Proceedings of The Second International

Warkshop on Diff. Georn, 2{1998) 1-15.

On Curvature and Submanifolds of
Complex Two-Plane Grassmannians

Jurgen Berndt

University of Hull. Department of Mathematics, Hull HU6 TRX. United King-
dom

1. Introduction

The aim of this note is to present some aspects of the Riemannian ge-
ometry of complex two-plane Grassmannians. One interesting fact about these
Grassmannians is that they are equipped with both a Kihler structure and a
quaternionic Kahler structure. There are various spaces which are equipped
with these two structures. but the Grassmann manifold Ga(C™2) of all two-
planes in €™ is distinguished in some sense. To make this more precise.
let M be a connected quaternionic Kidhler manifold of real dimension at least
eight. It is well-known that M is an Einstein manifold [2]. Moreover, vanishing
Ricei curvature is equivalent to M being a locally hyperkdhler manifold [2].
Hyperkahler manifolds provide examples of manifolds which are equipped with
both a Kihler and a quaternionic Kahler structure. The simplest such space is
the quaternionic vector space [H™. But the point with hyperkahler manifolds is
that the Kihler structure is incorporated in the quaternionic Kahler structure.
If the Riccl curvature is non-zero, then this cannot happen, the Kahler struc-
ture and the quaternionic Kihler structure are independent of each other. This
follows by some holonomy argument. In fact, M being Kihler means that the
holonomy group of M is contained in some unitary group U(2m), where 2m is
the complex dimension of M. And M being quaternionic Kahler means that its
holonomy group is contained in Sp(m)Sp(1). Non-zero Ricci curvature implies
that the holonomy group contains the Sp(1)-factor [5] (Lemma 14.46). Using
the list of Lie groups acting transitively on spheres [11] one can then deduce
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that the restricted holonomy group of M cannot act transitively on the unit
sphere in some tangent space when M is both Kahler and quaternionic Kéhler
with non-zero Ricci curvature. As any quaternionic Kdhler manifold with non-
zero Ricci curvature is locally irreducible [2], it follows from the classification of
holonomy groups of Riemannian manifolds due to Berger [1] that M is a locally
symmetric space. Therefore, assuming M is complete, its Riemannian universal
covering space M is a Riemannian symmetric space. It follows from the classi-
fication of simply connected, irreducible, Riemannian symmetric spaces that M
is isometric to Ga(C™*2) or its non-compact dual G5(C™ ). The first one has
positive Ricci curvature, the latter one negative Ricci curvature. A result by S.
Salamon [12] says that a compact quaternionic Kahler manifold with positive
Ricei curvature is simply connected. Equivalently we may apply a result of
S. Kobayashi [9] which says that every compact Kihler manifold with positive
definite Ricci curvature is simply connected to conclude:

Each 4m-dimensional (m > 2) compact Kdhler and quaternionic Kdahler
manifold with positive Ricei curvature is isometric to Gl @y,

Note that for negative Ricci curvature there is no similar result. Each non-
compact Riemannian symmetric space admits several compact quotients [6],
and for G3(C™?) such quotients provide examples of compact, Kéahler and
quaternionic Kahler manifolds with negative Ricci curvature.

A basic example of a compact Kéhler resp. quaternionic Kdhler manifold
is the complex projective space CP™ resp. the quaternionic projective space
HP™. As we will see, the Riemannian geometry of Ga(C™?) is partially a
mixture of these two geometries, and partially it exhibits new geometric phe-
nomena. In the next section we describe a new model for G2 (C™%2). This model
is used in Section 3 to derive an expression for the Riemannian curvature tensor
of Go(C™?) in terms of the Riemannian metric, the Kéhler structure, and the
quaternionic Kahler structure. We also discuss some general aspects of cur-
vature in G»(@™?). In Section 4 we present the classification of all maximal
totally geodesic submanifolds of G(C™*) and outline its proof. In the last
section we discuss the homogeneous real hypersurfaces of G2(C™ ™) and a char-
acterization of them in terms of geometrical properties of the shape operator.
Proofs and more details can be found in [3] and [4].

