An Introduction to Dynamical Systems and Fractals: 1

David Broomhead
The School of Mathematics and
Centre for Interdisciplinary Computational
and Dynamical Analysis (CICADA),
The University of Manchester.

Funded by the Engineering and Physical Sciences Research Council (EPSRC) and the University of Manchester.

A Simple Digital Channel

- First order system driven by a clocked random pulse sequence:

$$
\begin{gathered}
\frac{d y}{d t}=-\gamma y+\xi(t) \\
\xi(t)=\sum_{p} a_{p} g(t-p \tau)
\end{gathered}
$$

- $\left\{a_{p}\right\} \in\{0,1\}^{\mathbb{Z}^{+}}$are the input symbols
- g is supported on $(0, \tau)$.
- Symbols input at constant rate, τ^{-1}.
- In the examples, g is a raised cosine.
- In the numerical example $\gamma \tau=\log 3$

A Simple Digital Channel

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- First order system driven by a clocked random pulse sequence:

$$
\begin{gathered}
\frac{d y}{d t}=-\gamma y+\xi(t) \\
\xi(t)=\sum_{p} a_{p} g(t-p \tau)
\end{gathered}
$$

- $\left\{a_{p}\right\} \in\{0,1\}^{\mathbb{Z}^{+}}$are the input symbols
- g is supported on $(0, \tau)$.
- Symbols input at constant rate, τ^{-1}.
- In the examples, g is a raised cosine.
- In the numerical example $\gamma \tau=\log 3$

Sampling the Output

- A Simple Digital Channel - Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- When processing signals, it is usual to sample the output.
- A simple picture emerges if we sample at the symbol input rate.

Sampling the Output

- A Simple Digital Channel - Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- When processing signals, it is usual to sample the output.
- A simple picture emerges if we sample at the symbol input rate.
- Just plotting the samples $\left\{y_{n} \stackrel{\text { def }}{=} y(n \tau)\right\}$

- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Sampling the Output

A Simple Digital Channel - Sampling the Output

- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- When processing signals, it is usual to sample the output.
- A simple picture emerges if we sample at the symbol input rate.
- Just plotting the samples $\left\{y_{n} \stackrel{\text { def }}{=} y(n \tau)\right\}$

 27
0.4

2"

Overview

- A Simple Digital Channe
- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set

Overview

- A Simple Digital Channe
- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals

Overview

- A Simple Digital Channe
- Sampling the Output

Overview

- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) se
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)

Overview

A Simple Digital Channe

- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)
- Semi-infinite strings of symbols seen as a metric space

Overview

A Simple Digital Channe

- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)
- Semi-infinite strings of symbols seen as a metric space
- Topological equivalence with the Cantor set

Overview

A Simple Digital Channe

- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)
- Semi-infinite strings of symbols seen as a metric space
- Topological equivalence with the Cantor set
- Non-hyperbolic IFSs

Overview

A Simple Digital Channe

- Sampling the Output

There is a close relationship between sequences of symbols from an alphabet and fractals such as the Cantor set.

Over the next couple of days, we shall explore this relationship by considering the following:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)
- Semi-infinite strings of symbols seen as a metric space
- Topological equivalence with the Cantor set
- Non-hyperbolic IFSs
- Digital forcing/controlling of an inverted pendulum

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$
- A Simple Digital Channel
- Sampling the Output
- Overview
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
- Continue to generate $I_{3}, I_{4} \ldots$ and find the limit $C=\bigcap_{j=0}^{\infty} I_{j}$

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$

A Simple Digital Channel

- Sampling the Output
- Overview
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
- Continue to generate $I_{3}, I_{4} \ldots$ and find the limit $C=\bigcap_{j=0}^{\infty} I_{j}$
- C is non-empty: e.g. it contains all points 3^{-j} where $j \in \mathbb{N}$

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$

A Simple Digital Channel

- Sampling the Output
- Overview
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
- Continue to generate $I_{3}, I_{4} \ldots$ and find the limit $C=\bigcap_{j=0}^{\infty} I_{j}$
- C is non-empty: e.g. it contains all points 3^{-j} where $j \in \mathbb{N}$
- However, there is a sense in which it is rather small ...

