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Real hypersurfaces with constant principal curvatures
in complex space forms

By Jirgen Berndt

The purpose of this note is twofold. At first I want to give a survey on
results concerning the classification problem of real hypersurfaces with constant
principal curvatures in complex projective space CP™ and complex hyperbolic
space CH™. Recently Kimura [Ki] obtained the classification of Hopf hyper-
surfaces (a class of real hypersurfaces which is introduced in section 2) with
constant principal curvatures in CP™. Here, I want to present the analogous
classification in CH™. The proof of this result will be omitted here (see [Bel]
for a proof), but I want to point out that Kimura’s method of proof does not
work in the hyperbolic case. Hopf hypersurfaces with constant principal curva-
tures can be regarded as the most simple real hypersurfaces of CP™ and CH™.
Therefore it is of interest to study the influence of the anisotropy of the ambient
space CP™ or CH™ on these hypersurfaces. I will deal with this topic in the
second part of this note.

1. Hypersurfaces with constant principal curvatures in real space
forms

In real space forms (spaces of constant sectional curvature) the classification
problem of hypersurfaces with constant principal curvatures is equivalent to the
well-known classification problem of isoparametric hypersurfaces ([Cal, p. 178).
These have already been classified in Euclidean space E™ by Levi-Civita [Le]
(m = 3) and Segre [Se| (m > 3) and in real hyperbolic space RH™ by E. Cartan
[Ca]. As well in E™ as in RH™ the isoparametric hypersurfaces are essentially
the totally umbilical hypersurfaces and the tubes around totally geodesic sub-
manifolds. In the sphere S™, however, a complete classification has not been
obtained until now (for essential results see [Ca], [No], [OT], [FKM], [Mi] and
[DN] and the literature cited there).

For a profitable submanifold theory in general ambient spaces one has to
require that the geometry of a submanifold is adapted somehow to the geometry
of the ambient space. In the theory of real hypersurfaces in complex space forms
(spaces of constant holomorphic sectional curvature) a suitable adapted class of
submanifolds is formed by the Hopf hypersurfaces.
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2. Hopf hypersurfaces

Let M be a real hypersurface of a Kihler manifold M. We denote by J
the complex structure of M and by TM (resp. LM ) the tangent (resp. normal)
bundle of M (in M). The 1-dimensional foliation of M by the integral manifolds
of the subbundle J(LM) of TM will be called the Hopf foliation of M. We say
that M is a Hopf hypersurface of M if the Hopf foliation of M is totally geodesic.
In this sense $2™~! is a Hopf hypersurface of C™; the Hopf foliation of S2™~!
consists exactly of the fibers of the classical Hopf map §*™~! — CpP™~! If
M is orientable and £ is a global unit normal field on M, then the vector field
" U := —J¢ will be called the Hopf vector field on M (w.r.t. £). The following
lemma is very useful for the study of Hopf hypersurfaces in Kahler manifolds.

Lemma. Let M be an orientable real hypersurface of a Kahkler manifold M and
€ a global unit normal field on M. Then M is a Hopf hypersurface of M if
and only if the Hopf vector field U on M is a principal curvature vector of M
everywhere. .

This lemma has been proved by Maeda [Ma] in the case of CP™, but Maeda’s
proof can be generalized for arbitrary Kahler manifolds without any difficulties.

Hopf hypersurfaces in non-Euclidean complex space forms possess an impor-
tant property: the principal curvature function corresponding to the Hopf vector
field is locally constant. Geometrically this implies that the integral curves of
the Hopf vector field are circles in the ambient space (see [Be2], Chapter 5.2, for
details and more results).

3. Hopf hypersurfaces with constant principal curvatures in non-
Euclidean complex space forms

Firstly it should be remarked that in non-Euclidean complex space forms the
notions of real hypersurfaces with constant principal curvatures and of isopara-
metric real hypersurfaces do not coincide. An example of an isoparametric real
hypersurface of CP™ with non-constant principal curvatures can be found in
[Wal].

If not stated otherwise we denote in the following by M a connected real
hypersurface with constant principal curvatures in a non-Euclidean complex
space form M. The number of distinct principal curvatures of M will be denoted
by g. The first result concerning the classification problem of such hypersurfaces
is due to Tashiro/Tachibana [FT], who proved that there are no totally umbilical
real hypersurfaces in non-Euclidean complex space forms. Hence the case g = 1
cannot occur.
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3.1 Classifications in complex projective spaces

We denote by € P™ the m-dimensional complex projective space of constant
holomorphic sectional curvature 4.

