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ABSTRACT
Anomaly detection techniques in network security face sig-
nificant challenges on configuration and evaluation, as col-
lecting data for accurate analysis is difficult or nearly im-
possible. One viable approach is to avoid live data collec-
tion and replace if by the agent-based simulation of the net-
work traffic with models of user’s behavior. In this paper
we propose three approaches differing by the level of de-
tail with which user behavior is modeled. They are well
suited for generating NetFlow/IPFIX data that can be used
for evaluation and optimal configuration of anomaly detec-
tion techniques. First two techniques use simple statistical
model that is easy to implement and does not require large
amount of training data. The third leverages sophisticated
model of the user’s behavior covering different aspects of the
network traffic not captured by the simpler models. In ex-
perimental evaluation it is demonstrated that the complex
model generates data indistinguishable for current state-of-
the-art anomaly detection methods from the real-world sam-
ples, which makes it well-suited for their evaluation and con-
figuration.

Categories and Subject Descriptors
[Network]: Network simulations; [Security and pri-
vacy]: Intrusion detection systems

General Terms
Security,Algorithms

Keywords
Net-Flow simulation,anomaly detection,evaluation

1. INTRODUCTION
This paper presents a user’s behavior models for agent-

based simulation network traffic that can be used for eval-
uation of an intrusion detection system (IDS) composed of
NetFlow-based anomaly detectors [1, 2]. The main reason
why researchers focus on the NetFlow data is that it cap-
tures only high level statistics which have been shown suf-
ficient [3] for detecting threats and thus allows to process
data from high speed backbone networks which cannot be
achieved with other techniques (e.g. deep packet inspec-
tion).

The main and prevalent problem is the lack of ground
truth data which is due to: (i) unrealistic properties of the
ground truth generated in the closed lab without real-world

background traffic; (ii) huge volumes of data to label in real
environments; and (iii) varying characteristics between dif-
ferent environments making model transfer difficult.

We show that a viable solution to the above problems is
to simulate the network traffic. Existing approaches can be
divided into following areas: (i) context-free packet genera-
tors that correctly capture properties of individual packets
but not the high level properties of user’s behavior [4–8];
(ii) testbed systems that can generate the network traffic
on packet level but are extremely difficult to setup [9]; (iii)
lightweight simulator generating only the NetFlow data [10–
13].

Our work belongs to the last category of lightweight sim-
ulators. Our goal is a realistic simulation of the background
traffic (NetFlow records) with correct high level properties,
for which we propose three techniques. The first two uses a
simple statistical model to generate training data. They are
both easy to implement but do not capture sophisticated as-
pects of user’s behavior, such as time variance of the user’s
behavior, dependency between inter-flow features, etc. The
third one, which we advocate, addresses these deficiencies
and based on our results is able to mimic the user’s traffic
in a way that even a combination of state-of-the-art detec-
tion algorithms is not able to distinguish.

2. RELATED WORK
Network simulation provides viable approach for ground

truth generation as discussed in [14,15]. Authors argue that
static data sets and manual labeling suffer serious problems
that network simulation can overcome (manual labeling does
not scale, bias in the labeled data, privacy issues with shar-
ing of labeled data, etc.).

First group of traffic generators are context-free packet
generators that generate full packet captures, such as NS-
2 and NS-3 simulators [4, 5], OMNET++ [6] or NeSSi [7]
and its ancestor NeSSi2 [8]. However, these tools were pri-
mary designed to test low level algorithms (e.g. routing
algorithms) and do not model the high level statistics neces-
sary for evaluation of an IDS system. Moreover, these tools
require precise configuration which drastically increases the
cost of their deployment.

Next option for generating ground truth data is the testbed
systems that emulate the behavior of the network. Such so-
lution was proposed in project LARIAT [9] where authors
used virtual machines with service that emulates user’s be-
havior. However, as authors argued, LARIAT requires care-
ful tuning which lowers the chance for practical deployment
(authors claim that it takes approximately four months to



setup LARIAT for evaluation of new IDS system). Our work
is inspired by the high level design of the LARIAT system.
However, the key difference between our work and LAR-
IAT system is that we simulate the user’s behavior with
statistical models trained from the data and LARIAT uses
emulation which requires manual setup.