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$

A Simple Digital Channe

- Sampling the Output
- Overview
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
- Continue to generate $I_{3}, I_{4} \ldots$ and find the limit $C=\bigcap_{j=0}^{\infty} I_{j}$
- C is non-empty: e.g. it contains all points 3^{-j} where $j \in \mathbb{N}$
- However, there is a sense in which it is rather small ...
- Any reasonable definition of length would require

$$
C \subset I_{j} \Rightarrow l(C) \leq l\left(I_{j}\right)
$$

Cantor's (rather small) set

- Remove from the closed unit interval $I_{0}=[0,1]$ its open middle third $(1 / 3,2 / 3)$ to leave $I_{1}=[0,1 / 3] \cup[2 / 3,1]$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension - Properties of the Hausdorff
- Repeat the process on $[0,1 / 3]$ and $[2 / 3,1]$ to get: $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$
- Continue to generate $I_{3}, I_{4} \ldots$ and find the limit $C=\bigcap_{j=0}^{\infty} I_{j}$
- C is non-empty: e.g. it contains all points 3^{-j} where $j \in \mathbb{N}$
- However, there is a sense in which it is rather small ...
- Any reasonable definition of length would require

$$
C \subset I_{j} \Rightarrow l(C) \leq l\left(I_{j}\right)
$$

- This implies that $l(C) \leq(2 / 3)^{j}$ for any $j \in \mathbb{N}$

Representing the middle thirds Cantor set

-Write $x \in[0,1]$ in base 3:
$x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \cdots 3$ where the $a_{k} \in\{0,1,2\}$

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Representing the middle thirds Cantor set

- Write $x \in[0,1]$ in base 3:
$x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots 3$ where the $a_{k} \in\{0,1,2\}$
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we choose to write $1 / 3=.0 \overline{2}_{3}$ rather than $.1 \overline{0}_{3}$, then no points in $I_{1}=[0,1 / 3] \cup[2 / 3,1]$ have $a_{1}=1$

Representing the middle thirds Cantor set

- Write $x \in[0,1]$ in base 3 :
$x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots 3$ where the $a_{k} \in\{0,1,2\}$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we choose to write $1 / 3=.0 \overline{2}_{3}$ rather than $.1 \overline{0}_{3}$, then no points in $I_{1}=[0,1 / 3] \cup[2 / 3,1]$ have $a_{1}=1$
- In the same way, no points in I_{2} have either $a_{1}=1$ or $a_{2}=1$

Representing the middle thirds Cantor set

- Write $x \in[0,1]$ in base 3 :

$$
x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots 3 \text { where the } a_{k} \in\{0,1,2\}
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we choose to write $1 / 3=.0 \overline{2}_{3}$ rather than $.1 \overline{0}_{3}$, then no points in $I_{1}=[0,1 / 3] \cup[2 / 3,1]$ have $a_{1}=1$
- In the same way, no points in I_{2} have either $a_{1}=1$ or $a_{2}=1$
- Continuing in this way we can characterise C as the subset of $[0,1]$ whose base 3 representation does not have any $a_{k}=1$

Representing the middle thirds Cantor set

- Write $x \in[0,1]$ in base 3 :

$$
x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots 3 \text { where the } a_{k} \in\{0,1,2\}
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we choose to write $1 / 3=.0 \overline{2}_{3}$ rather than $.1 \overline{0}_{3}$, then no points in $I_{1}=[0,1 / 3] \cup[2 / 3,1]$ have $a_{1}=1$
- In the same way, no points in I_{2} have either $a_{1}=1$ or $a_{2}=1$
- Continuing in this way we can characterise C as the subset of $[0,1]$ whose base 3 representation does not have any $a_{k}=1$
- Clearly C contains many more points than simply integer multiples of 3^{-k}

Representing the middle thirds Cantor set

- Write $x \in[0,1]$ in base 3 :

$$
x=\sum_{k=1}^{\infty} a_{k} 3^{-k} \stackrel{\text { def }}{=} . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots 3 \text { where the } a_{k} \in\{0,1,2\}
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we choose to write $1 / 3=.0 \overline{2}_{3}$ rather than $.1 \overline{0}_{3}$, then no points in $I_{1}=[0,1 / 3] \cup[2 / 3,1]$ have $a_{1}=1$
- In the same way, no points in I_{2} have either $a_{1}=1$ or $a_{2}=1$
- Continuing in this way we can characterise C as the subset of $[0,1]$ whose base 3 representation does not have any $a_{k}=1$
- Clearly C contains many more points than simply integer multiples of 3^{-k}
- For example it contains $1 / 4=. \overline{02}_{3}$

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- In fact, it has the same cardinality as the unit interval

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- In fact, it has the same cardinality as the unit interval
- To prove this, construct the following surjection $\phi: C \rightarrow[0,1]$:

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- In fact, it has the same cardinality as the unit interval
- To prove this, construct the following surjection $\phi: C \rightarrow[0,1]$:
- Given any $x \in C$ written in base $3, x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$, we write

$$
\phi(x)=\sum_{k=1}^{\infty}\left(a_{k} / 2\right) 2^{-k}
$$

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- In fact, it has the same cardinality as the unit interval
- To prove this, construct the following surjection $\phi: C \rightarrow[0,1]$:
- Given any $x \in C$ written in base $3, x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$, we write

$$
\phi(x)=\sum_{k=1}^{\infty}\left(a_{k} / 2\right) 2^{-k}
$$

- For any $y \in[0,1]$ there is clearly at least one $x \in C$ such that $y=\phi(x)$, so the cardinality of C is at least that of $[0,1]$

Cantor's (rather large) set

- If C contained only the integer multiples of 3^{-k} it would be countably infinite, but actually it is far larger than that!