2. A model for G,(C™+?)

Briefly, the model arises in the following manner. Consider the (m + 1)-
dimensional complex projective space CP™! embedded in the canonical way as
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a totally geodesic submanifold in the (m 4 1)-dimensional quaternionic projec-
tive space IHP™*!, The focal set Q™*! of CP™*! in IHP™*! is a submanifold
with codimension three. At each point of Q™! the null space of the shape oper-
ator is independent of the direction of the normal vectors and determines a one-
dimensional Riemannian foliation F on Q™! by closed geodesics in HP™*1,
The orbit space B™*! .= QM+l /F, equipped with the Riemannian structure
for which the canonical projection Q™! — B™*! hecomes a Riemannian sub-
mersion, is isometric to the Riemannian symmetric space Go(C™?). Thus, a
two-dimensional complex linear subspace of C™ 2, which represents a point in
G2(C™**) in the standard model, is here replaced by a closed geodesic in the
focal set of CP™! in HP™ 1. All geometrical information about Ga(C™*2)
is encoded in the intrinsic and extrinsic structure of the focal set QM+ of
CP™FL in HP™=!, The main tools to get information about Ga2{C™F2) via
this construction are the theories of focal sets and Riemannian submersions.

We now discuss some more details of this construction. The standard iso-
metric action of SU(m + 2) on HP™*! is as follows. First, SU(m + 2) acts
isometrically on S+ ¢ H™? = €™ & C™*%j by means of

SU(m+2) x §1M7 — T (42 +vj) = (Az) + (Av)j

where z.v € €™ with |2|? + |¢[2 = 1. This action leaves the fibres of the Hopt

map S*T — HP™! invariant and hence descends to an action on HP™M !
by isometries, This action has cohomogeneity one. that is. the codimension of
the principal orbits is one. Thus there are two singular orbits. one of which
is a totally geodesic CP™~! ¢ HP™!. For geometrical reasons, the second
singular orbit must be the focal set Q™! of CP™~! in IHP™*+!. The isotropy
of SU(m + 2) at some point in @™ turns out to be isomorphic to SUm} %
SU(2). It follows that Q™! is isometric to the Riemannian homogeneous
space SU{m + 2)/5U(m) x SU(2) equipped with some SU({m + 2)-invariant
Riemannian metric. Moreover. the codimension of this homogeneous space in
HP™*! can easily be seen to be three. Note that @ is isometric to a geodesic
hypersphere of a certain radius in CP?,

The extrinsic geometry of Q™! in HP™! is described by its shape opera-
tor. Starting from the trivial extrinsic geometry of CP™! in IHP™+! one may
calculate the shape operator of its focal set @Q™*! by means of standard meth-
ods from Jacobi field theory. It turns out that with respect to any unit normal
vector of Q™! there are three distinct principal curvatures —1.0.+1. At each
point p the zero eigenspace is one-dimensional and independent of the choice
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of the unit normal vector at that point. The direct sum of the zero eigenspace
and the three-dimensional normal space at p forms a one-dimensional quater-
nionic subspace of the tangent space of HP™"! at p. The zero eigenspaces
of the shape operator form a one-dimensional autoparallel distribution on the
focal set @™*'. The corresponding totally geodesic foliation is generated by a
unit Killing vector field I/ and hence Riemannian. Its integral curves are closed
geodesics in Q™! as well as in IHP™t!. They are the orbits of the U(1)-
action on Q™! induced by left multiplication with e** on H™*2, The +1-
and —1-eigenspaces have the same dimension and are mapped into each other
by a suitable almost Hermitian structure in the quaternionic Kahler structure
of HP™*!. In particular. it follows that Q™*! is a minimal submanifold of
IHP™*!. We mention that Q™%! is a Sasakian globally ¢-symmetric space.