Another approach is the flow-level simulation that mod-
els particular type of behavior, e.g. SSH brute-force attack,
which is mixed with background traffic and used for evalu-
ating an IDS system. Such approach is proposed in [10,11].

The most advanced and the most challenging approach
is to model set of users or the whole network and generate
the complete dataset (without the need to mix with back-
ground traffic). Such approach is well suited for evaluation
of an IDS system because the data (if generated correctly)
mimic the behavior of the whole network, can be arbitrar-
ily tuned (duration, volume of traffic, number of users, etc.)
and can be shared between researches without any privacy
concerns. In [13] authors propose host-agent based simulator
where single class of network behavior is represented by an
autonomous agent (trained from sample traces or malicious
traffic model). The traffic is then generated from interaction
between agents. In [12] authors propose approach based on
modified version of Traffic Dispersion Graphs which define
the connectivity patterns for given service. The port-based
TDGs augmented with additional statistics such as distri-
bution of packets, bytes or duration serve as a model that
is able to generate the traffic traces for the whole network.
Our solutions use similar statistics to describe the commu-
nication between single user and requested service but the
connectivity pattern is modeled by probability distributions
rather than TDGs. It is designed to precisely model the be-
havior of single user, not the whole network. However, we
can couple together multiple instances of models with dif-
ferent training data and simulate the behavior of the whole
network.

3. BASIC MODELS
The design of a simulation model needs to address the

common trade-off between complexity and performance. Be-
fore introducing our key model proposal in the next section
we first discuss two simpler models. We show that simpli-
fying assumptions about NetFlow traffic allow for models
of low complexity. At the same time we will show where
simplified models fail. The identified flaws then inspire the
definition of the improved model presented in the next sec-
tion.

3.1 Random sampling
The simplest approach to simulation of behavior of a sin-

gle user is to generate standard NetFlow fields (as listed
in Table 1) independently inspired by technique proposed
in [16] and technological solutions such as BreakingPoint1.
Such approach does not take into account any properties
of the NetFlow (e.g. distribution of bytes, distribution of
source ports, etc.), relation between fields of the NetFlow
(e.g. bytes/packet ratio) or relations between individual
NetFlows (e.g. request/responses relations). The only con-

1http://www.ixiacom.com/breakingpoint

Table 1: List of NetFlow fields.

Field name Description

Starting time Time stamp of the first packet
of the flow

Duration Length of the flow
Protocol TCP, UDP, ICMP, etc.
Source IP IP address of the source
Source port
Destination IP IP address of the target
Destination port
Bytes Number of bytes transferred in

the flow
Packets Number of packets transferred

in the flow
TCP flags Not used for non-TCP protocols

dition that has to be satisfied is the validity of NetFlow, i.e.
all fields have to be in their allowed ranges and the following
condition must be met

0 < number of bytes ≤ number of packets× 65535. (1)

Note that the only parameter of this algorithm that has to
be specified in advance is the IP address of the simulated
user.

The random sampling algorithm generates all but two in-
dividual NetFlow features randomly with respect to the con-
dition of validity of the generated NetFlow. The two excep-
tions are the thinking time and source and destination IP
addresses. Instead of generating the starting time directly
we generate the user’s thinking time—time delay between
two consequential NetFlows. The new starting time is then
computed as sum last starting time and the current think-
ing time. This approach allows us to generate infinite stream
of NetFlows. Similarly to the thinking time, the source and
destination IP addresses are not generated directly. Instead,
we randomly choose whether given flow is request or re-
sponse. If the flow is generated as request the source IP
field is set the value of user’s IP address and the destination
IP is chosen randomly. In the case of response it is vice
versa.