The classifications for the cases g € {2,3} are completely known (Takagi:

g =2 [Ta2] and g = 3, m > 3 [Ta3]; Wang: g = 3, m =2 [Wa2]):

Theorem 1. Let M be a connected real hypersurface of CP™ (m > 2) with two
distinct constant principal curvatures. Then M is an open part of a geodesic
hypersphere (distance sphere) in CP™.

Theorem 2. Let M be a connected real hypersurface of CP™ (m > 2) with
three distinct constant principal curvatures. Then M is holomorphic congruent
to an open part of a tube around CP* in CP™ for some k € {1,...,m — 2} or
of a tube around the complez quadric Q™! in CP™.

It should be noticed that in both theorems only Hopf hypersurfaces occur.
Kimura (Ki} proved in 1986 that (expressing it in our notion) every connected
Hopf hypersurface with constant principal curvatures in CP™ is an open part
of a homogeneous real hypersurface of CP™. According to Takagi’s [Tal] clas-
sification of homogeneous real hypersurfaces of CP™ one therefore obtains the

following classification.

Theorem 3. Let M be a connected Hopf hypersurface of CP™ (m > 2) with
constant principal curvatures. Then M 1s holomorphic congruent o an open
part of one of the following real hypersurfaces of CP™:

(A) a tube of some radius r € |0, X[ around the canonically (totally geodesic)
embedded CP* for some k € {0...,m — 1},

(B) a tube of some radius v € |0, 5[ around the canonically embedded complez
quadric Q™! = SO(m + 1)/S0(2) x SO(m - 1),

(C) a tube of some radius r € )0, X[ around the Segre embedding of CP' x CP™
in CP™, m=2n+1,

(D) a tube of some radiust € |0, [ around the Plicker embedding of the complez
Grassmann manifold CG, 3 in CP9,

(E) o tube of some radius r € |0,%[ around the canonical embedding of the
Hermitian symmetric space SO(10)/U(5) in CP®.

Remarks. a) A table of the principal curvatures of the model spaces (A)-(E)
can be found in [Tal].
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b) The number g of distinct principal curvatures of the model spaces (A)-(E)
satisfies always g € {2,3,5} (9 = 2: type(A) fork=0andk=m—-1;g=3:
type (A) for k € {1,...,m — 2} and type (B)).

c) The tube of radius r € |0, 3{ around CP* in CP™ is holomorphic congruent
to the tube of radius ¥ — r around CP™—*-1 in CP™. Similarly, the tube of
radius r € |0, ¥[ around Q"' in CP™ can be regarded as the tube of radius
Z _ r around the canonically (totally geodesic) embedded m-dimensional real

n
projective space RP™.

Problem 1. In order to obtain the classification of all real hypersurfaces of
CP™ with constant principal curvatures it is of interest to know whether all of

them are Hopf hypersurfaces.

3.2 Classifications in complex hyperbolic spaces

We denote by CH™ the m-dimensional complex hyperbolic space of con-
stant holomorphic sectional curvature —4.

The corresponding result to theorem 1 has been obtained by Montiel [Mon].

Theorem 4. Let M be a connected real hypersurface of CH™ (m > 3) with
two distinct constant principal curvalures. Then M is holomorphic congruent
to an open part of one of the following real hypersurfaces of CH™: a geodesic
hypersphere in CH™; a tube around CH™ ! in CH™; a tube of radius In(2++/3)
around RH™ in CH™; a horosphere in CH™.

Problem 2. Is theorem 4 also valid for dimension m = 27

The classification of Hopf hypersurfaces with constant principal curvatures
in C H™ has been obtained recently by the author [Bel]:

Theorem 5. Let M be a connected Hopf hypersurface of CH™ (m > 2) with
constant principal curvatures. Then M is holomorphic congruent to an open
part of one of the following real hypersurfaces of CH™:

(A) a tube of some radivs r € Ry around the canonically (totally geodesic)
embedded CH* for some k € {0,...,m — 1},

(B) a tube of some radius r € R, around the canonically (totally geodesic)
embedded m-dimensional real hyperbolic space RH™,

(C) a horosphere in CH™.
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Remarks. a) A table of the principal curvatures of the model spaces (A)-(C)
can be found in [Bel].

b) The model spaces (A)-(C) always satisfy g € {2,3}.