Since the leaves of F are compact orbits of an isometric action, we can
equip the space of leaves B! := Q™! /F with the structure of a Riemann-
ian manifold so that the cancnical projection 7 : Q™*! — B™TL becomes
a Riemannian submersion. As Q™7 is complete and simply connected and
the fibers of 7 are connected. it follows that B™! is also complete and sim-
ply connected. The covariant derivative of the unit Killing vector field U,
restricted to the horizontal subspaces of the submersion, projects to a Kahler
structure on B™*! with respect to which it becomes a Hermitian syminetric
space. Any isometry in SU(m + 2) projects to an isometry of B™t!, the in-
duced action of SU(m +2) on B™*! is transitive, and B™ ! is in fact isometric
to SU(m + 2)/S{U(m) x U(2)) = G2(C™ ") with some symmetric metric.
From now on we identify the orbit space B™"! with G2(C™"2). The quater-
nionic Kihler structure on Go(C™2) is obtained by restricting the quaternionic
Kihler structure of HP™~! to the horizontal subspaces and projecting down
to the Grassmannian.

3. Curvature of Go(C™ %)

We denote by ¢ the Riemannian metric, by J the Kahler structure and by
J the quaternionic Kihler structure of Go(C™2). If .J; is an almost Hermitian
structure in 7. then JJ; = Ji.J, and J.J; is a symmetric endomorphism with
(JJ1)? = I and tr JJy = 0. Thus. at each point p of Go(C™*?), the almost
Hermitian structure .J, is orthogonal to each almost Hermitian structure in Jp-

Since we know the second fundamental form of Q™! and the Riemannian
curvature tensor of IHP™™" explicitly, the Gauss equation gives us an explicit
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expression for the Riemannian curvature tensor of Q™ !, General theory about
Riemannian submersions then gives us the Riemannian curvature tensor of the
base space, which is the complex Grassmannian in the present situation.

Theorem 1. The Riemannian curvature tensor R of Go(C™2) is locally
given by

R(X,Y)Z = g(Y.Z)X —g(X.2)Y
+ g(JY, Z)JX —g(JX,Z2)JY — 2¢(JX,Y)JZ
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where J1, Jo, Jg 15 any canonical local basts of 7.
Notice how this expression involves the Riemannian curvature tensors of
Sim CP? and HP™. Contracting R we get for the Ricci tensor S and the

scalar curvature s of Go(€™™*) the expressions
SX=4m+2)X and s=16m(m +2).

In particular, Go(C™?) is an Einstein manifold. We equip A2TGy(C™"?)
with the induced bundle metric, which we also denote by g. Using Theorem 1
we may easily calculate the sectional curvature function K of G3(C™?). Let
X.Y € T,G2(C™?), p € G2(C™*?), be orthonormal and ¢ = span{X,Y}.
Then the sectional curvature K (o) of Go(C™*2) with respect to o is given by

3
K(o) = 1+3g(XAY.JXAJY)+3> g(X AY,J,XAJY)
=1

3

+ > g(JX AJY.LXATY).

=]
Note that
g(X AY.JX ANJY) = cos® L(Y, JX) .
where /(Y. JX) is the angle between ¥ and J.X, which is just the Kahler angle
of o, and

3
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where Z(Y, JX) is the angle between Y and JX. From this expression for the
sectional curvature we easily derive that Go(C?) is isometric to CP? equipped
with the Fubini Study metric of constant holomorphic sectional curvature eight.
Therefore, we assume m > 2 from now on. -

In order to get more information about the sectional curvature we compute
the eigenvalues and eigenspaces of the Jacobi operators Ry := R(., X)X. From

Theorem 1 we get

3
RxY = Y —g(V, X)X +3g(Y,JX)JX +3> oY, X)J, X
=1
3 3
+ 3 9(X. LIX)LJIY =Y g(Y. L JX)],JX

E=l =l

for any unit vector X € TG2(C™1?). A lengthy but straightforward calculation
gives the following spectral data, where we denote by CX the real span of X and
JX, by IHX the real span of X and JX, by €~ X the orthogonal complement
of CX in HX, and by IHCX the real span of HX and HJX.

Theorem 2. Let X be a unit vector tangent to Go(C™2). In each of the
follounng cases we [ist all eigenvalues x of Ry and the corresponding eigenspaces
Tx with its dimensions.

