
SECOND INTERNATIONAL
WORKSHOP ON AGENTS AND

CYBERSECURITY

ACySE2015

Workshop Notes

Natalia Criado

Martin Rehak

Jose M. Such

Laurent Vercouter

May, 5 2015

at AAMAS 2015
Istanbul, Turkey

i

Workshop Organization

Programme Chairs

Natalia Criado
Martin Rehak
Jose M. Such
Laurent Vercouter

Programme Committee

Javier Bajo
Jim Blythe
Olivier Boissier
Gregory Bonnet
Vicent Botti
Pascal Bouvry
Frances Brazier
Ioana Boureanu
lvaro A. Cardenas
Marco Carvalho
Natalia Criado
Grgoire Danoy
Josep Domingo-Ferrer
Ana Garcia-Fornes
Zahia Guessoum
Chris Hankin
Dieter Hutter
Lucas Kello
Christopher Kiekintveld
Igor Kotenko
Alexei Lisitsa
Ricard Lopez

Emil Lupu
Pasquale Malacaria
Gregorio Martinez
Peter McBurney
Haralambous Mouratidis
Andrea Omicini
Gilbert L. Peterson
Tomas Pevny
Guillaume Piolle
David Pym
Awais Rashid
Omer Rana
Martin Rehak
Michael Rovatsos
Jordi Sabater-Mir
Fabrizio Smeraldi
Jose M. Such
Wamberto Vasconcelos
Laurent Vercouter
Salvatore Vitabile
Martijn Warnier

ii

iii

Prologue

Natalia Criado1, Martin Rehak2, Jose M. Such3, and
Laurent Vercouter4

1 Liverpool John Moores University, UK
n.criado@ljmu.ac.uk

2 Cisco Systems, Czech Republic
marrehak@cisco.com

3 Lancaster University , UK
j.such@lancaster.ac.uk

4 Laurent Vercouter (INSA de Rouen/LITIS lab, France)
laurent.vercouter@insa-rouen.fr

INTRODUCTION

Research in cyber security is nowadays one of the hottest topics in computer
science. This is because security is of capital importance to the development
of a sustainable, resilient and prosperous cyber world. This includes protect-
ing crucial assets ranging from Critical Infrastructures to individual’s Personal
Information, and it spans domains like Cloud computing, Smart grid, Virtual
Organisations, Virtual Communities, Social Media, Electronic Commerce and
many more. Approaches that are intelligent and self-adaptable are required to
deal with the complexities of effectively protecting these crucial assets in all
these domains. This is where research from the agent community can make a
difference in cyber security. Indeed, cyber security is increasingly receiving more
and more attention from the agent community.

The focus of the Second International Workshop on Agents and CyberSecu-
rity (ACySE) is to provide a forum to discuss and advance cyber security by
means of agent-based approaches.

iv

Table of Contents

A Vision for Privacy and Transparency through Policy-Carrying Data . . . 1
Julian Padget, Wamberto W. Vasconcelos

Argumentation for Multi-party Privacy Management 3
Ricard Fogues, Pradeep Murukannaiah, Jose M. Such, Agustin Es-
pinosa, Ana Garcia-Fornes, Munindar P. Singh

Optimal Network Security Hardening Using Attack Graph Games 7
Karel Durkota, Viliam Lisy, Christopher Kiekintveld, Branislav Bosan-
sky

ENGMAS Understanding Sanction under Variable Observability in a
Secure Environment . 15

Hongying Du, Bennett Narron, Nirav Ajmeri, Emily Berglund, Jon
Doyle, Munindar P. Singh

Towards Implicit Contextual Integrity . 23
Natalia Criado, Jose M. Such

Towards scalable network host simulation. 27
Jan Stiborek, Martin Rehak, Tomas Pevny

v

vi

A Vision for Privacy and Transparency through
Policy-Carrying Data

Julian Padget
Dept. of Computer Science

University of Bath
Bath, BA2 7AY, U.K.

j.a.padget@bath.ac.uk

Wamberto W. Vasconcelos
Dept. of Computing Science

University of Aberdeen
Aberdeen, AB24 3LT, U.K.

w.w.vasconcelos@abdn.ac.uk

ABSTRACT
As the customer has become the product, so (individual) privacy
has become the currency: it is traded for access to resources and
paid for in the revelation of many small facts and preferences that
are just data on their own, but become information as part of larger
population. While fiat currency is traceless and untraceable – it
is generally impossible to tell where it has come from or where
it has gone – individual data can sometimes be traced back to its
origin(ator), but can often be untraceable, once passed on. The
concerns expressed at various levels of society are effectively the
product of (i) the proliferation of individually attributable (digitally
represented) data that can be seen somehow belonging to and hav-
ing the potential to compromise the individual or be of benefit to a
third party and (ii) a regulatory framework that is unprepared for the
volume, variety, (or velocity and veracity) of data. In this context,
transparency is being proposed as the means to trade off privacy
while maintaining security. In response, we propose the notion of
data that is inseparable from its access policy and furthermore that
any derived data shall also have a suitable derived policy inextri-
cably associated with it. We sketch a framework and some formal
notions to capture these ideas to initiate debate.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Policies, data sharing, internet-of-things

Keywords
AAMAS proceedings, LATEX, text tagging

1. INTRODUCTION
We propose a means to capture the expression of controls over

(derived) data and to associate that indivisibly with the data via
what we call “policy-carrying data” (PCD1). Following policy con-
ventions, in defining the who, the when and the how, the PCD es-
tablishes permissions for what the data consumer may do to the
data. A novel aspect of our proposal is the establishment of obliga-
tions concerning what the consumer should do with the (derived)
data and it is these that are the foundation of transparency. Such
obligations are the transactional unit for a non-pecuniary data econ-
omy, where access to and use of data may be traded for obligations
that act as a form of user-definable, liquidity at-point-of-use com-
munity currency [6]. These obligations may pertain directly to ac-
tions of data consumers or – and this we believe is also a significant
1PCD also stands for “policy-carrying data collection” and we use PCDs (in the plural)
to indicate a set of policy-carrying data collections.

novelty of our proposal – indirectly to the policy associated either
with the extracted data or the data derived from them.