¢) The crucial point of the proof of theorem 5 is a fundamental formula for
complex space forms which corresponds to the one given by E. Cartan [Ca]
for real space forms. In the case of CH™ we use this formula to estimate the
maximal number of distinct principal curvatures. An important role plays also
Jacobi field theory which is used for calculating the shape operator of focal sets
of Hopf hypersurfaces. It should be remarked that the whole proof of theorem
5 is “intrinsic”, i.e. (in contrast to many other authors) we do not consider the
Hopf map from anti-de Sitter space onto CH™.

Problem 3. (Compare with problem 1) Is every real hypersurface with constant
principal curvatures in CH™ a Hopf hypersurface?

Problem 4. The classification of homogeneous real hypersurfaces of CH™
is not known until now. Since every homogeneous real hypersurface of CH™
has constant principal curvatures and all the spaces (A)-(C) are homogeneous
real hypersurfaces of CH™, the following problem naturally arises: Is every
homogeneous real hypersurface of CH™ a Hopf hypersurface? (An affirmative
answer to problem 3 would be obviously affirmative to problem 4.)

4. Geometrical properties of Hopf hypersurfaces with constant prin-
cipal curvatures

The Hopf hypersurfaces with constant principal curvatures can be regarded
as the “simplest” real hypersurfaces of C P™ and C H™. Therefore it is of interest
to study the influence of the anisotropy of CP™ and C H™ on the geometry of the
model spaces occurring in theorems 3 and 5. We will state now some geometrical
results concerning this topic (for details see [Be2}).

4.1 Geodesic hyperspheres are ordinary spheres with warped Hopf
circles :

Let M be a geodesic hypersphere (distance sphere) of radius r in M €
{CP™,C™,CH™}, where r € |0, 5[ in the projective case and r € R, in both
other cases. M is a Hopf hypersurface of M and the following properties are
valid: -— - -

a) The Hopf foliation L of M consists of closed circles of the same perimeter.
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b) The space of leaves M/L is a complex projective space and the canonical
projection = : M — M/L is a Riemannian submersion.

¢) The horizontal (w.r.t. =) geodesics of M are also closed circles of the same
perimeter. The ratio between the perimeter of the Hopf circles and the
perimeter of the horizontal circles is equal to

cos(r) , in the projective case
1 , in the Euclidean case
cosh(r) , in the hyperbolic case.

Summing up these facts we see that there exists always a “modified Hopf map”
onto the complex projective space. But the anisotropy of CP™ and C H™ entails
that the sphere M is warped in the direction of the Hopf circles.

Remark. Geodesic hyperspheres in CP™ and CH™ are Berger spheres (for
CP™ see [We]).

4.2 Integrability of eigenbundles and curvature lines

In real space forms the eigenbundle corresponding to a constant principal
curvature of a hypersurface is integrable [No]. This is no more valid if the
ambient space is CP™ or CH™. Let M be one of the model spaces occurring in
theorems 3 and 5. The Hopf vector field U of M is a principal curvature vector
of M everywhere. The corresponding principal curvature a has multiplicity one
except for the tube of radius In(2 + V/3) around RHE™ in CH™. For a principal
curvature A of M, A # a, we denote by Tx the subbundle of TM consisting
of all corresponding eigenspaces. For the exceptional model space mentioned
above we allow A = a, but denote by Ty the subbundle of TM consisting of
all corresponding eigenspaces orthogonal to RU. Then the following statements
are valid for every such principal curvature A of M:

a) T, is totally real or complex.

b) T\ (resp. Th ® RU) is integrable if and only if T, is totally real (resp. com-
plex).

c) If T, is integrable, then each of its integral manifolds is totally geodesic in
M and spherical (an extrinsic sphere) in the ambient space CP™ or CH™.

d) If T\®RU is integrable, then each of its integral manifolds is totally geodesic
in M and holomorphic congruent to a Hopf hypersurface with two distinct
constant principal curvatures in C P* or CH*, where k := 1 +dim¢ Th-

e) If v is a geodesic in M tangent to Ty at one point, then v is a curvature line,
i.e. v is tangent to T at every point (even-in the case of non-integrability of
T)). These curvature lines are spherical curves (circles) in the ambient space
CP™or CH™.