(i) JX L JX. Then we have

o T.\* | dlm Tr\‘
0| RX & JJX } 4

1| (HCX): |d4m -8

4| RIX @ X |4 ;

(i) JX € JX. Let Jy be the almost Hermitian structure in J so that JX =
J1X. Then we have

K i ] dim £ 7]

0| RXa@{Y|Y LHX, JY = -JiY}|2m -1
2 |CLX@{Y |Y LHX, JY = /Y} |2m
$ | RJX B
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(111) otherwise. There exist an almost Hermitian structure J, € 7 and a unit
vector Z orthogonal to HX so that

JX =cosa| X +sina1 Z

where a = L(JX, JX) €]0,7/2[. Then we have

K T dim T}

0 RX & RZ 2
1—cosa {Y|YL(HXeHZ), JY =-5Y} |2m-—4
1+ cosa {Y Y 1L (HXeHZ), JY = 1Y} 2m —4
2(1 —sina) | {cos (§ +5) o X +sin(§+7) L2 |
Jo € (RJ)1} | 2
2(1 + sina) {sin(‘.:—f—l—%:l JQ.T{'—CGS{%+~E-]JQZ|
Ja € (RJ;)*}
4(1 —cosa) | R(sin(a/2)} X — cos(a/2)} Z)

4(1 + cosax) | R(cos{a/2)J, X +sin(a/2)1 Z)

— = b

The number of distinct eigenvalues x is seven unless cos(a) = 4/5 or 3/5,
in which case there are siz or five distinet eigenvalues, respectively.

We now continue the discussion about the sectional curvature of G5 (C™72).
For a unit vector X tangent to G2(C™"?) we denote by Ky the sectional cur-
vature function with respect to all two-planes containing X, and by Ky (X)
the (holomorphic) sectional curvature with respect to €X. From Theorem 2
we get

0< Ky <41 + cosa)

and
Knot(X) = 4(1 + cos® ) ,

where @ = /(JX,7X). Moreover, both inequalities are sharp. By varying
with X we obtain for the sectional curvature K and the holomorphic sectional
curvature Kpo of Go(€™7?) the estimates

0<K<8

and
4 < Kpot £8.
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Moreover, all inequalities are sharp, and we have

Klo)=8 +— o=JoCJo,
Eyu(X)=4 = JX L JFX,
Kp(X)=8 = JXeJX.

A basic role in the geometric theory of Riemannian symmetric spaces is
played by the so-called maximal flats. In the case of G2(C™?), a maximal
flat is a two-dimensional totally geodesic submanifold isometric to some flat
two-dimensional torus. From general theory of symmetric spaces it is known
that if the sectional curvature with respect to some two-plane o C T,Go(C™?)
vanishes, then the exponential map of Go(C™"?) at p maps o onto a maximal
flat of Go(C™?), and every maximal flat arises in this way. A non-zero tangent
vector X is called singularif it is contained in more than one maximal flat. From
the tables in Theorem 2 it follows that X is singular if and only if JX L JX or
JX € JX. Equivalently, as the above discussion of the holomorphic sectional
curvature shows, X is singular if and only if the holomorphic sectional curvature
determined by X is minimal or maximal.

So there are two types of singular tangent vectors, those X for which JX L
JX, and those for which JX € JX. The set of maximal flats to which a singular
tangent vector X is tangent can be identified in an obvious manner with the
real projective space induced from the sphere of all unit vectors ¥ orthogonal
to X with RxY = 0. Let X be a non-zero tangent vector of Go(C™"?) and
o be a two-plane spanned by X and some tangent vector Z orthogonal to X.
From the tables in Theorem 2 we derive

(i) f JX L JX, then o determines a maximal flat if and only if Z € JJX.
In particular, the set of maximal flats to which X is tangent is an IRP2.

(ii) If JX € JX, say JX = J1 X, then ¢ determines a maximal flat if and
only if £ L IHX and JZ = —J; Z. In particular, the set of maximal flats
to which X is tangent is an RP*™3.