The main benefit of this algorithm is its independence
on any training data or manual tuning, because the only
parameter that has to be set in advance is the user’s IP ad-
dress. However at the same time, the complete randomness
is the main disadvantage because it can generate completely
unrealistic data. Therefore, we use this approach only for
syntax testing and as a baseline for the comparison to more
sophisticated methods.

3.2 Sampling with independent intra-flow
relations—marginal model

The marginal model provides different approach to Net-
Flow simulation. It uses training data of a single user in
order to train the statistical model of individual NetFlow
features (e.g. distribution of bytes or distribution of user’s
thinking times, etc). Unlike the random sampling discussed
above, the marginal model considers NetFlows in request/res-
ponse pairs2. Therefore it is able to partially model inter-

2The model focus on the modeling of user’s behavior and
thus we consider outgoing flow as request and incoming flow



Table 2: List of NetFlow features to be modeled
in order to create NetFlow data that correctly re-
flect requests and responses. Note that TCP flags
for request and response are empty for all non-TCP
NetFlows.

Feature name Description

Client’s thinking time Time difference between two
consequential client’s requests

Client port Source port of the request
Request bytes Number of bytes in request
Request packets Number of packets in request
Request protocol TCP, UDP, ICMP, etc.
Request flags TCP flags in request
Request length Duration of request
Server thinking time Time difference between request

and response
Server IP IP address of server
Server port Port number of service used by

user
Response bytes Number of bytes in response
Response packets Number of packets in response
Response length Duration of response
Response flags TCP flags in response
Has response Is there corresponding response

to the request?

flow relations (the relation between individual flows) as well
because it captures request/response relations but not the
sequential character of the user’s behavior. For example, it
is able to model the HTTP request/response pairs but not
the download of the whole Google home page. Next, this
model assumes that the modeled features are independent
and thus it does not take into the account intra-flow rela-
tions (e.g. bytes/packets ratio, etc.). The full list of modeled
features is listed in Table 2. This assumption is a limitation
that affects the variance of the internal model and can cause
serious sampling artifacts (see Figure 1).

Marginal models are created as follows. The first step
of the sampling algorithm is the preprocessing of the train-
ing data during which we pair the requests with the corre-
sponding responses. We assume that the user behaves only
as a client and thus every NetFlow with user’s IP address
as source IP is considered as a request. The corresponding
response is matched as NetFlow with following properties:

source IPresponse = destination IPrequest,

source portresponse = destination portrequest,

destination IPresponse = user’s IP,

destination portresponse = source portresponse,

protocolresponse = protocolrequest. (2)

Note that there is a maximal delay τ between request and
response in order to avoid incorrectly paired flows. In cur-
rent settings the τ is set to 2 seconds.

After the data preprocessing the model estimates the dis-
tributions of all individual features using non-parametric es-
timates (histogram for continuous features or relative fre-
quencies for categorical features).

Once model training is finished, request/response pairs

as response.
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Figure 1: Artifacts of marginal sampling in real-
life example. This figure shows that marginal sam-
pling (red crosses) is not able to mimic the data cor-
rectly and thus creates serious sampling artifacts—
it creates data that did not appear in the original
data—whereas the joint model sampling that re-
spects the dependency between features generates
the data correctly.

are sampled as follows. At first we randomly choose whether
there will be a response or it will be only request (the feature
Has response). Next, values of individual fields are sampled
from distributions of corresponding features estimated from
the training data. Note that starting times of the request
and response are not generated in the same manner. The
starting time of the request is generated as sum of the last
starting time and the user’s thinking time (estimated from
the training data) and the response starting time is com-
puted as sum of starting time of the request and thinking
time of the server (again, estimated from the training data).
This approach is similar to the Random sampling discussed
in Section 3.1. The source address in the request/destination
IP in the response is set to the user’s IP address (param-
eter of the algorithm) and the destination address in the
request/source address in the response is sampled from the
distribution estimated from the training data.