A feature of the current data landscape is the relative freedom
of movement of data from individuals to the data silos used in
cloud computing and thence between silos, which could be viewed
as contributary to the disempowerment that individuals might feel
over their own data – privacy controls aside [1]. The situation is
potentially further complicated since the platform may enable the
collection and interpretation of those data, thus adding value to
them, as in the case of activity-monitoring devices or home energy
monitors. The PCD concept associates data with bespoke policies:
for example, framework policies might be defined by legislation,
while specific policies for individual needs would have to satisfy
the norms established at the primary level [5]. In this way, crisp but
unworkable definitions of issues such as “When do data stop being
private?” and “How to decide if data revelation is in the public in-
terest?” can be blurred as distinctions are established to meet the
needs of a given situation.

In the next section we set out a framework for policy-carrying
data that considers the information model, identifies classes of stake-
holders and puts forward some illustrative examples of natural lan-
guage expressions of policy (mapping from natural language to for-
mal is a challenging problem for future work). This is followed by
a short discussion on the representation of policy and how our per-
spective draws upon the significant body of work relating to norms
and their formalisation, stemming from logic and from multiagent
systems. Consequently, we illustrate a possible reasoning frame-
work and its use of state to maintain an audit trail of consumer
actions. We conclude with a short discussion of some related work
and directions for future work.

2. A FRAMEWORK FOR PCD
We set out a reference framework within which we situate and

connect stakeholders, PCDs and an information model. We illus-
trate our framework in Fig. 1, where we show stakeholders (cir-
cles), processes (arrows) and information model (boxes within cen-
tral box). The stakeholders envisaged are (i) data owners/producers
who make data/information available (represented as the left-hand
circle) and, in a richer version of the model, these may be separated
into those that assert rights over the data and those that publish it;
(ii) data consumers who want to access data (represented as the
right-hand circle) and again in a richer version of the model, there
may be entities that are both consumers and producers of data, ei-
ther by offering aggregation services or by adding value in some
way; (iii) monitors responsible for policing the publication and ac-
cess activities (upper circle in the middle).

We note that the first two types of stakeholders can be institu-
tions or people as well as computational entities such as sensors,

ACySE 2015: Second International Workshop on Agents and CyberSecurity

1

Figure 1: A Framework for Policy-carrying Data

programs, databases, and so on. A monitor works as a third-party
authority ensuring that activities (publishing and accessing) follow
policies and dealing with violations. Each of these stakeholders
has specific ways to interact via the repository: (i) publishing (rep-
resented by the blue solid line) is the process whereby data own-
ers/producers make their data available but “wrapped” within a pol-
icy, that is, they publish, in a repository, some policy-carrying data.
(ii) accessing (represented by the red dotted lines) is the process
whereby data consumers attempt to obtain access to data mediated
via policies. (iii) monitoring (represented by the green line) con-
cerns observing activities and checking for policy compliance or
violation, and dispensing rewards or sanctions.

Our framework relies on an information model comprising the
PCD – a policy and a data collection made available through the
policy – and a history – a collection of events (i.e., a record of ac-
tivities carried out) gathered at particular time points, denoted as
the states of the repository. The framework would support stake-
holders carrying out the cycle of publish-access-monitor activities
supported by a Web server. Servers should be equipped with func-
tionalities to enable the policing of those accessing and uploading
PCD, keeping records of usage and (non-)compliance, and enforc-
ing the policies’ access control. We envisage programmatic access
to PCD, whereby programs and functionalities developed with spe-
cific technologies can access any PCD, interacting with the server
via pre-establised protocols.

A typical PCD would express something like “Lab managers can
access 500 records of my data”. If an interested party requested
1,000 records, the server would (i) check the credentials of the
requester (who needs to be registered); (ii) grant access to 500
records (a message would provide reasons for not providing the
1,000 records); (iii) update the record of that requester with respect
to that PCD. Further requests from the same party would be re-
jected with a suitable justification. For such control to be in place,
the server requires a record of events – an explicit account of the
history of the PCD, how they have been used, by whom and when.
We observe that PCD can also be used as a means to “wrap” a sen-
sor or other data source, including whole sensor networks. We can
have, for instance, a policy establishing that “anyone is permitted
to request the temperature reading of the sensor once every hour”.

3. POLICY REPRESENTION AND REASON-
ING

Much research has been carried out on data access policies since
the early UNIX file systems [9]. Some notable features our ap-
proach are as follows. We include means to refer to a history of
events; examples are “the first 10 people can use my data” and
“anyone is permitted to use n records of my data”. We provide fine-
grained control over who is to access the data, and under what cir-
cumstances; for instance, “invididual i285 is forbidden to access my
data” and “anyone from company x may use my data after 6PM”.
Additionally we capture dynamic aspects of data usage, examples
being “whoever accesses D1 should not access D2” and “anyone

who uses my data should provide data”.
We adapt and extend current work on normative reasoning for

multi-agent systems [2, 3] to represent roles (of participants), data-
related events (such as accessing records or publishing data col-
lections), authorship of events and attempts thereof, activation and
deactivation conditions of policies, and the object of the policy,
namely, the data collection itself. An example policy is:

〈

policy
︷ ︸︸ ︷
〈{¬accessAll(D1)}︸ ︷︷ ︸

activation

, {accessAll(D1)}︸ ︷︷ ︸
deactivation

,PallaccessAll(D1)︸ ︷︷ ︸
target

〉,
data
︷︸︸︷
D1 〉

This captures permission to access all records of a data collection.
An activation condition says that the permission is in place if the
records have not yet been accessed, and the policy is deactivated
when the records are accessed, thus providing “one-off” access to
the data. The all role says anyone can use this policy.

Complementary to the informal discussion of policy examples
and and requirements above, we have developed algorithmic speci-
fications of three mechanisms to enable stakeholders to reason with
and about their PCDs, so that: (i) a PCD publisher can obtain
the identity of individual agents who have access (via their associ-
ated roles) to data collections. (ii) an agent a can analyse a set of
PCDs and gather all the obligations which might apply to it (iii) ac-
cess can be policed, through a language comprising permissions
and prohibitions (that are use as a means for temporary derogation
of permissions), and also logged. The formalization of the model
and the details of the above algorithms appear in [7]. Meanwhile a
detailed comparison with [4] and [8] is in preparation.