(iii) If X is non-singular, then there exist an almost Hermitian structure J; &
J and a tangent vector Z orthogonal to HX so that JX = cosa1 X +
sinaJ1 Z, where o = Z{JX, 7X). Then the span of X and Z determines
the unique maximal flat to which X is tangent.
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4. Maximal totally geodesic submanifolds

We shall now discuss the classification of maximal totally geodesic submani-
folds in G5 (C™*?). The isomorphism SU{4) = Spin(6) gives rise to an isometry
from G(C*) onto the real Grassmann manifold G5 (IR®) of oriented two-planes
in IR®. The maximal totally geodesic submanifolds in oriented real two-plane
Grassmannians have been determined explicitly by B.Y. Chen and T. Nagano in
[7]. There are three types of maximal totally geodesic submanifolds in G (IR®),
namely GE(TRS], (59 x §%)/Z; with a +b =4, and CP?. Any maximal totally
geodesic submanifold of Go(C?) is congruent to one of these.

We assume from now on m > 3. We start by describing the so-called
classical totally geodesic embeddings of certain manifolds into Go(C™?).

(1) Let ¢ be a complex linear line in €™*2. Then the orthogonal complement
#+ of ¢ in @™ 2 determines an m-dimensional complex projective space
CP™(#+). The image of the embedding

Fp: CP™(5) = Go(C™) , & LDl

is a totally geodesic submanifold of G2(C™*?). Two embeddings F; and
Fy have the same image if and only if f = #'. Hence the set of all classical
totally geodesic submanifolds of Go(C™"?) attached to CP™ corresponds
in a natural way to a CP™HL

(2) Let V' be an (a + 1)-dimensional complex linear subspace of €™*2 and
VL its orthogonal complement in €™, which is a (b + 1)-dimensional
complex linear subspace of C™*%, a +bh=m, 0 < a < m. The image of

the embedding
Fy : CPYV) @ CPY(VE) = Go(C™F?) | (£,0) 2l

is a totally geodesic submanifold of Go(C™ ). If a # b. all these sub-
manifolds are distinet and the set of all such submanifolds corresponds
in a natural way to the complex Grassmann manifold Gy.1(C™2) of all
(a+1)-dimensional complex linear subspaces in ©™*2, If a = b, the maps
Fy- and Fy+ determine the same submanifold if and only if V' is either V
or V'—.
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(3)

(4)

(5)
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Let V be an (m+ 1)-dimensional complex linear subspace of C™*2. Then
the image of the embedding

Fy : Go(C™M) (V) = Go(€™?) , tpd — el

is a totally geodesic submanifold of G3(C™*2). The set of all such sub-
manifolds corresponds in a natural way to a CP™+L,

Let V be an (m + 2)-dimensional real linear subspace of €™ 2. Then the
image of the embedding

Fy : Go(R™2)(V) = Go(C™?) , L@l = lp 1l

where £¢ denotes the complex linear line in C™*? determined by ¢, is a
totally geodesic submanifold of G2(C™*?). Two embeddings Fy, and Fy-
have the same image if and only if V' = "'V for some t € IR. The set of all
such submanifolds corresponds in a natural way to SU(m+2)/SO(m+2).

Let 7 be a quaternionic structure on €**~? compatible with its Hermitian
structure ¢. Thus ¢, j and i turn C***? into a right quaternionic vector
space IH"*'(y). Then the image of the embedding

F, :HP™(3) = G2(C*™*%) | 2IH — Cz s Czy

is a totally geodesic submanifold of Go2(C*"*?). Two embeddings F, and
Fy have the same image if and only if 7 = e''y for some ¢t € IR. The
set of all such submanifolds corresponds in a natural way to SU(2n +
2)/Sp(n +1).

The following result says that these classical totally geodesic submanifolds
are precisely the maximal totally geodesic submanifolds of G»(C™?).

Theorem 3. Any mazimal totally geodesic submanifold of Go(C™2), m >
3, 18 one of the above classical embeddings.