4. TIME VARIANT JOIN PROBABILITY
MODEL

In this section we will discuss the main contribution of this
paper. In previous sections we have described the simulation
techniques that uses simple statistical model and thus miss
more complicated aspects of the user’s behavior which leads
to following issues:

• no intra-flow relations—single HTTP connection will
not likely transfer 60GB in 2 seconds,

• no time variant restrictions—user activity differs dur-
ing the night and day,

• no reflection of sequential character of the user—HTTP
request precedes a DNS request

The main problem of such approaches is the inability to
model relations between individual features. The sampling
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Figure 2: The schema of the proposed model. The
figure shows three main components and their rela-
tions. The separation of user model and underlying
system and service model is inspired by LARIAT
project [9] which uses model of the user’s behav-
ior on top of the real emulated operating system
and services. Note that the dashed boxes are omit-
ted from our implementation in order to reduce the
complexity of the current implementation.

with marginal model assumes that NetFlow features are in-
dependent, which if not satisfied leads to serious sampling
artifacts (see Figure 1).

Next problem is caused by changes of the user’s behav-
ior. Usually during the night there is no network traffic
generated by the user’s machine or the volume of the traffic
is very low (only the automated behavior of the machine,
e.g. periodic updates). However, during the working hours
its network activity increases rapidly and it fluctuates dur-
ing the working hours. For example during the lunch break
there is a drop in the volume of the network traffic followed
by a spike when users return to work. Note that the pro-
file of the user’s behavior changes through the day as user
uses different services at different time of day. The model
described in previous section does not reflect such changes
and thus the quality of the generated data is lower.

Third problem that we have to consider is the sequential
character of the user’s behavior. The typical example is the
e-mail usage. At first, user’s e-mail client has to resolve
the domain name of the IMAP server which will be seen in
NetFlows as communication with the DNS server on port
53 over UDP protocol. Next, it synchronizes the e-mails
in user’s folders—it is represented as opening connection to
the IMAP server on port 143 over TCP protocol. In the
received e-mails there can be an interesting link that the
user clicks to visit. This will appear as request to the DNS
server that resolves the domain name from the link followed
by a number of different connections to port 80 over TCP
protocol to the HTTP server. From this example we can see
that users exhibit sequential behavior and thus probability
of two consequential services is not independent.

4.1 Model structure
In order to address all the problems discussed above, we

propose a model (see Figure 2) composed from three com-
ponents, all parametrized by day time.

The first component—user model—describes different as-
pects of the user’s behavior, such as the timings between re-
quests (thinking time), which service will he use and which
server/target will he contact, its identity, etc. Note that the
user does not necessary have to be human but some auto-
mated agent in the operating system as well (e.g. automatic
updates).

The second component—the system model—models the
automatic behavior of the user’s operating system. This
component models the process of assigning client ports.

The last component—service model—models the behavior
of the remote service contacted by the user. This includes
the amount of data transferred between client and server
(bytes and packets as well), the duration of the response,
the delay of the server and TCP flags (if the connection
uses TCP protocol).

In order to simplify interactions between components and
its internal models we adopt following assumptions:

a) The thinking time (T ) depends only on the daytime
and not on other aspects of user’s behavior,

b) the client port (cPort) depends only on the service
and day time—source ports for the outgoing connec-
tions are assigned by the operating system without any
user’ interaction. However, most operating systems
simply increment the last used port until the range is
depleted and thus for different daytime different range
of ephemeral ports is used. The dependency on ser-
vice is caused mainly by long persistent connections
that are split by the NetFlow probe into several Net-
Flow records. All these flows have the same client port
and in the statistics it appears as the service prefers
single source port.

The negative impact of the assumption is that proposed
model is not able to correctly capture the periodical behavior
of particular service, however, it is outweighed by the benefit
of the simplification of relations and internal models of indi-
vidual components. The relaxation of adopted assumptions
is left to future work.