REFERENCES
[1] L. Brandimarte, A. Acquisti, and G. Loewenstein. Misplaced

confidences: Privacy and the control paradox. Social
Psychological and Personality Science, 4(3):340–347, 2013.

[2] M. Şensoy, T. J. Norman, W. W. Vasconcelos, and K. Sycara.
OWL-POLAR: A framework for semantic policy
representation and reasoning. Web Semantics: Science,
Services and Agents on the World Wide Web, 12-13, 2012.

[3] A. García-Camino, J. A. Rodríguez-Aguilar, C. Sierra, and
W. W. Vasconcelos. Constraint rule-based programming of
norms for electronic institutions. Autonomous Agents and
Multi-Agent Systems, 18(1):186–217, 2009.

[4] G. Karjoth, M. Schunter, and M. Waidner. Platform for
enterprise privacy practices: Privacy-enabled management of
customer data. In R. Dingledine and P. F. Syverson, editors,
Privacy Enhancing Technologies, PET 2002, Revised Papers,
volume 2482 of LNCS, pages 69–84. Springer, 2002.

[5] T. Li, T. Balke, M. De Vos, J. A. Padget, and K. Satoh. A
model-based approach to the automatic revision of secondary
legislation. In International Conference on Artificial
Intelligence and Law. ACM, 2013.

[6] B. Litaer. The Future of Money: Creating New Wealth, Work
and a Wiser World. Century, 2002.

[7] J. Padget and W. Vasconcelos. Policy-carrying data: A step
towards transparent data sharing. In Proceedings of 6th
International Conference on Ambient Systems, Networks and
Technologies, ANT 2015. Elsevier, June 2015. In press.

[8] S. Pearson and M. Casassa Mont. Sticky policies: An
approach for managing privacy across multiple parties. IEEE
Computer, 44(9):60–68, 2011.

[9] V. Suhendra. A survey on access control deployment. In
Security Technol., volume 259 of Comm. in Comp. & Inf.
Science. Springer, 2011.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

2

Argumentation for Multi-party Privacy Management

(Position Paper)

Ricard Fogues
Universitat Politècnica de

València
Camí de Vera, SN

Valencia, Spain
rilopez@dsic.upv.es

Pradeep Murukannaiah
North Carolina State

University
Raleigh, NC, USA

pmuruka@ncsu.edu

Jose M. Such
Lancaster University

Lancaster, UK
j.such@lancaster.ac.uk

Agustin Espinosa
Universitat Politècnica de

València
Camí de Vera, SN

Valencia, Spain
aespinos@dsic.upv.es

Ana Garcia-Fornes
Universitat Politècnica de

València
Camí de Vera, SN

Valencia, Spain
agarcia@dsic.upv.es

Munindar Singh
North Carolina State

University
Raleigh, NC, USA

mpsingh@ncsu.edu

ABSTRACT
Social network services enable users to share large quanti-
ties of private information. Often, the shared information
concerns individuals who are members of the social network
but did not upload the information to the service. In such
situations, inappropriate sharing preferences can cause con-
flict and threaten users’ privacy. Since related studies sug-
gest that users prefer to solve multi-party privacy conflicts
through negotiation, we introduce a novel approach based
on negotiation through arguments. In our approach, users
propose privacy settings and support their proposals with
logical arguments. The final decision is based on a setting
supported by sound arguments.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Privacy; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

Keywords
Privacy, Social Network, Argumentation

1. INTRODUCTION
A social network service (SNS) enables users to maintain

social relationships via online interactions. As users on an
SNS interact, they share information with each other. Of-
ten, the information shared on an SNS involves several users
(e.g., a photo showing a group of people). Many SNSs en-
able their users to connect the information they upload to
other users; these connections are usually employed to no-
tify the concerned users that the information was uploaded.
Since the information shared varies depending on the SNS,
(e.g., Instagram is focused only on photos and Twitter on
short textual messages), these connections can take differ-
ent forms, e.g., tags on a photo or mentions in a tweet. For
example, Alice uploads a photo from last weekend’s party
where she and her friend Bob appear together, and tags
Bob on the picture. When these connections are created, the
other users are also linked to the uploaded information. Usu-
ally, a connection implies that the profile of the user can be

accessed from the information or some personal information
is shown in conjunction with the uploaded data. Although
connections between information and users are widely em-
ployed by SNS users, they can also pose a privacy threat.
For example, Bob thinks that the photo uploaded by Alice
is somewhat sensitive and he is not sure about uploading it
to an SNS. However, since Bob has no control over upload-
ing that photo, Alice’s action can threat Bob’s privacy. We
identify situations like this as multi-party privacy conflicts.

Currently, SNSs do not have mechanisms to handle multi-
party privacy conflicts [?]. Thus, a user who did not upload a
piece of information concerning him has to either agree with
the sharing preferences chosen by the uploader or remove
the connection that links the user to the shared information.
A trivial approach to solve such conflicts is to respect the
sharing preferences of every party. However, the nature of
conflicts in preferences can make this solution inviable. For
example, according to their individual privacy preferences,
Alice would like to share the photo with Charlie but Bob
would like to share it only with common friends and he does
not know Charlie. Here, there is no solution that completely
respects both parties’ preferences.

Decision support systems that help users resolve multi-
party privacy conflicts have been identified as one of the
biggest gaps in privacy management in social media [2, 10,
19, 14]. The main challenge for these systems is to propose
solutions that can be accepted most of the time by all the
users involved, minimising the burden on the users to resolve
multi-party privacy conflicts.

Based on evidence that users negotiate over what privacy
settings they should employ [10, 19], we hypothesize that,
during the negotiation of setting a privacy preference, users
employ arguments to convince the other parties that their
demands are reasonable and should be taken into account.
Therefore, we propose a new approach for managing multi-
party privacy conflicts based on logical arguments. The
forms of these arguments can be classified in a number of
schemes, such as precedence or popular opinion. Besides,
other variables, such as relationship types among the users,
can play a key role during the negotiation and in the final
decision.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

3

2. RELATED WORK
One may think that the most direct approach to manage

multi-party privacy policies is employing veto voting, as al-
ready suggested in [16]. That is, denying access takes prece-
dence over granting access. Thus, if an individual wants to
share the information with a given user, but another indi-
vidual does not, the information is not shared. The obvious
benefit of this approach is that it does not allow privacy
breaches. However, there is a problem that advises against
always employing this solution. Since denying access takes
precedence, there may be cases in which veto voting leads
to sharing utility loss. For example, Alice and Bob appear
together in a photo. Bob initially opposes sharing the photo
with Charlie as he does not know him. However, if Alice tells
him that Charlie is her friend and that everything is ok, then
Bob may accept sharing with Charlie. Had the veto voting
been applied, then the item would have not been shared with
Charlie, being a missed opportunity to share.