16
4.3 Riemannian foliations on Hopf hypersurfaces

As Riemannian foliations (see e.g. [Mol], [To]) form a geometrically impor-
tant class of foliations we ask under which conditions the Hopf foliation of a

Hopf hypersurface is of that kind:

Theorem 6. Let M be a connected Hopf hypersurface of CP™ or CH™ (m>2)
on which the Hopf foliation is Riemannian. Then M is holomorphic congruent
to an open part of one of the following real hypersurfaces:

a) in case of CP™: q tube around CP* for some k € {0,...m — 1}.

b) in case of CH™: a tube around CH* for some k € {0,...,m = 1} or a horo-
sphere in CH™.

Let M be one of these model spaces and denote by L the Hopf foliation of
M. Then it is well-known that the orbit space M/L can be equipped with a
holomorphic structure and a Hermitian metric such that the canonical projection
from M onto the Hermitian manifold M/L becomes a Riemannian submersion.
In some important cases we describe M/L in the following table:

M : M/L
geodesic hypersphere of ra-|complex projective space CP™~1(c) of constant
dius r in CP™ holomorphic sectional curvature ¢ = 4/ sin?(r)
geodesic hypersphere of ra-|complex projective space CP™~1(c) of constant

“dius rin CH™ holomorphic sectional curvature ¢ = 4/ sinh?(r)
horosphere in CH™ ¢!
tube of radius r around complex hyperbolic space CH™~1(c¢) of constant
CH™! holomorphic sectional curvature c=—4/ cosh?(r).

Remark. Even when the Hopf foliation L of one of the model spaces in theorems
3 and 5 is not Riemannian, the orbit space M/L can be constructed. It is easy
to see that in the case of a tube M around the complex quadric Q™! in CP™
the space M/L is congruent to Q™! itself. If M is a tube around RH™ in
CH™, then M/L is congruent to the non-compact dual space of the complex
quadric @™, i.e. M/L ~ SO(1,m)/50(1,1) x SO(m - 1).

4.4 Sasakian space forms realized as Hopf hypersurfaces in complex
space forms

Sasakian structures play an important role in the study of odd-dimensional
manifolds (for definition see e.g. [Bl]). In fact, there exists"a-strong relation be-
tween Kahler structures on even-dimensional manifolds and Sasakian structures
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(e.g- [Re]). For every real pumber ¢ there exists a Sasakian space form of con-
stant (-sectional curvature ¢ which is realized as a Hopf hypersurface with two
distinct constant principal curvatures in a complex space form. More exactly:
M is up to a homothetic change of the metric with factor A a complete Sasakian
space form of constant @-sectional curvature ¢, where

M A c
geodesic hypersphere of radius cot?(r) | 1+ 4tan*(r)
re€l0,3{in CP™
geodesic hypersphere of radius 1 1 1
in C™
geodesic hypersphere of radius coth?(r) | 1 — 4 tanh?(7)
reRyin CH™
horosphere in CH™ 1 -3
tube of radius r € R4 around tanh®(r) | 1 — 4 coth®(r)
CH™ !in CH™

Moreover, all spaces except for the tubes around CH™ ! in CH™ (which
have fundamental group isomorphic to Z) are simply connected. In all cases
the structural vector field of the Sasakian space form is exactly the Hopf vector
field of the Hopf hypersurface.

Remark. We now consider the (2m + 1)-dimensional anti-de Sitter space
H2m+1 = {(ZQ,., .,Zm) € Cm+1 I —Zozo + ZZ,‘E{ = —1} ,
1i=1

which is well known as the bundle space of the usual Hopf map = : H?™+! —
CH™. H?™+1is a Lorentzian Hopf hypersurface of C™+! with Hopf vector field
as a distinguished time-like unit vector field on H?™+! tangent to the fibers of
x. By a canonical process we can switch H2™+! into a Riemannian manifold
(H?™+1,g): the Hopf vector field becomes a (space-like) unit vector field, g
coincides on the horizontal subbundle H of = with the original metric on H dm+i
and the Hopf vector field remains orthogonal to H.

Theorem 7. (H¥™t1,2g) is isometric to the tube of radius In(1 + v/2) around
CH™ in CH™!. Moreover, (H*™*1,g) is a Sasakian space form of constant
©-sectional curvature —T.

Proof: The isometry is

(H?™+1,29) = M 2+ [V22,1] ,
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where [v/22,1] is the image of (v/2z,1) € H*™*3 under the Hopf map H2™+3 _,
CH™*!. By the preceding results in 4.4 the other statement is clear. 0
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