4.2 Individual model components
The simplified interactions between internal models are

following:

• Thinking time: Thinking time does not have any in-
teraction or dependency on other components (see As-
sumption a)).

• Service and target : Target contacted by the user de-
pends on the service requested by the user. This cor-
responds to the fact that there are specialized servers
that serves only some (or even a single) services (HTTP
server, database server, etc).

• Client port : Client port depends only on the service
requested by the user (see Assumption b)).

• Remote service model : Model of remote depends on
the service and target contacted by the user. For ex-
ample different services on different servers has differ-
ent profile (volume of the network traffic, server delay,
content type, etc.)

In the following we will discuss internal models of each
component separately.



Table 3: Set of features that describe the behavior
of a service. Note that TCP flags for request and
response are empty for all non-TCP connections.

Feature name Description

Request bytes Number of bytes in request
Request packets Number of packets in request
Request protocol TCP, UDP, ICMP, etc.
Request flags TCP flags in request
Request length Duration of request
Server thinking time Time difference between request

and response
Response bytes Number of bytes in response
Response packets Number of packets in response
Response length Duration of response
Response flags TCP flags in response
Has response Is there corresponding response

to the request?

4.2.1 Thinking time
The approach with marginal model we have proposed,

models the starting time of the request as a sum of the
starting time of the previous request and the thinking time
of the client. However, such approach cannot be directly
adopted in this model due to the fact that if we parametrize
the thinking time with the daytime, it does not capture the
time intervals when the activity of the user is very low. This
causes artifacts that results in unrealistic data. For exam-
ple, when first request occurs at 09:35 and next occurs at
11:20 we cannot compute the thinking time of flows between
10:00 and 11:00.

To avoid this issue, we do not estimate the thinking time
directly. Instead we model the number of request n gener-
ated by user in given time interval3. The thinking time is
then computed as follows

T =
L

n
(3)

where L is the duration of usual time interval in seconds.
To denoise the input data—number of requests [n1, . . . , ni, . . . ]

in five minute time window—we smooth the data with slid-
ing window as follows

nt =
1

l

t+ l
2∑

i=t− l
2

ni, (4)

where l is the width of the sliding window. It controls the
smoothness of the estimate—if the window is too long, the
value does not follow the trends in the data, and if it is too
short the estimated value is too noisy.

Next, we divide the list of the number of requests N =
[n1, . . . , ni, . . . ] into one-day long sets forming matrix N ′ de-
fined in Equation 5. For every time interval t ∈ [1, . . . , 288],
that is represented by a row in matrix N ′, we have k samples

3The length of the time interval is 5 minutes—the usual
length of the batch in anomaly detection [17,18].

where k is the length of the training data in days.

N ′ =


n1 n289 · · ·
n2 n290 · · ·
...

...
n288 n576 · · ·


︸ ︷︷ ︸

k

(5)

We estimate the distribution of number of requests for in-
terval t with histogramHt with non-linearly distributed bins
[1, 11), [11, 21), [21, 41), [41, 81), [81, 201), [201,∞). Further-
more, for every bin of the histogram Ht we define distribu-
tion of values. If the number of samples that fit into this bin
is 1, we assume uniform distribution of values in this par-
ticular bin. If there is more samples, we assume normal dis-
tribution with parameters estimated from the samples that
fit into the bin. This setup helps us to overcome the lack of
data as we have only k samples.

The sampling procedure of the thinking time for given
time interval is listed in Algorithm 1.

Algorithm 1 Sampling of thinking time

1: procedure thinkingTime(t). Sampling thinking time
2: for time interval t
3: b ∼ Ht . Select bin with respect to distribution Ht

4: if |b| = 1 then. If there is only one training sample
5: that fits in the bin b
6: nt ∼ U(ba, bb) . Sample from uniform dist.
7: defined by boundaries
8: ba and bb of the bin b
9: else

10: nt ∼ N (µ, σ) . Sample from normal distribution
11: with parameters estimated

from
12: training samples
13: end if
14: T = L/nt . Compute thinking time, L is the length
15: of the time interval (in our case L =

300)
16: return T
17: end procedure

4.2.2 Service and target
One of the problems of the models described in previous

sections was the inability to precisely model the sequential
character of the user’s behavior. To address this issue we
separate the probability of the service defined by following
equation

p(s|t) (6)

where s ∈ S represents the service (the server port and
protocol tuple) requested by the user and h is the day time.
The sequential character is naturally modeled by Markov
chain [19].