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- In fact, it has the same cardinality as the unit interval
- To prove this, construct the following surjection $\phi: C \rightarrow[0,1]$:
- Given any $x \in C$ written in base $3, x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$, we write

$$
\phi(x)=\sum_{k=1}^{\infty}\left(a_{k} / 2\right) 2^{-k}
$$

- For any $y \in[0,1]$ there is clearly at least one $x \in C$ such that $y=\phi(x)$, so the cardinality of C is at least that of $[0,1]$
- But $C \subset[0,1]$, so its cardinality cannot exceed that of $[0,1]$

Cantor's (perfect) set

- So far we have found only properties that C shares with the irrational numbers in the unit interval
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set - Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Cantor's (perfect) set

- So far we have found only properties that C shares with the irrational numbers in the unit interval
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- But C is the compliment of an open set (the union of the removed open intervals) and so, unlike the irrationals, C is a closed set.

Cantor's (perfect) set

- So far we have found only properties that C shares with the irrational numbers in the unit interval

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- But C is the compliment of an open set (the union of the removed open intervals) and so, unlike the irrationals, C is a closed set.
- It is, in fact a perfect set (every point is an accumulation point and every accumulation point lies within the set)

Cantor's (perfect) set

A Simple Digital Channe

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- So far we have found only properties that C shares with the irrational numbers in the unit interval
- But C is the compliment of an open set (the union of the removed open intervals) and so, unlike the irrationals, C is a closed set.
- It is, in fact a perfect set (every point is an accumulation point and every accumulation point lies within the set)
- The second part of this definition follows because C is closed. To prove the first part we have to show that for any $x \in C$ and for every $\epsilon>0$ there is at least one other point of C which lies within the ϵ-neighbourhood of x.

Cantor's (perfect) set

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- So far we have found only properties that C shares with the irrational numbers in the unit interval
- But C is the compliment of an open set (the union of the removed open intervals) and so, unlike the irrationals, C is a closed set.
- It is, in fact a perfect set (every point is an accumulation point and every accumulation point lies within the set)
- The second part of this definition follows because C is closed. To prove the first part we have to show that for any $x \in C$ and for every $\epsilon>0$ there is at least one other point of C which lies within the ϵ-neighbourhood of x.
- Choose an arbitrary $x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C$, and for any $\epsilon>0$ choose k so that $3^{-k}<\epsilon / 2$.

Cantor's (perfect) set

A Simple Digital Channel
Sampling the Output
Overview

- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set - Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- So far we have found only properties that C shares with the irrational numbers in the unit interval
- But C is the compliment of an open set (the union of the removed open intervals) and so, unlike the irrationals, C is a closed set.
- It is, in fact a perfect set (every point is an accumulation point and every accumulation point lies within the set)
- The second part of this definition follows because C is closed. To prove the first part we have to show that for any $x \in C$ and for every $\epsilon>0$ there is at least one other point of C which lies within the ϵ-neighbourhood of x.
- Choose an arbitrary $x=. a_{1} a_{2} a_{3} a_{4} \ldots 3 \in C$, and for any $\epsilon>0$ choose k so that $3^{-k}<\epsilon / 2$.
- A switch $2 \leftrightarrow 0$ in the k th digit of x gives $y=x \pm 2 \cdot 3^{-k}$. By construction, $y \in C$ and is in the ϵ-neighbourhood of x.

Cantor's (nowhere dense) set

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we take the closure of the rational numbers in the unit interval (the intersection of all closed sets which contain the set) we get the whole unit interval. Equivalently, any irrational number can be approximated by a sequence of rational numbers.

Cantor's (nowhere dense) set

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- If we take the closure of the rational numbers in the unit interval (the intersection of all closed sets which contain the set) we get the whole unit interval. Equivalently, any irrational number can be approximated by a sequence of rational numbers.
- Because C is perfect it must equal its closure, therefore if it is dense in any open sub-interval of $[0,1]$ it must contain the sub-interval

Cantor's (nowhere dense) set

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- If we take the closure of the rational numbers in the unit interval (the intersection of all closed sets which contain the set) we get the whole unit interval. Equivalently, any irrational number can be approximated by a sequence of rational numbers.
- Because C is perfect it must equal its closure, therefore if it is dense in any open sub-interval of $[0,1]$ it must contain the sub-interval
- But C contains no intervals. Between any two points in C there must be a point that requires a 1 somewhere in its base 3 representation.