The basic idea for the proof is as follows. To start with, a complete totally
geodesic submanifold of a Riemannian symmetric space is again a Riemannian
symmetric space. This follows readily from the very definition of a symmetric
space in terms of geodesic symmetries. Thus the first problem we have to deal
with is to determine all symmetric spaces which can be embedded in Go(C™T2)
as a maximal totally geodesic submanifold. This problem was settled by B.Y.
Chen and T. Nagano in [8] using the so-called (M., M_)-method. They ob-
tained the following list:
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(1) the m-dimensional complex projective space CP™;

(2) the Riemannian product CP?® x CP? of an a-dimensional complex projec-
tive space and a b-dimensional complex projective space, where a. b are
any positive integers with a 4+ b =m;

(3) the complex Grassmann manifold Gy(C™"1);

(4) the real Grassmann manifold G3(IR™+?) of all two-dimensional linear
subspaces in IR™2;

(5) the quaterniomic projective space IHP™, in case m is even and m = 2n.

It therefore remains to prove that any totally geodesic embedding of each of
the spaces in this list is already a classical embedding as described above. We
discuss this in more detail for the complex projective space CP™, for the other
spaces the argument is along the same lines. At first one determines more details
about the geometrical structure of the classical totally geodesic embeddings of
CP™. It turns out that they give embeddings of CP™ as complex and totally
complex submanifolds in G5(C™?). Recall that a submanifold of Ga(CH12)
is complex if any of its tangent spaces is invariant under the Kahler structure
J. And a submanifold M is called totally complex if at each point p € M
there exists an almost Hermitian structure .J; in 7 leaving T, M invariant and
so that each almost Hermitian structure in .7 orthogonal to J; maps T, M into
the normal space of M at p. The standard models for the concept of a complex
submanifold is a C* in C™ and for a totally complex submanifold a C* in
IH™. Another geometric fact one needs is that for any p € CP™(4~+) there
exists an almost Hermitian structure J; € Jp, such that JX = Ji X for all
X € T,CP™(#*). Hence each non-zero tangent vector of CP™(£+) is a singular
tangent vector of Ga(C™"?),

Next. consider any totally geodesic embedding of CP™ equipped with some
Fubini Study metric into G3(C™"%). Let X be any tangent vector of CP™, It
follows from the Gauss equation that the Jacobi operator of CP™ with respect
to X is the restriction to the corresponding tangent space of CP™ of the Jacobi
operator of Go(C™*%?) with respect to X. In particular, the spectrum of the
first Jacobi operator must be contained in the spectrum of the latter one. The
spectrum of the Jacobi operator of CP™ is {0, ¢, 4c}, where 4c is the value of the
holomorphic sectional curvature and the eigenvalues 0 and 4c have multiplicity
one each. Comparing this spectrum with the one of the Jacobi operator of the
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ambient Grassmannian according to Theorem 2 eventually gives that at some
point the tangent space of CFP™ coincides with the tangent space of one of the
classical totally geodesic embeddings. Rigidity of totally geodesic submanifolds
then implies that the embedding of CP™ is in fact a classical one.

5. Homogeneous real hypersurfaces

In this section we discuss homogeneous real hypersurfaces in Ga(C™2).
The classification of the homogeneous real hypersurfaces in Go(C™ 1) is a con-
sequence of the more general classification of cohomogeneity one actions (up
to orbit equivalence) on irreducible, simply connected, Riemannian symmetric
spaces of compact type by Kollross [10]. Recall that a cohomogeneity one iso-
metric action on a compact, complete, simply connected Riemannian manifold
has two singular orbits, each of which has codimension greater than one and is
the focal set of the other one. Moreover, each principal orbit can be viewed as
a tube around any of these two singular orbits.

Theorem 4. A real hypersurface of Go(C™°) = SU(m + 2)/S(U(m) x
U(2)), m = 3, 15 homogeneous if and only if it 15 congruent lo

(1) a principal orbit of the action of S(U(m + 1) x U(1)) C SU{m+2). The
two singular orbits are totally geodesically embedded CP™ and Go(C™1).

(i1) (if m is even, say m = 2n) a principal orhit of the action of Sp(n+1) C
SU(2n + 2). One of the two singular drbits is a totally geodesically em-
bedded HP™, the other one is the homogeneous complex Einstein hyper-
surface Sp(n + 1)/Sp(n — 1)U(2).