Next, we have to discuss model that describes which target
will be contacted by the user. In Section 4 we have defined
that the target contacted by the user depends on requested
service and the day time. This is summarized into following
probability

p(dIP|s, t) (7)

where dIP is the destination IP of contacted server (target),
s is the requested service and t is the day time.



4.2.3 Client port
As we have discussed above, in order to generate NetFlow

data we can simplify the operating system model to model
only the client ports. In assumption b) we stated that client
port depends on the service and the daytime. Using this
assumption we can model the assigning of the ephemeral
ports by the probability defined as follows

p(cPort|s, t) (8)

where cPort represents the client port assigned by the op-
erating system and service s. This model captures the long
term connections to a service that appear in the data as
different NetFlows with the same client port (connection to
e-mail server, long term SSH connection, etc.) as well as
different strategies used by operating system to assign the
ephemeral source port to outgoing connections.

4.2.4 Remote service model
Internal models that we have discussed in previous para-

graphs addressed only single feature of the component. How-
ever in order to capture the relations between individual
NetFlow features we model the whole component together
by single joint probability defined as follows

p(xs|dIP, s, t) (9)

where xs ∈ Xs represents the space defined by features of the
service listed in Table 3, dIP is the contacted server, s is the
requested service and t is the day time. Using this model we
can precisely capture the behavior of the service. However,
such model captures precisely the behavior that appeared in
the data and it is not able to generate completely new values.
To overcome this issue we can add the gaussian noise to the
Equation 9 and thus generate new previously unseen data.
The strength of the noise λ is the parameter of the model
and allows us to control how ”realistic” the generated data
should be.

Before we generate new flows we train the model as de-
scribed in Sections 4.2.1, 4.2.2 and 4.2.4. Next, we simulate
the data as described in Algorithm 2.

Algorithm 2 Sampling of the NetFlow data

1: procedure sampleFlow(length) . Sampling single
flow

2: F ← ∅
3: t← 0 . Set current time to 0
4: repeat
5: T ← thinkingT ime(t) . Sample thinking time
6: s← p(s|t) . Sample service
7: dIP← p(dIP|s, t) . Sample target
8: cPort← p(cPort|s, t) . Sample client port
9: xs ← p(xs|dIP, s, t) . Sample remaining features

10: flow← t, s, dIP, cPort, xs . Build flow
11: F ← F ∪ {flow}
12: t← t+ T . Increment current time
13: until t ≤ length
14: return F
15: end procedure

4.3 Possible extensions
In previous paragraphs we have discussed complex so-

lution for generating NetFlow data. However, the general

Table 4: Capabilities of presented models. The ta-
ble summarizes capabilities of individual models. It
shows wheter given property of the traffic can be
(3), can not be (7) or can be with specific settings
( 1
2
) captured by given model. Note that Time vari-

ant joint probability model is able to capture the
sequential character of the user’s behavior when the
service model is replaced by Markov chain.

Random
sampling
(Sec-
tion 3.1)

Sampling
with
marginal
model
(Sec-
tion 3.2)

Time vari-
ant joint
model
(Sec-
tion 4)

Properties of fields of
NetFlows (e.g. dis-
tribution of bytes,
source ports, etc.)

7 3 3

Intraflow relations
(e.g. Packet/Bytes
ration, etc.)