Cantor's (nowhere dense) set

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- If we take the closure of the rational numbers in the unit interval (the intersection of all closed sets which contain the set) we get the whole unit interval. Equivalently, any irrational number can be approximated by a sequence of rational numbers.
- Because C is perfect it must equal its closure, therefore if it is dense in any open sub-interval of $[0,1]$ it must contain the sub-interval
- But C contains no intervals. Between any two points in C there must be a point that requires a 1 somewhere in its base 3 representation.
- Thus C is nowhere dense in $[0,1]$.

Summary

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- In the sense of measure, the Cantor set is very small since it has zero length.
- Its cardinality is, however, that of the unit interval.
- It is an example of a perfect set-a topological property
- And yet, topologically, it is sparse in the sense that it is a nowhere dense subset of the unit interval.
- Let's consider now what makes the Cantor set a basic example in fractal geometry.

Self-similarity of C

- Consider the partition of C into the following two subsets:
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Self-similarity of C

- Consider the partition of C into the following two subsets:
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \ldots 3 \in C \mid a_{1}=0\right\}
$$

Self-similarity of C

- Consider the partition of C into the following two subsets:
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

and

Self-similarity of C

- Consider the partition of C into the following two subsets:
- A Simple Digital Channe
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

and

$$
C_{2}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=2\right\}
$$

- And the effect of the following transformations on C :

Self-similarity of C

- Consider the partition of C into the following two subsets:
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

and

$$
C_{2}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=2\right\}
$$

- And the effect of the following transformations on C :

$$
S_{0}(x)=x / 3
$$

Self-similarity of C

- Consider the partition of C into the following two subsets:

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
\begin{gathered}
S_{0}(x)=x / 3 \\
S_{2}(x)=x / 3+2 / 3
\end{gathered}
$$

Self-similarity of C

- Consider the partition of C into the following two subsets:

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

A Simple Digital Channe

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{2}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=2\right\}
$$

- And the effect of the following transformations on C :

$$
\begin{gathered}
S_{0}(x)=x / 3 \\
S_{2}(x)=x / 3+2 / 3
\end{gathered}
$$

- Clearly $C_{0}=S_{0}(C)$ and $C_{2}=S_{2}(C)$, so that:

Self-similarity of C

- Consider the partition of C into the following two subsets:

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

A Simple Digital Channe

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{2}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=2\right\}
$$

- And the effect of the following transformations on C :

$$
\begin{gathered}
S_{0}(x)=x / 3 \\
S_{2}(x)=x / 3+2 / 3
\end{gathered}
$$

- Clearly $C_{0}=S_{0}(C)$ and $C_{2}=S_{2}(C)$, so that:

$$
C=S_{0}(C) \cup S_{1}(C)
$$

Self-similarity of C

- Consider the partition of C into the following two subsets:

$$
C_{0}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \cdots 3 \in C \mid a_{1}=0\right\}
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
C_{2}=\left\{x=. a_{1} a_{2} a_{3} a_{4} \ldots 3 \in C \mid a_{1}=2\right\}
$$

- And the effect of the following transformations on C :

$$
\begin{gathered}
S_{0}(x)=x / 3 \\
S_{2}(x)=x / 3+2 / 3
\end{gathered}
$$

- Clearly $C_{0}=S_{0}(C)$ and $C_{2}=S_{2}(C)$, so that:

$$
C=S_{0}(C) \cup S_{1}(C)
$$

- This property is known as self-similarity
$\rightarrow C$ is the union of two similar copies of itself.

Self-similarity

- More generally, for subsets of \mathbb{R}^{n}
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Self-similarity

- More generally, for subsets of \mathbb{R}^{n}
- A similarity is a transformation $S: \mathbb{R}^{n} \rightarrow$
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C

- Self-similarity

- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
\mathbb{R}^{n} with the following property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

Self-similarity

- More generally, for subsets of \mathbb{R}^{n}
- A similarity is a transformation $S: \mathbb{R}^{n} \rightarrow$
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
\mathbb{R}^{n} with the following property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- That is, similarities transform sets into geometrically similar sets

Self-similarity

- More generally, for subsets of \mathbb{R}^{n}
- A similarity is a transformation $S: \mathbb{R}^{n} \rightarrow$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
\mathbb{R}^{n} with the following property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- That is, similarities transform sets into geometrically similar sets
- Now consider a collection of similarities:
$\left\{S_{i} \mid i=1, \ldots, N\right\}$ where each has $0<c_{i}<1$
- A set $K \subset \mathbb{R}^{n}$ which satisfies:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

Self-similarity

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C

- Self-similarity

- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- More generally, for subsets of \mathbb{R}^{n}
- A similarity is a transformation $S: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} with the following property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- That is, similarities transform sets into geometrically similar sets
- Now consider a collection of similarities: $\left\{S_{i} \mid i=1, \ldots, N\right\}$ where each has $0<c_{i}<1$
- A set $K \subset \mathbb{R}^{n}$ which satisfies:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