There are other proposals in the related literature that
aim to help users resolve multi-party privacy conflicts [18,
11, 3, 8, 7]. However, some of them [18, 11] need too much
human intervention during the conflict resolution process to
be practicable, by requiring users to solve the conflicts man-
ually [18] or very close to manually [11], e.g., participat-
ing in difficult-to-comprehend auctions with fake money for
each and every possible conflict. Other approaches to resolve
multi-party privacy conflicts are more automated [16, 3, 8],
but they only consider one fixed way of aggregating user’s
privacy preferences without considering how users would ac-
tually achieve compromise and the concessions they might
be willing to make to achieve it depending on the specific
situation. Only [7] considers more than one way of aggregat-
ing users’ privacy preferences, but the user that uploads the
item chooses the aggregation method to be applied, which
becomes a unilateral decision without considering any input
from others. Clearly, solutions that do not consider input
from all the users involved may lead to solutions that are far
from what some users would be willing to accept. All of this
causes these more automated mechanisms to have difficulties
to adapt to different situations that may motivate different
users’ concessions, which has the potential to cause these
mechanisms to suggest solutions that may not be accept-
able by all users, so that users may need to end up resolving
multi-party conflicts manually most of the time. The work
presented in [13] provides an improvement over these fixed
ways of aggregating privacy preferences from users by sug-
gesting 3 different methods that would be selected depending
on the particular situation, but again, only a limited number
of aggregation methods is considered.

Finally, some very recent works propose game-theoretic
negotiation mechanisms to tackle the multi-party privacy
conflict resolution problem [9, 15]. These proposals provide
an elegant analytic framework to study the problem and the
kind of solutions that can be obtained based on well-known
solution concepts such as the Nash equilibrium. However, as
shown in [9], these proposals may not work well in practice
since it seems they may not be able to capture well the
social idiosyncrasies users actually consider in the real life
when they face multi-party privacy conflicts [10, 19].

3. PROBLEM STATEMENT
In this paper, we propose a novel approach to resolve

multi-party privacy conflicts based on argumentation. As in
[2, 18], users negotiate over what sharing preferences should
be applied. However, in our approach, users do not classify
their preferences by their strength. Instead, their prefer-
ences have to be supported by logical arguments. As in a
real discussion, the sound arguments are the ones considered
in the conclusion of the negotiation, while weak or unsound
arguments are discarded. This means that the preferences
supported by the sound arguments will be applied, or at
least, taken into consideration.

We model the multi-party privacy management problem
as a multi-agent scenario. Each individual linked to a piece
of information to be shared on an SNS employs a personal
agent that acts on his or her behalf during the negotiation.
These personal agents consider the following variables dur-
ing the negotiation:
Ownership : An individual can play one of two roles, the

owner of the information, or a stakeholder—an individual
who is somehow linked to the data but is not the owner.
As concluded by Besmer et al. [2], SNS users believe that
being the owner of the information implies some authority
over the final sharing settings. Thus, during the negoti-
ation, agents must be aware of this position of power of
the owner and behave accordingly.

Relationships among the individuals : An individual
has specific types of social relationship with other indi-
viduals, e.g., close friend or sibling. The closeness and
authority relationships can modify how a person nego-
tiates. Closeness can affect on how much an opinion is
taken into account. For example, it is very likely that a
user’s sibling respects the user’s preferences. On the other
hand, a person with authority over others can impose her
opinion even when all the others have different views.

Sensitivity of the information : The appropriateness to
share something on an SNS is subjective. For example, in
some cultures drinking alcohol is a taboo, thus, a photo
showing a person drinking can be inappropriate, where as
it can normal in other cultures. Each individual involved
in the negotiation has a perception of the sensitivity of the
information. This perception will affect how that person
tries to impose her view.
The goal of each agent during the negotiation is to apply a

sharing preference to the information as close as possible to
its principal’s preference. The preferences of two agents can
be compatible or conflicting with each other. For example,
the preference of Bob: “I do not want my parents to see this
photo” is compatible with the preference of Alice: “I want
only my friends to see it”, as long as Alice’s friends do not
include Bob’s parents.

The negotiation consists of a predetermined number of
rounds. During each of these rounds the agents propose
privacy settings supported by arguments. An agent’s ar-
guments and settings can change and adapt to what other
agents propose from round to round. After the preset num-
ber of rounds of negotiation, a final decision is made. This
decision should respect the preferences of every individual
involved to the best possible extent. If all preferences are
compatible with each other, the solution is trivial. However,
in case of conflicts, the preferences supported by the sound
arguments should take precedence over the others. Since
creating such sharing preferences can be difficult for an av-
erage SNS user, this process should be automated, so that
a sharing preference recommender suggests the final sharing

ACySE 2015: Second International Workshop on Agents and CyberSecurity

4

configuration.
Consider an example negotiation between Alice and Bob:

1. Bob: It’s a funny photo, but embarrassing since I appear
drunk. I don’t want strangers seeing it.

2. Alice: We had a lot of fun during the party. Everybody’s
talking about how funny you were and they want to see
your photos. Let’s share it with everybody.

3. Bob: Well, if you insist... we should share it like we always
share photos like this, only with common friends.

4. Alice: C’mon! it was our graduation party! It’s something
that we only do once in our lifetime. We should show it
to the world.

In this example, Alice is the owner. She and Bob are close
friends, thus, they negotiate using informal language. Alice
thinks that the photo is not very sensitive, while Bob thinks
the contrary. In this example, there are two rounds of nego-
tiation and in each round, Alice and Bob give arguments to
support why they should share the photo in a specific way.