7 7 3

Interflow rela-
tions (e.g. re-
quest/response
ration)

7 3 3

Changes in the user’s
behavior

7 7 3

Sequential character
of the user’s behavior

7 7 1
2



schema of the proposed model can be extended to capture
not only NetFlow data but different types of communica-
tion as well. Note also that the the system model can be
extended to model installed applications. It can affect the
number of connection to the server, duration of the request
and the thinking time of the server (different versions of an
internet browser uses different number of concurrent con-
nections). Another component that can be extended is the
service model. As it controls the behavior of the remote
service it is natural to extend it with application specific
features such as URL or content type. However, these ex-
tensions, though beneficial, are out of the scope of this paper
and will be considered in future work.

5. EVALUATION
In this section we evaluate the quality of the data gener-

ated by individual sampling approaches defined in Section 3.
We have implemented a set of state-of-the-art detection al-
gorithms to evaluate the simulated data and compared this
data with real-world traffic. Using the Jensen-Shannon di-
vergence (JSD) [20] we then measure the distance between
distribution of anomaly values of real-world and artificially
generated data.

5.1 Selected anomaly detection algorithms
The goal of presented model is to generate data for evalua-

tion of an anomaly detection algorithm. Therefore, we have
implemented various types of algorithms based on different
detection paradigms. This allows us to measure the quality
of the generated data under different conditions.

Algorithms proposed by Pevný et al. [21] and Lakhina et al. [22,
23] use the principal component analysis to detect anomalies
in the traffic. However, there are several key differences be-
tween these methods. First difference is in the features that
are used for the definition of the model of the individual de-
tectors. Second difference is the measure used for assigning
the anomaly value (Lakhina proposes to use reconstruction
error and Pevný uses mahalanobis distance in sub-spaces).
Note that we have implemented four different versions of al-
gorithm proposed by Pevný denoted in the results as Pevný-
f-dIP, Pevný-f-sIP, Pevný-f⊥-dIP and Pevný-f⊥-sIP (all
described in [21]), and two versions of Lakhina’s algorithm
where version listed in the results as Lak.Vol.-sIP models
the traffic with respect to a source IP and version denoted
as Lak.Vol.-dIP models the traffic with respect to a destina-
tion IP.

Second type of algorithm that we have implemented is a
modified version of Minnesota Intrusion Detection System–
MINDS [24]. It uses an internal model of the network traffic
but unlike the algorithms proposed by Pevný and Lakhina it
does not uses the PCA but measures the difference between
last and current time window. In order to overcome the
performance issues we have modified the algorithm from the
originally proposed version. The modifications are described
in [25].

The last group of algorithms does not use any internal
model of the network traffic. Method originally published
by Kuai Xu et. al. [26] uses basic assumption that all net-
work traffic could be classified into several categories using
set of static thresholds. In addition to the original algorithm
(denoted as Xu-sIP in out evaluation) we have implemented
modified version (denoted as Xu-dIP) that uses complemen-
tary features relating to the destination IP.

5.2 Training and evaluation data
To evaluate the quality of the simulated traffic we have

used the data recorded on university campus during the one
week in April 2013 (further denoted as Dorig). From the
recorded data we have selected a set of full-time employees
with various user profiles (developers, scientists, managers
and administrative staff). We have separated their traffic
based on the IP address of selected users and use it as train-
ing data for two models defined in Sections 3.2 and 4. The
remaining traffic formed the reduced dataset Dred and was
used as background that was mixed with the simulated traf-
fic.

The evaluation of quality of the generated data was sep-
arated into two stages. During the first stage we processed
the original data Dorig separately by all anomaly detection
methods and for every detection method we estimated the
distribution of anomaly values of selected users. These dis-
tributions then served in the comparison as a baseline.