- Many examples—like the middle thirds Cantor set-are fractal sets, having struc-
 ture on arbitrary small scales

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the diameter of U
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.
- For nice subsets $K \subset \mathbb{R}^{n}, \mathcal{H}^{s}(K)$ is proportional to the s-dimensional volume of K

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.
- For nice subsets $K \subset \mathbb{R}^{n}, \mathcal{H}^{s}(K)$ is proportional to the s-dimensional volume of K
- Imagine K is a 2-dimensional unit disc in \mathbb{R}^{n}

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.
- For nice subsets $K \subset \mathbb{R}^{n}, \mathcal{H}^{s}(K)$ is proportional to the s-dimensional volume of K
- Imagine K is a 2-dimensional unit disc in \mathbb{R}^{n}
- $\mathcal{H}^{1}(K)=\infty$

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.
- For nice subsets $K \subset \mathbb{R}^{n}, \mathcal{H}^{s}(K)$ is proportional to the s-dimensional volume of K
- Imagine K is a 2-dimensional unit disc in \mathbb{R}^{n}
- $\mathcal{H}^{1}(K)=\infty$
- $\mathcal{H}^{2}(K)$ is finite

Hausdorff measure

- Write $K \subset \mathbb{R}^{n}$. A δ-cover of K is a countable set of sets $\left\{U_{i}\left|0<\left|U_{i}\right| \leq \delta\right\}\right.$ such that $K \subset \bigcup_{i} U_{i}$. Here $|U|$ is the

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion diameter of U
- For $K \subset \mathbb{R}^{n}$ and $s>0$, define for any $\delta>0$

$$
\mathcal{H}_{\delta}^{s}(K)=\inf \left\{\sum_{i}\left|U_{i}\right|^{s} \mid\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } K\right\}
$$

- Take the limit:

$$
\mathcal{H}^{s}(K)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(K)
$$

- Limit exists, but is often either 0 or $\infty . \mathcal{H}^{s}(K)$ is the s-dimensional Hausdorff measure of K.
- For nice subsets $K \subset \mathbb{R}^{n}, \mathcal{H}^{s}(K)$ is proportional to the s-dimensional volume of K
- Imagine K is a 2-dimensional unit disc in \mathbb{R}^{n}
- $\mathcal{H}^{1}(K)=\infty$
- $\mathcal{H}^{2}(K)$ is finite
- $\mathcal{H}^{3}(K)=0$

Hausdorff dimension

- If $\left\{U_{i}\right\}$ is a δ-cover of K, then if $t>s,\left(\left|U_{i}\right| / \delta\right)^{t} \leq\left(\left|U_{i}\right| / \delta\right)^{s}$ so that
- A Simple Digital Channe
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure - Hausdorff dimension - Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
\sum_{i}\left|U_{i}\right|^{t} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}
$$

$\sum_{i}\left|U_{i}\right|^{t} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}$
and hence $\mathcal{H}_{\delta}^{t}(K) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(K)$

Hausdorff dimension

- If $\left\{U_{i}\right\}$ is a δ-cover of K, then if $t>s,\left(\left|U_{i}\right| / \delta\right)^{t} \leq\left(\left|U_{i}\right| / \delta\right)^{s}$ so that

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure - Hausdorff dimension - Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

$$
\sum_{i}\left|U_{i}\right|^{t} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}
$$

and hence $\mathcal{H}_{\delta}^{t}(K) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(K)$

- Letting $\delta \rightarrow 0$, if $\mathcal{H}^{s}(K)<\infty$ then $\mathcal{H}^{t}(K)=0$ for $t>s$.
- Thus, there is a special value of s at which $\mathcal{H}^{s}(K)$ jumps from ∞ to 0 . This is the Hausdorff dimension, written $\operatorname{dim}_{H}(K)$
$\sum_{i}\left|U_{i}\right|^{t} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}$

Hausdorff dimension

- If $\left\{U_{i}\right\}$ is a δ-cover of K, then if $t>s,\left(\left|U_{i}\right| / \delta\right)^{t} \leq\left(\left|U_{i}\right| / \delta\right)^{s}$ so that

$$
\sum_{i}\left|U_{i}\right|^{t} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}
$$

and hence $\mathcal{H}_{\delta}^{t}(K) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(K)$

- Letting $\delta \rightarrow 0$, if $\mathcal{H}^{s}(K)<\infty$ then $\mathcal{H}^{t}(K)=0$ for $t>s$.
- Thus, there is a special value of s at which $\mathcal{H}^{s}(K)$ jumps from ∞ to 0 . This is the Hausdorff dimension, written $\operatorname{dim}_{H}(K)$
- The value of $\mathcal{H}^{s}(K)$ when $s=\operatorname{dim}_{H}(K)$ may be 0 or ∞ or something in between.