Starting from a totally geodesic singular orbit, the principal curvatures and
their eigenspaces of the tubes around them can be calculated explicitly by using
Jacobi vector fields. Using the classical totally geodesic embeddings described
in the previous section, we get the following description.

Let V be an (m+1)-dimensional complex linear subspace of €™ and ¢ the
complex linear line in €™** perpendicular to V. The focal set of G3(C™1)(V)
in Go(C™"?) is CP™(¢+) and consists precisely of all points in Go(C™?) at
distance 7/2v/2 from G3(C™)(V), or equivalently, of all antipodal points of
Go(C™1)(V) in G2(C™"2). Any tube M, of radius 0 < r < 7/2v/2 around
Go2(C™"!)(V) is a homogeneous real hypersurface of G2(C™?) with four (resp.
three for r = 7/4+/2) distinet principal curvatures. More precisely, denote by
£ the “outward” unit normal field ofid4,.for some fixed r. Then there exists an
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almost Hermitian structure J; in 7, which is uniquely defined at each point of
M;, such that J& = Ji&. The principal curvatures of M, with respect to £ are
A= —2v2c0t(2V2r) | Mg = —v2cot(v2r) . A3 = V2tan(vV2r) , Ag:=0,
with corresponding multiplicities

m(A1) =1, m(A) =2, m(i3)=m(M) =2m -2 .

The corresponding eigenspaces are

E(\) = RJE=TRJE,
E(x) = C*¢,

B(x3) = {XeTM,|X LHt, JX = L, X},
E(\) = {XeTM,|X LH¢, JX =-J, X} .

Next, consider the classical totally geodesic embedding HP"™(j) — Go(C*"+2).
The focal set F™(3) of HP"(j) in G2(C**) is a complex hypersurface and
consists of all points in G2(C** ™) at distance /4 from HP"(j). Moreover, it
is congruent to the complex Einstein hypersurface Sp(n + 1)/Sp(n — 1)U(2).
The principal curvatures of F*{j) with respect to any unit normal vector are
+1.0, —1. At each point ¢ € F(7). the null space of the shape operator is the
6-dimensional vector space JL,F"(7) and independent of the choice of the unit
normal at ¢. Here, 1,F"(j) denotes the normal space of F"(3) at g. The other
two eigenspaces are real subspaces and mapped into each other by J. Any tube
M; of radius 0 < r < /4 around IHP"(;) is a homogeneous real hypersurface of
G2(@*~?) with five distinct principal curvatures. More precisely. the principal
curvatures with respect to the “outward” unit normal field ¢ of M, are

A= —cotr, Ap:=—2cot2r, Ag:=tanr, Aj:=2tan2r . As =0,
and the respective multiplicities are
m(A)=m(Aa)=4n—-4, m(M)=m(A;) =3, m(A)=1.
For the corresponding spaces of principal curvature vectors we have
E(A) =RJIE, E(A2) = T . E(X;) = JJE

and the eigenspaces E(\;) and E()3) are mapped into each other by J.
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Let M be a real hypersurface in Ga(C™*?). Then its normal bundle L M has
rank one. Applying the Kahler structure J of the Grassmannian to the normal
bundle gives a one-dimensional subbundle J(LM) of the tangent bundle TM
of M. Similarily, applying the almost Hermitian structures in the quaternionic
Kéhler structure 7 of the Grassmannian to the normal bundle gives a three-
dimensional subbundle J{_LM) of TM. If M is a homogeneous real hypersurface
in G2(C™*?), the above expression for the shape operator shows us that both
J(LM) and J(LM) are invariant under the shape operator of M. In joint
work with Y.J. Suh [4] we studied these two geometric properties of the shape
operator in detail. In particular, we proved that these two conditions imply
that M lies on a tube around some totally geodesic CP™ or HP", the latter
possibility occurs only when m = 2n is even. Combining this with Theorem
4 we get a characterization of homogeneous real hypersurfaces in G2(C™"?) in
terms of geometrical features of its shape operator.

Theorem 5. Let M be a connected real hypersurface in Go(C™2), m > 3.
Then both J(LM) and J(LM) are invariant under the shape operator of M if
and only if M is an open part of a homogeneous real hypersurface in Go(C™1?).
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