In the second stage we simulated the user’s behavior us-
ing four approaches proposed in this paper: (1) the random
sampling (referred as Random, see Section 3.1), (2) sampling
with marginal model (Marginal, see Section 3.2), (3) sam-
pling with time variant joint probability model (Model, see
Section 4) and (4) sampling with time variant joint proba-
bility model with additional noise that affected the sampled
data (ModelN, strength of the noise λ = 10−5). The gen-
erated data were mixed with the reduced dataset Dred and
separately processed by all anomaly detection algorithms.
Next, for every detection algorithm we have again estimated
the distribution of the anomaly values of the simulated traf-
fic and measure the value of JSD between the distribution
of the simulated traffic and real traffic. This process was
repeated 20 times. Next we have used Kruskal-Wallis statis-
tical test on significance level α = 0.05 to detect whether the
results for different simulation approaches are significantly
different or not. The test proved that the results for differ-
ent simulation approaches are different enough to compare
only the mean values.

5.3 Quality of the generated data
The results are summarized in Table 5. It shows that

the random sampling generates the least realistic data. The
value of JSD is by order of magnitude larger compared to the
two remaining models. This confirms the expectations that
the random sampling can be used only for syntax testing as
we have discussed in Section 3.1. The second approach, the
sampling with marginal model, provides significantly better
results compared to the random sampling. The results show
that correct estimation of the marginal distribution of indi-
vidual features improves the results by order of magnitude.
However, assumptions that (1) all inter-flow features are in-
dependent and (2) user’s behavior does not depend on the
day time clearly do not hold. Therefore, the most advanced
approach, the sampling from the time variant joint probabil-
ity model, provides the results on average 2.3× better than
sampling with marginal model. The last approach shows
that by adding the low volume of Gaussian noise into the
model we can generate data that are completely new but
still follow the original user profiles. Such approach is im-
portant for testing the detection boundaries of the detection
algorithms.

The last results shown in Figures 3 and 4 visualize the
distributions of anomaly value of real data and data sim-
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Figure 3: Distribution of anomaly values of Pevný-f-
dIP method for the real traffic and traffic simulated
by the time variant joint probability model.

Table 5: Jensen-Shannon divergence between dis-
tribution of anomaly values of real and simulated
traffic.

Detection alg. Model Marginal Random ModelN

Pevný-f -dIP [21] 0.0133 0.0324 0.4596 0.0128
Pevný-f -sIP [21] 0.0146 0.0312 0.4780 0.0122
Pevný-f⊥-dIP [21] 0.0167 0.0322 0.4675 0.0138
Pevný-f⊥-sIP [21] 0.0175 0.0320 0.4519 0.0130
Lak.Ent. [23] 0.0413 0.0906 0.1198 0.0414
Lak.Vol.-sIP [22] 0.0199 0.0756 0.1076 0.0211
Lak.Vol.-dIP [22] 0.0241 0.0670 0.0938 0.0250
MINDS [24] 0.0184 0.0557 0.1703 0.0170
Xu-sIP [26] 0.0172 0.0188 0.0908 0.0172
Xu-dIP [26] 0.0193 0.0405 0.2507 0.0183

Average 0.0202 0.0476 0.2690 0.0192

ulated by time variant joint probability model. Note that
anomaly score 1.1 represents the flows where the particular
detector provided no results (due to its limitations). These
figures show that our model generates traffic that triggers
response of anomaly detection algorithms practically indis-
tinguishable from the response to real traffic.

6. CONCLUSION
We proposed a solution for generating realistic NetFlow

data that can be used for evaluation and configuration of
anomaly detectors. We introduced the time variant joint
probability model that is able to capture inter- and intra-flow
relations as well as sequential character of user’s behavior.
We compared the proposed solution with two other sim-
pler models (random sampling and sampling with marginal
model) and have shown that our solution provides more than
2.3× better.

In future work we will focus on relaxing the assumptions
adopted in this paper that limits the quality of the generated
data. We will extend the general schema to capture the ap-
plication specific aspects of the network traffic. The second
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Figure 4: Distribution of anomaly values of Pevný-
f⊥-dIP method for the real traffic and traffic simu-
lated by the time variant joint probability model.

issue that we will address is the modeling of the whole ac-
tions and not individual flows that will enable us to correctly
model for example the full load of the HTML page.
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