Properties of the Hausdorff dimension

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Properties of the Hausdorff dimension

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$

Properties of the Hausdorff dimension

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$
Monotonicity: If $F \subset K$ then $\operatorname{dim}_{H}(F) \leq \operatorname{dim}_{H}(K)$

Properties of the Hausdorff dimension

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$

Monotonicity: If $F \subset K$ then $\operatorname{dim}_{H}(F) \leq \operatorname{dim}_{H}(K)$
Countable stability: If K_{1}, K_{2}, \ldots is a countable sequence of sets, then $\operatorname{dim}_{H}\left(\bigcup_{i=1}^{\infty} K_{i}\right)=\sup \left\{\operatorname{dim}_{H}\left(K_{i}\right)\right\}$

Properties of the Hausdorff dimension

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$

Monotonicity: If $F \subset K$ then $\operatorname{dim}_{H}(F) \leq \operatorname{dim}_{H}(K)$
Countable stability: If K_{1}, K_{2}, \ldots is a countable sequence of sets, then $\operatorname{dim}_{H}\left(\bigcup_{i=1}^{\infty} K_{i}\right)=\sup \left\{\operatorname{dim}_{H}\left(K_{i}\right)\right\}$
Countable sets: If K is countable then $\operatorname{dim}_{H}(K)=0$

Properties of the Hausdorff dimension

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$
Monotonicity: If $F \subset K$ then $\operatorname{dim}_{H}(F) \leq \operatorname{dim}_{H}(K)$
Countable stability: If K_{1}, K_{2}, \ldots is a countable sequence of sets, then $\operatorname{dim}_{H}\left(\bigcup_{i=1}^{\infty} K_{i}\right)=\sup \left\{\operatorname{dim}_{H}\left(K_{i}\right)\right\}$

Countable sets: If K is countable then $\operatorname{dim}_{H}(K)=0$
Transformations: If $f: K \rightarrow \mathbb{R}^{n}$ is Lipschitz then

$$
\operatorname{dim}_{H}(f(K)) \leq \operatorname{dim}_{H}(K)
$$

Properties of the Hausdorff dimension

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff

Open sets: $K \subset \mathbb{R}^{n}$ is open then $\operatorname{dim}_{H}(K)=n$
Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{H}(K)=m$

Monotonicity: If $F \subset K$ then $\operatorname{dim}_{H}(F) \leq \operatorname{dim}_{H}(K)$
Countable stability: If K_{1}, K_{2}, \ldots is a countable sequence of sets, then $\operatorname{dim}_{H}\left(\bigcup_{i=1}^{\infty} K_{i}\right)=\sup \left\{\operatorname{dim}_{H}\left(K_{i}\right)\right\}$

Countable sets: If K is countable then $\operatorname{dim}_{H}(K)=0$
Transformations: If $f: K \rightarrow \mathbb{R}^{n}$ is Lipschitz then

$$
\operatorname{dim}_{H}(f(K)) \leq \operatorname{dim}_{H}(K)
$$

Invariance: If $f: K \rightarrow \mathbb{R}^{n}$ is bi-Lipschitz then

$$
\operatorname{dim}_{H}(f(K))=\operatorname{dim}_{H}(K)
$$

Box-counting dimension

- The box-counting dimension is easier to calculate than the Hausdorff dimension, but it has some drawbacks.
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Box-counting dimension

- The box-counting dimension is easier to calculate than the Hausdorff dimension, but it has some drawbacks.
- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- For K a non-empty bounded subset of $\mathbb{R}^{n}, N_{\delta}(K)$ is the smallest number of sets of diameter at most δ which cover K.

Box-counting dimension

- The box-counting dimension is easier to calculate than the Hausdorff dimension, but it has some drawbacks.

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- For K a non-empty bounded subset of $\mathbb{R}^{n}, N_{\delta}(K)$ is the smallest number of sets of diameter at most δ which cover K.
- The upper and lower box-counting dimensions of K are:

$$
\begin{aligned}
& \overline{\operatorname{dim}_{B}}(K)=\lim _{\delta \rightarrow 0} \sup \frac{\log N_{\delta}(K)}{-\log \delta} \\
& \underline{\operatorname{dim}_{B}}(K)=\lim _{\delta \rightarrow 0} \inf \frac{\log N_{\delta}(K)}{-\log \delta}
\end{aligned}
$$

Box-counting dimension

- The box-counting dimension is easier to calculate than the Hausdorff dimension, but it has some drawbacks.

