where λ = e−γτ and b = e−γτ
∫ τ

0
eγtg(t)dt

■ The sampled output is given by random composition
■ For a random sequence {a0, . . . , ap, . . .} ∈ {0, 1}N the

sequence of output values is {y1, y2, y3, . . .} where:

y1 = fa0
(y0)

y2 = fa1
(y1) and so on

■ Generally, yn = fan−1
◦ . . . ◦ fa1

◦ fa0
(y0)



● Overview

● A Simple Digital Channel

● What is going on here?

● Parameter dependence

● The gasket examples

● The symbol space
● Hyperbolic Iterated Function

Systems

● Addressing K

● IFSs with overlaps
● The channel example and

Cantor sets

● Forward iteration

● Conclusion

Dave Broomhead, January 13, 2009 UK-Japan Winter School 2009 - p. 5/13

Parameter dependence

■ The channel example: rescale y 7→ y/b to get:

{y 7→ λy, y 7→ λy + 1 : λ = e−γτ ∈ [0, 1)}

■ Plot: random iterates (plotted vertically) for each λ
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The gasket examples

■ The gasket examples can be thought
of as IFSs

■ Let’s call the set of vertices of the
triangle P = {p1, p2, p3}. Then we
have three maps that can be applied:

x 7→ fi(x) = s(x − pi) + pi

■ The random walk is given by random
composition of these.

■ For a random choices of the vertices
{i0, . . . , in, . . .} ∈ P N the sequence of
point visited in the plane is
{x1, x2, x3, . . .} where:

x1 = fi0(x0)

x2 = fi1(x1) and so on

■ So that x2 = fi1 ◦ fi0(x0) etc.
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The symbol space

■ We have been speaking of spaces Σ = AN which consists of
(all) semi-infinite strings of symbols from A, a finite alphabet.

■ This can be made into a metric space, say, by introducing

d(a, a′) = 2−ρ(a,a′)

where ρ(a, a′) is the maximum length of substrings starting at
the left, over which the strings a and a

′ agree.
■ It will be natural to think of the left shift dynamics σ : Σ → Σ

on this space
■ We will also be interested in the inverse of this the right shift

σ−1
a = {σ−1

a a = (a, a)|a ∈ A}

■ For the application, think of a string a as the history of inputs
to the system.
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Hyperbolic Iterated Function Systems
■ Let C be the set of nonempty compact subsets of a complete

metric space, (X, d)

■ Define the map F : C → C

F (U) =

|A|⋃

a=1

fa(U)

A is a finite alphabet and the maps {fa : a ∈ A} act on X.
■ If each of the {fa : a ∈ A} is a contraction mapping:

d(fa(x)−fa(x′)) ≤ cad(x−x′) with ca < 1 for every x, x′ ∈ X

■ Then there is a set K which is the unique fixed point of F

K =

|A|⋃

a=1

fa(K)

■ For any U ∈ C, F k(U) → K in the Hausdorff metric.
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Addressing K

■ In the case of two symbols A = {0, 1}, K satifies

K = f0(K) ∪ f1(K)

■ The maps are contractions so f0(K) and f1(K) are two
smaller copies of K

■ We can rewrite the Ks on the right hand side

K = f0(f0(K)) ∪ f0(f1(K)) ∪ f1(f0(K)) ∪ f1(f1(K))

■ Now K is seen as the union of 4 even smaller copies of itself
■ The process is sometimes called backward iteration
■ Consider the taking the following limit of this process

⋂

n≥0

fa0
◦ fa1

◦ . . . ◦ fan
(K)

■ This converges uniformly to a single point in K which
depends only on the infinite sequence (a0, a1, . . .) ∈ Σ.

■ This defines a continuous surjection π : Σ → K.
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IFSs with overlaps
■ In the case of two symbols A = {0, 1}, K satifies

K = f0(K) ∪ f1(K)

■ All points in f0(K) have "0" as the first symbol in their
addresses, and all points in f1(K) have "1" as their first
symbol

■ If f0(K) ∩ f1(K) 6= ∅ then there are points which have at
least two addresses, one beginning with "0" and one
beginning with "1".

■ Digital channel example

y 7→ f0(y) = λy

y 7→ f1(y) = λy + b

■ If f0([0, b/(1 − λ)]) ∩ f1([0, b/(1 − λ)]) 6= ∅ then
K = [0, b/(1 − λ)] and so we have overlap

■ Condition for overlap is then b ≤ λb/(1 − λ) ⇐⇒ λ ≥ 1/2
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The channel example and Cantor sets
■ Digital channel example

y 7→ f0(y) = λy

y 7→ f1(y) = λy + b

■ If λ < 1/2 we have the strong separation condition
f0(K) ∩ f1(K) = ∅

■ This implies the open set condition.
■ It is also true that π : Σ → K is homeomorphism
■ The middle thirds Cantor set is therefore topologically

conjugate to (Σ, d)

■ So we can find the Hausdorff dimension of K using the
result for self-similar sets satisfying the open set condition:

dimH(K) = dimB(K) =
log 2

log λ−1
< 1

■ So for all λ < 1/2 the attractor K is totally disconnected
■ All these attractors are therefore conjugate to the Cantor set.
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Forward iteration
■ The iteration process represented by

xn = fan−1
◦ . . . ◦ fa1

◦ fa0
(x0)

is known as forward iteration
■ Think of a = (a−1, a−2, a−3 . . .) ∈ Σ as the history of symbols

input to the channel .
■ We are currently at

x = π(a) =
⋂

n≥1 fa−1
◦ fa−2

◦ . . . ◦ fa−n
(K)

■ If the next input is a0 ∈ A, so we move to a
′ = (a0, a) ∈ σ−1

a

■ And in X we move to x′ = fa0
(x) by forward iteration

■ But x′ = π((a0, a)) =
⋂

n≥0 fa0
◦ fa−1

◦ . . . ◦ fa−n
(K)

■ We have a (semi-)conjugacy between the IFS dynamics on
K and the right shift on Σ

fa0
◦ π = π ◦ σ−1

a0

where σ−1
a0

(a) = (a0, a) is a possible value of the right shift.
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Conclusion

We have completed the first 5 parts of the plan:

• Some properties of the Cantor set

• Ways to characterise fractals

• Hyperbolic iterated function systems (IFSs)

• Semi-infinite strings of symbols seen as a metric space

• Topological equivalence with the Cantor set

◦ Non-hyperbolic IFSs

◦ Digital forcing/controlling of an inverted pendulum
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