4. ARGUMENTS
In our approach, agents employ arguments to convince the

other parties that their privacy preferences should be used,
or at least considered for the final decision. Different types
of arguments can be employed during a negotiation. Each
of these arguments corresponds to an argumentation scheme
[17]. These schemes are argument forms that represent in-
ferential structures of arguments used in everyday discourse.
Although, given the appropriate situation, almost every ar-
gumentation scheme can be used during a negotiation, we
hypothesize that in our context only four schemes fit: ar-
gument (i) from consequences, (ii) from analogy, (iii) for
an exceptional case, and (iv) from popular opinion. Argu-
mentation schemes work as classes of arguments and each
argument employed by an agent is an instance of a class.

We consider that individuals value their relationship with
others, thus, they are well intended. Consequently, indi-
viduals do not employ fallacies during the negotiation and
the arguments used are based on actual facts. The goal of
an agent is to guarantee that its privacy preferences are re-
spected as much as possible. Thus, the agents are likely to
employ the arguments that are the most convincing.

Argument from Consequences: If A is brought about,
then good (bad) consequences will occur. Therefore, A should
(not) be brought about. An example of good consequences
in our context is: We had a lot of fun during the party. Ev-
erybody’s talking about how funny you were and they want to
see your photos. Let’s share it with everybody. An example
of argument from bad consequences is: It’s a funny photo,
but embarrasing since I appear drunk. I don’t want strangers
seeing it.

When an SNS user shares something, she expects to ob-
tain some kind of benefit in terms of friendship, jobs, and
other social opportunities [5]. Therefore, it is reasonable to
argue that sharing certain information implies a good con-
sequence. On the other hand, sharing inappropriate infor-
mation can harm people’s feelings and cause social tensions.
Thus, negative consequences can also form a valid argument.

Argument from Analogy: Generally, case C1 is similar
to case C2 and A is true (false) in case C1. Then, A is true
(false) in C2. An example of an argument using this scheme
is: We should share it like we always share photos like this,
only with common friends.

We find a number of approaches for managing privacy

on SNS based on tools that automatically suggest privacy
preferences [1, 4, 6, 12]. These tools employ past privacy
settings employed by the user to infer new configurations.
Many of these tools have been developed and evaluated sat-
isfactorily with users. Thus, past decisions can be exploited
for suggesting new privacy settings.

Argument for an Exceptional Case: If the case of x
is an exception, then the established rule can be waived in
the case of x. An example in our domain is: C’mon! it was
our graduation party! It’s something that we only do once
in our lifetime. We should show it to the world.

Although previous privacy configurations can act as a
guide for future elements, exceptions need a different ap-
proach. The scheme for an exceptional case is, at some level,
the opposite to the scheme of argument from analogy. The
arguments created from this scheme cover cases where pri-
vacy recommending tools would fail. Obviously, an individ-
ual has to make a hard case to justify why the new element
is such an exception that needs a different consideration to
the other previous and similar elements.

Argument from Popular Opinion: If the large ma-
jority in a particular reference group G accepts A as true
(false), then there exists a presumption in favor of (against)
A. An example is: the majority of the people that appear in
the photo think that it should be kept private. Therefore,
we should not share it with anyone.

Argument created from this scheme can take two forms:
(i) they can be explicitly employed in an utterance, or (ii) they
can emerge from the suggested privacy settings supported by
other arguments. The first form can only be used in the fol-
lowing round of negotiation. It is not possible to use it in
the first round as individuals still do not know what oth-
ers’ opinions are. The second form for an argument from
popular opinion automatically emerges when two or more
individuals suggest the same sharing preferences. Thus, al-
though no individual explicitly employed an argument from
popular opinion, it is considered for the final outcome.

5. OPEN CHALLENGES
The goal of our research is to build a privacy recommender

tool that helps users to decide what sharing configuration
they should apply to a piece of information that concerns
several individuals. This goal entails a number of challenges
that future work should address.

First, since the recommender must provide suggestions
that are similar to what humans do, we need to collect data
from human participants. However, generating real scenar-
ios where privacy conflicts arise is nontrivial. Hence, we
plan to survey SNS users using hypothetical situations that
present such conflicts. The variety of situations must be
sufficient to collect several instances of every possible com-
bination of variable values and arguments. Figure 1 shows
an example of a possible hypothetical scenario presented to
the participants.

The data collected will be used to generate a predictive
model that, given a set of arguments, privacy settings, re-
lationship types, sensitivity values, and roles as input, pro-
vides a privacy setting as output. The predictive model
can be based on a machine learning technique (e.g., decision
trees) or heuristics. The model will be trained and tested
with the data collected from the real SNS users.

Besides the variables proposed, it is worth noting that so-
cial pressure might play a role. That is, if the majority of

ACySE 2015: Second International Workshop on Agents and CyberSecurity

5

Figure 1: Example of hypothetical scenario.

users involved advocate for a privacy policy, this might have
an effect on the final decision. Indeed, most of current ap-
proaches to this problem apply some kind of voting mecha-
nism: majority voting, veto voting, and uploader overwrites.
To evaluate the effect of social pressure, it is necessary to
create scenarios where a majority of users want something
and there is a user that opposes strongly.

In our approach, we assume that agents do not employ
fallacies and that arguments are always valid. This assump-
tion reduces the complexity. However, future work should
look into ensuring the validity of arguments and punishing or
applying penalties to the agents that use invalid arguments.

REFERENCES
[1] S. Amershi, J. Fogarty, and D. Weld. Regroup:

Interactive machine learning for on-demand group
creation in social networks. In Proc. of CHI 30th.
ACM, 2012.

[2] A. Besmer and H. Richter Lipford. Moving beyond
untagging: photo privacy in a tagged world. In Proc.
of the CHI 28th, pages 1563–1572. ACM, 2010.

[3] B. Carminati and E. Ferrari. Collaborative access
control in on-line social networks. In IEEE
CollaborateCom, pages 231–240, 2011.

[4] G. P. Cheek and M. Shehab. Policy-by-example for
online social networks. In SACMAT ’12, pages 23–32,
New York, NY, USA, 2012. ACM.

[5] N. Ellison, C. Steinfield, and C. Lampe. The benefits
of facebook friends: Social capital and college
students’ use of online social network sites.
Computer-Mediated Communication, 12(4), 2007.

[6] L. Fang and K. LeFevre. Privacy wizards for social

networking sites. In Proc. of WWW 19th, pages
351–360. ACM, 2010.