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary

Self-similarity of C

- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- For K a non-empty bounded subset of $\mathbb{R}^{n}, N_{\delta}(K)$ is the smallest number of sets of diameter at most δ which cover K.
- The upper and lower box-counting dimensions of K are:

$$
\begin{aligned}
& \overline{\operatorname{dim}_{B}}(K)=\lim _{\delta \rightarrow 0} \sup \frac{\log N_{\delta}(K)}{-\log \delta} \\
& \underline{\operatorname{dim}_{B}}(K)=\lim _{\delta \rightarrow 0} \inf \frac{\log N_{\delta}(K)}{-\log \delta}
\end{aligned}
$$

- If these are equal, the box-counting dimension of K is:

$$
\operatorname{dim}_{B}(K)=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(K)}{-\log \delta}
$$

Properties of the box-counting dimension

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

Properties of the box-counting dimension

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

Monotonicity: Both $\underline{\operatorname{dim}_{B}}(F)$ and $\operatorname{dim}_{B}(F)$ are monotonic.

Properties of the box-counting dimension

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Monotonicity: Both $\operatorname{dim}_{B}(F)$ and $\overline{\operatorname{dim}_{B}}(F)$ are monotonic.
Finite stability: $\overline{\operatorname{dim}_{B}}$-but not dim_{B} —is finitely stable

$$
\overline{\operatorname{dim}_{B}}(F \cup K)=\max \left\{\overline{\operatorname{dim}_{B}}(F), \overline{\operatorname{dim}_{B}}(K)\right\}
$$

Properties of the box-counting dimension

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension - Properties of the box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

Monotonicity: Both $\underline{\operatorname{dim}_{B}}(F)$ and $\overline{\operatorname{dim}_{B}}(F)$ are monotonic.
Finite stability: $\overline{\operatorname{dim}_{B}}$-but not dim_{B} —is finitely stable

$$
\overline{\operatorname{dim}_{B}}(F \cup K)=\max \left\{\overline{\operatorname{dim}_{B}}(F), \overline{\operatorname{dim}_{B}}(K)\right\}
$$

Countable sets: If K is countable then it is possible that $\operatorname{dim}_{B}(K) \neq 0$ because both the upper and lower box-counting dimensions are unchanged by taking the closure of the set.

Properties of the box-counting dimension

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension - Properties of the box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Monotonicity: Both $\operatorname{dim}_{B}(F)$ and $\overline{\operatorname{dim}_{B}}(F)$ are monotonic.
Finite stability: $\overline{\operatorname{dim}_{B}}$-but not dim_{B} —is finitely stable

$$
\overline{\operatorname{dim}_{B}}(F \cup K)=\max \left\{\overline{\operatorname{dim}_{B}}(F), \overline{\operatorname{dim}_{B}}(K)\right\}
$$

Countable sets: If K is countable then it is possible that $\operatorname{dim}_{B}(K) \neq 0$ because both the upper and lower box-counting dimensions are unchanged by taking the closure of the set.

Transformations: If $f: K \rightarrow \mathbb{R}^{n}$ is Lipschitz then

$$
\operatorname{dim}_{B}(f(K)) \leq \operatorname{dim}_{B}(K)
$$

Properties of the box-counting dimension

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension - Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion

Smooth sets: If $K \subset \mathbb{R}^{n}$ is a smooth m-dimensional submanifold then $\operatorname{dim}_{B}(K)=m$

Monotonicity: Both $\underline{\operatorname{dim}_{B}}(F)$ and $\overline{\operatorname{dim}_{B}}(F)$ are monotonic.
Finite stability: $\overline{\operatorname{dim}_{B}}$-but not dim_{B} —is finitely stable

$$
\overline{\operatorname{dim}_{B}}(F \cup K)=\max \left\{\overline{\operatorname{dim}_{B}}(F), \overline{\operatorname{dim}_{B}}(K)\right\}
$$

Countable sets: If K is countable then it is possible that $\operatorname{dim}_{B}(K) \neq 0$ because both the upper and lower box-counting dimensions are unchanged by taking the closure of the set.

Transformations: If $f: K \rightarrow \mathbb{R}^{n}$ is Lipschitz then

$$
\operatorname{dim}_{B}(f(K)) \leq \operatorname{dim}_{B}(K)
$$

Invariance: If $f: K \rightarrow \mathbb{R}^{n}$ is bi-Lipschitz then

$$
\operatorname{dim}_{B}(f(K))=\operatorname{dim}_{B}(K)
$$

Dimension of self-similar sets

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Recall that a similarity is a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

Dimension of self-similar sets

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Recall that a similarity is a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- And a set $K \subset \mathbb{R}^{n}$ with the structure:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

Dimension of self-similar sets

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- The dimension of C
- Conclusion
- Recall that a similarity is a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- And a set $K \subset \mathbb{R}^{n}$ with the structure:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

- If the components $S_{i}(K)$ do not overlap too much, then:

Dimension of self-similar sets

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets
- The dimension of C
- Conclusion
- Recall that a similarity is a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- And a set $K \subset \mathbb{R}^{n}$ with the structure:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