[7] R. Fogues, J. M. Such, A. Espinosa, and
A. Garcia-Fornes. Open challenges in
relationship-based privacy mechanisms for social
network services. International Journal of
Human-Computer Interaction, (just-accepted), 2015.

[8] H. Hu, G. Ahn, and J. Jorgensen. Multiparty access
control for online social networks: model and
mechanisms. IEEE TKDE, 2013.

[9] H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and
resolving privacy conflicts for collaborative data
sharing in online social networks. In Proc. ACSAC,
pages 103–112. ACM, 2011.

[10] H. Hu, G.-J. Ahn, Z. Zhao, and D. Yang. Game
theoretic analysis of multiparty access control in
online social networks. In Proceedings of SACMAT
’14, pages 93–102, New York, NY, USA, 2014. ACM.

[11] A. Lampinen, V. Lehtinen, A. Lehmuskallio, and
S. Tamminen. We’re in it together: interpersonal
management of disclosure in social network services.
In Proc. CHI, pages 3217–3226. ACM, 2011.

[12] A. Squicciarini, M. Shehab, and F. Paci. Collective
privacy management in social networks. In Proceedings
of the WWW 18th, pages 521–530. ACM, 2009.

[13] A. Squicciarini, S. Sundareswaran, D. Lin, and
J. Wede. A3p: adaptive policy prediction for shared
images over popular content sharing sites. In Proc. of
Hypertext 22nd, pages 261–270. ACM, 2011.

[14] J. M. Such and N. Criado. Adaptive conflict resolution
mechanism for multi-party privacy management in
social media. In Proceedings of the 13th Workshop on
Privacy in the Electronic Society, pages 69–72. ACM,
2014.

[15] J. M. Such, A. Espinosa, and A. Garćıa-Fornes. A
survey of privacy in multi-agent systems. The
Knowledge Engineering Review, 29(03):314–344, 2014.

[16] J. M. Such and M. Rovatsos. Privacy policy
negotiation in social media. arXiv preprint
arXiv:1412.5278, 2014.

[17] K. Thomas, C. Grier, and D. Nicol. unfriendly:
Multi-party privacy risks in social networks. In Privacy
Enhancing Technologies, volume 6205 of Lecture Notes
in Computer Science, pages 236–252. Springer, 2010.

[18] D. Walton, C. Reed, and F. Macagno. Argumentation
Schemes. Cambridge University Press, 2008.
Cambridge Books Online.

[19] R. Wishart, D. Corapi, S. Marinovic, and M. Sloman.
Collaborative privacy policy authoring in a social
networking context. In Proc. of POLICY ’10, 2010.

[20] P. Wisniewski, H. Lipford, and D. Wilson. Fighting for
my space: Coping mechanisms for sns boundary
regulation. In Proc. CHI, pages 609–618. ACM, 2012.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

6

Optimal Network Security Hardening Using Attack Graph
Games

Karel Durkota
Dept. of Computer Science

FEE, CTU in Prague
durkota@agents.fel.cvut.cz

Viliam Lisý
Dept. of Computer Science

FEE, CTU in Prague
lisy@agents.fel.cvut.cz

Christopher Kiekintveld
Dept. of Computer Science

Univ. of Texas at El Paso, USA
cdkiekintveld@utep.edu

Branislav Bošanský
Dept. of Computer Science
Aarhus University, Denmark

bosansky@cs.au.dk

ABSTRACT
Preventing the attacks in a computer network is the core problem
in network security. We introduce a new game-theoretic model of
the interaction between a network administrator who uses limited
resource to harden a network and an attacker who follows a multi-
stage plan to attack the network. The possible plans of the attacker
are compactly represented using attack graphs, while the defender
adds fake targets (honeypots) to the network to deceive the attacker.
The compact representation of the attacker’s strategies presents a
computational challenge and finding the best response of the at-
tacker is NP-hard. We present a solution method that first translates
an attack graph into a MDP and solves it using policy search with
a set of pruning techniques. We present an empirical evaluation of
the model and solution algorithms, evaluating scalability, the types
of solutions that are generated for realistic cases, and sensitivity
analysis.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms, Economics, Performance, Experimentation

Keywords
Attack graphs, Optimal attack policy, Markov decision process,
And-or graph, Honeypots, Game theory, Network security

1. INTRODUCTION
Networked computer systems support a wide range of critical

functions in both civilian and military domains. Securing this in-
frastructure is extremely costly and there is a need for new auto-
mated decision support systems that aid human network adminis-
trators to detect and prevent attacks.

We focus on network security hardening problems in which a
network administrator (defender) reduces the risk of attacks on the
network by introducing honeypots (fake hosts or services) into their
network [27]. Legitimate users do not interact with honeypots;
hence, honeypots act as decoys and distract attackers from the real
hosts, send intrusion detection alarms to the administrator, and/or
gather detailed information the attacker’s activity [26, 10]. How-
ever, believable honeypots are costly to set up and maintain. De-
ciding how to optimally allocate these resources to reduce the risk

of attacks on a network presents a challenging decision for the de-
fender. On the other hand, a well-informed attacker should antici-
pate the use of honeypots and try to avoid them.

We use game theory to model this adversarial interaction and to
determine the best way to use honeypots against a well-informed
attacker. We introduce a novel game-theoretic model of network
hardening using honeypots that extends the existing line of Stackel-
berg security games [32] by combining two elements: (1) we adopt
a compact representation of strategies for attacking computer net-
works called attack graphs, (2) the defender uses deception instead
of directly allocating resources to harden targets.

Attack graphs (AGs) can represent a rich space of sequential
attacker actions for compromising a specific computer network.
They can be automatically generated based on known vulnerability
databases [14, 24] and they are widely used in the network secu-
rity to calculate security risk measures (e.g., the probability of a
successful attack) [21, 13] or identify the minimal subset of vulner-
abilities/sensors to be fixed/placed to prevent all known attacks [31,
20]. However, these approaches do not capture the attacker’s possi-
ble counter-strategies to the administrator’s actions and can easily
bypass less expensive hardening actions which could suffice to de-
ter the attacker from attacking the network. Attack graphs, beside
the researchers’ interest, found to be practical in the commercial
sector as well, which is evidenced by the fact that cyber-security an-
alytical companies, e.g., Skybox Security 1 or Core Security Tech-
nologies 2, use them as described in their patents in [7] and [22].
We use AGs as a compact representation of an attack plan library,
from which the rational attacker chooses the optimal contingency
plan to follow. Contingency plan prescribes an action to every pos-
sible situation that can occur during the attack. Although com-
puting the optimal contingency attack plan in an attack graph is
an NP-hard problem [9], the information it provides about the at-
tacker’s motivations and likely action order is crucial from the se-
curity hardening perspective. We address the complexity issue by
translating attack graphs into an MDP and introducing a collection
of pruning techniques that considerably reduce the computation.
Fast alternative is to generate linear plans that may be provided by
classical planners (e.g., [23, 4]), however, they are not sufficient as
they cannot represent attacker’s behavior after action failures.

Although in this paper we assume rational attackers with known
payoffs, the framework of game theory allows extending the model
to a whole variety of attackers, such as attacker’s with bounded

1http://www.skyboxsecurity.com
2http://www.coresecurity.com

ACySE 2015: Second International Workshop on Agents and CyberSecurity

7

rationality [29], or to assume more attacker types (i.e., Bayesian
games [33]), or limiting the knowledge learnt about the network
(imperfect information game [28]), etc.

Deploying honeypots changes the structure of the network and
increases uncertainty for the attacker. In the presented game model
we assume that the attacker knows the number of deployed hon-
eypots and their type (e.g., a database server). However, the at-
tacker does not know which specific hosts are honeypots and which
are real. While the assumption that the attacker knows the num-
ber/type of honeypots is strong, it corresponds to a worse-case,
well-informed attacker.

We present five main contributions: (1) a novel game-theoretic
model of security hardening based on attack graphs, (2) algorithms
for analyzing these games, including fast methods based on MDPs
for solving the attacker’s planning problem, (3) a case study ana-
lyzing the hardening solutions for sample networks, (4) empirical
evaluation of the computational scalability and limitations of the
algorithms, and (5) sensitivity analysis for the parameters used to
specify the model.

2. NETWORK HARDENING GAME USING
HONEYPOTS

In this section we introduce a game-theoretic model for the net-
work hardening problem. Our model is a Stackelberg game, where
the defender acts first, taking actions to harden the network by
adding honeypots (HPs). The attacker is the follower that selects
an optimal attack plan based on (limited) knowledge about the de-
fender’s strategy. In particular, we assume that the attacker learns
the number and type of HPs added to the network, but not which
specific hosts are real and fake.

An instance of the game is based on a specific computer network
like the one shown in Fig. 1c (based on [12]). A network has a set of
host types T , such as firewalls, workstations, etc. Two hosts are of
the same type if they run the same services and have the same con-
nectivity in the network (i.e., a collection of identical workstations
is modeled as a single type). All hosts of the same type present
the same attack opportunities, so they can be represented only once
in an attack graph without omitting any attack options. During an
attack, a specific host of a given type is selected randomly with uni-
form probability and the selection remains the same until the end
of the game.

More formally, a computer network y ∈ NT contains yt hosts
of type t ∈ T . The defender can place up to k honeypots into
the network y, so his actions are represented by x ∈ X ⊂ NT

0 with
∑t∈T xt ≤ k, specifying that xt hosts type t ∈ T will be added to the
network as honeypots (e.g., by duplicating the configurations of the
real hosts with obfuscated data). The modified network consists of
zt = xt + yt hosts of type t. Adding more HPs of a specific type in-
creases the likelihood that the attacker who interacts with this type
of host will choose a HP instead of a real host. If the attacker inter-
acts with a HP during an attack, he is immediately detected and the
attack ends. The attacker is rational and maximizes the expected
utility taking into account the probabilities of interacting with HPs,
his actions’ costs and success probabilities, and rewards from suc-
cessful attacks. He selects his attack strategy from set Ξ defined
later. Installing and maintaining HPs has a cost for the defender
depending on the host type (c(t) t ∈ T) that is duplicated. The de-
fender minimizes his total expected loss l which consists of (1) the
expected loss for the attacked hosts and (2) the cost for adding the
HPs into the network. The Stackelberg equilibrium is found by se-
lecting the pure action of the defender that minimizes the expected
loss under the assumption that the attacker will respond with an

optimal attack [8]. If the attacker is indifferent between multiple
attacks, it is typical to break ties in favor of the defender [32]. The
defender’s action is

x∗ = argmin
x∈X
{l(x,argmax

ξ∈Ξ
{E(ξ ,x)})}. (1)

The minimization over all defender actions is performed by sys-
tematically checking each option; however, the main computation
burden of computing the optimal attack strategy is substantially re-
duced by caching and reusing results of subproblems that are often
the same. Computation of this equilibrium relies on computing the
optimal attack policy as explained in the following section.

3. ATTACK GRAPHS
There are multiple representations of attack graphs common in

the literature. We use dependency attack graphs, which are more
compact and allow more efficient analysis than the alternatives [23].
Fig. 1a is an example attack graph with high-level actions for illus-
tration. Formally, it is a directed AND/OR graph consisting of fact
nodes F (OR) and action nodes A (AND). Every action has pre-
conditions (pre(a)⊆ F) – a set of facts that must be true before the
action can be performed – and effects (eff(a) ⊆ F) – a set of facts
that become true if the action is successfully performed. These re-
lations are represented by edges in the attack graph. We use the
common monotonicity assumption [1, 24, 19] that once a fact be-
comes true during an attack, it can never become false again as an
effect of any action.

Every action has associated a probability of being performed
successfully pa ∈ (0,1], and cost ca ∈ R+ that the attacker pays
regardless of whether the action is successful. The costs represent
the time and resources for the attacker to perform the action. Fi-
nally, every action a interacts with a set of host types τa ⊆ T . The
first time the attacker interacts with a type t, a specific host of that
type is selected with uniform probability. Future actions with the
same host type interact with the same host. There is no reason to
interact with a different host of the same type because (1) rewards
are defined based on the types, so there is no additional benefit, and
(2) interacting with another host increases the probability of inter-
acting with a honeypot and ending the game. Each fact f ∈ F has
associated an immediate reward r f ≥ 0 that the attacker receives
when the fact becomes true (e.g., an attacker gains reward by gain-
ing access to a particular host or compromising a specific service).
At any time we allow the attacker to terminate his attack by a ter-
mination action.