- If the components $S_{i}(K)$ do not overlap too much, then:
- $\operatorname{dim}_{H}(K)=\operatorname{dim}_{B}(K)=s$ where

$$
\sum_{i=1}^{N} c_{i}^{s}=1
$$

Dimension of self-similar sets

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension - Dimension of self-similar sets - The dimension of C
- Conclusion
- Recall that a similarity is a transformation $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property:

$$
\|S(x)-S(y)\|=c\|x-y\| \quad x, y \in \mathbb{R}^{n}
$$

for some fixed positive c

- And a set $K \subset \mathbb{R}^{n}$ with the structure:

$$
K=\bigcup_{i=1}^{N} S_{i}(K)
$$

is said to be self-similar.

- If the components $S_{i}(K)$ do not overlap too much, then:
- $\operatorname{dim}_{H}(K)=\operatorname{dim}_{B}(K)=s$ where

$$
\sum_{i=1}^{N} c_{i}^{s}=1
$$

- The small overlap idea is captured by the open set condition. There should exist a bounded, non-empty, open set V such that

$$
\bigcup_{i=1}^{N} S_{i}(V) \subset V
$$

with the union disjoint.

The dimension of C

- We showed that $C=S_{0}(C) \cup S_{1}(C)$ with

$$
S_{0}(x)=x / 3 \text { and } S_{2}(x)=x / 3+2 / 3
$$

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set - Representing the middle thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets OThe dimension of C - Conclusion

The dimension of C

- We showed that $C=S_{0}(C) \cup S_{1}(C)$ with

$$
S_{0}(x)=x / 3 \text { and } S_{2}(x)=x / 3+2 / 3
$$

- A Simple Digital Channel
- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets

The dimension of C

- We showed that $C=S_{0}(C) \cup S_{1}(C)$ with

$$
S_{0}(x)=x / 3 \text { and } S_{2}(x)=x / 3+2 / 3
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets - The dimension of C
- Conclusion

$$
S_{0}(V) \cap S_{1}(V)=\emptyset
$$

and

$$
S_{0}(V) \cup S_{1}(V) \subset V
$$

So the open set condition is satisfied.

- Now we must solve

$$
\sum_{i=1}^{2}\left(\frac{1}{3}\right)^{s}=1
$$

The dimension of C

- We showed that $C=S_{0}(C) \cup S_{1}(C)$ with

$$
S_{0}(x)=x / 3 \text { and } S_{2}(x)=x / 3+2 / 3
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets - The dimension of C
- Conclusion

$$
S_{0}(V) \cap S_{1}(V)=\emptyset
$$

and

$$
S_{0}(V) \cup S_{1}(V) \subset V
$$

So the open set condition is satisfied.

- Now we must solve

$$
\sum_{i=1}^{2}\left(\frac{1}{3}\right)^{s}=1
$$

- Which gives: $\operatorname{dim}_{H}(C)=\operatorname{dim}_{B}(C)=\frac{\log 2}{\log 3}$

The dimension of C

- We showed that $C=S_{0}(C) \cup S_{1}(C)$ with

$$
S_{0}(x)=x / 3 \text { and } S_{2}(x)=x / 3+2 / 3
$$

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets - The dimension of C
- Conclusion

$$
S_{0}(V) \cap S_{1}(V)=\emptyset
$$

and

$$
S_{0}(V) \cup S_{1}(V) \subset V
$$

So the open set condition is satisfied.

- Now we must solve

$$
\sum_{i=1}^{2}\left(\frac{1}{3}\right)^{s}=1
$$

- Which gives: $\operatorname{dim}_{H}(C)=\operatorname{dim}_{B}(C)=\frac{\log 2}{\log 3}$
- This illustrates a general result that a set with Hausdorff dimension less than unity is totally disconnected.

Conclusion

A Simple Digital Channel

- Sampling the Output
- Overview
- Cantor's (rather small) set
- Representing the middle
thirds Cantor set
- Cantor's (rather large) set
- Cantor's (perfect) set
- Cantor's (nowhere dense) set
- Summary
- Self-similarity of C
- Self-similarity
- Hausdorff measure
- Hausdorff dimension
- Properties of the Hausdorff
dimension
- Box-counting dimension
- Properties of the
box-counting dimension
- Dimension of self-similar sets - The dimension of C - Conclusion

We have probably overdosed on the middle thirds Cantor set.
but in doing so we have completed the first two parts of the plan:

- Some properties of the Cantor set
- Ways to characterise fractals
- Hyperbolic iterated function systems (IFSs)
- Semi-infinite strings of symbols seen as a metric space
- Topological equivalence with the Cantor set
- Non-hyperbolic IFSs
- Digital forcing/controlling of an inverted pendulum