An illustrative example of attack graph is depicted in Fig. 1a.
Diamonds and rectangles are fact nodes that are initially false and
true. Actions (rounded rectangles) are denoted with a label and
a triple (pa,ca,τa). The attack proceeds in a top-down manner.
At the beginning the attacker can perform actions Exploit-Firewall,
Send-MW-Email or Create-Dictionary. The action Exploit-Fire-
wall ’s preconditions are {Firewall-Access, Firewall-Vulnerable}
and its effect is {Net-Access}. If this action is performed, the
attacker immediately pays cost ca = 5, interacts with host types
τa = {1}, and with probability pa = 0.27 the action’s effects be-
come true. In that case the attacker obtains reward +100.

Attack graphs can be automatically generated by various tools.
We use the MulVAL [25], which constructs attack graphs from in-
formation automatically collected by network scanning tools, such
as Nessus3 or OpenVAS4. Previous works (e.g., [30]) show that

3http://www.nessus.org
4http://www.openvas.org

ACySE 2015: Second International Workshop on Agents and CyberSecurity

8

Access DB
+1000

Remote Exploit
(0.45,5,{1})

Pwd Brute Force
(0.21,9,{1})

Database
Vulnerable

Net Access
+100 Dictionary

Exploit Firewall
(0.27,5,{2})

Send MW Email
(0.23,2,{3})

Create Dictionary
(1.0,11,{})

Firewall
Vulnerable

Firewall
Access

Address
Available

Personal
Data

(a) Attack graph

T

Exploit Firewall
170

Remote Exploit
550

+100

T

Create Dictionary
190

Pwd Brute Force
201

T T

+1000

T

+1000

Send MW Email
279

Remote Exploit
550

+100

T

Create Dictionary
190

Pwd Brute Force
201

T T

+1000

T

+1000

(b) Attack policy

Internet

Firewall

Database(i,0,0)

Workstation(0,0,i)

(c) Local-i network

Explit Firewall

...

pa(1-h)

...

(1-pa)(1-h)

T

h

Send MW Email

...

pa(1-h)

...

(1-pa)(1-h)

T

h

Create Dictionary

...

pa(1-h)

...

(1-pa)(1-h)

T

h

(d) Decision point

Figure 1: (a) Attack graph representing the possible ways of gaining an access to the database. (b) Optimal attack policy for the attack graph
in (a) where T denotes termination of the attack; (c,d,e) network topologies with triples (r,l,c) at hosts denoting number of remote (r), local
(l) and client (c) vulnerabilities at that host.

the information about the costs and success probabilities for dif-
ferent actions can be estimated using the Common Vulnerability
Scoring System [18] values available in the National Vulnerability
Database [2], historical data, or be directly specified by the network
administrator. Although these tools construct attack graphs based
on all known vulnerabilities, they can represent a great majority of
the attacks against which we protect a network.

3.1 Optimal Attacker Policy
In order to fully characterize the attacker’s reaction to the set

of honeypots, we need to compute a full contingent attack policy,
which defines an action for each situation that may arise during
an attack. This allows identifying not only the actions likely to be
executed by a rational attacker, but also the order of their execution.
This is necessary to evaluate effectiveness of placing honeypots or
any other intrusion detection sensors.

The attack strategies Ξ are all contingent plans consistent with
the attack graph. The optimal attack policy maximizes attacker’s
expected utility and in case of ties favors the defender. Fig. 1b
depicts the optimal attack policy for the attack graph in Fig. 1a
without any honeypots. Nodes represent suggested actions to per-
form with their expected rewards if strategy is followed. The first
action suggested by this policy is to Send-MW-Email. If the ac-
tion is successful, the attacker immediately obtains reward +100
for reaching Net-Access and follows the right (sub)policy (solid
arc). If Send-MW-Email fails, attacker’s best choice is to perform
Exploit-Firewall and expect reward 170. The attack terminates (T)
if there are no actions to perform or the expected rewards do not
surpass the expected cost of the actions.

4. SOLVING AG USING MDP
In the Stackelberg game model we assume that the attacker ob-

serves the defender’s strategy, which can be used in computing the
best-response attack strategy. We represent the problem of comput-
ing the attacker’s best response as a finite horizon Markov Decision
Process (MDP) [3]. The MDP for attack graph AG is defined as a
tuple 〈B,S,P,ρ〉, where: (1) B = A∪{T} is the set of actions, (2)
S is set of states s = (αs,φs,τs), where: αs ⊆ B is the set of ac-
tions that a rational attacker can still perform, φs ⊆ F is the set of
achieved facts, and τs ⊆ T is the set of host types that the attacker
has interacted with so far. The initial MDP state is s0 = (B, /0, /0).

(3) Pa
ss′ ∈ (0,1] is the probability that performing action a in state s

leads to state s′. Performing action a can lead to one of three possi-
ble outcomes: either (i) a interacts with a honeypot with probability
h= 1−∏t:τa\τ (

zt−xt
zt

) and his attack immediately ends; (ii) action a
does not interact with a honeypot and is successful with probability
pa(1−h) or (iii) action a does not interact with a honeypot and nei-
ther is successful with probability (1− pa)(1−h). The sets defin-
ing the newly reached state are updated based on these outcomes.
Finally, (4) ρa

ss′ is the attacker’s reward for performing action a in
state s leading to s′. It is based on the set of facts that became true
and the action cost ca.

We compute the optimal policy in this MDP using backward
induction based on depth-first search, with several enhancements
to speed up the search. A major performance enhancement is dy-
namic programming. Since the same states in the MDP can often
be reached via more than one sequence of actions, we cache the ex-
pected rewards and corresponding policies of the visited states and
reuse it when possible. In addition we use the following pruning
techniques.

4.0.1 Sibling-Class Pruning
In this section we introduce the Sibling-Class Theorem (SCT)

and its use to prune the search tree. This theorem states that in some
cases, the optimal order for executing actions can be determined di-
rectly without search. It was proved in [9] in the context of “prob-
abilistic AND-OR tree resolution” (PAOTR). In [5], the AND part
of the theorem is proven in the context of simplified attack graphs.
Both works assume that actions have no preconditions, i.e., the in-
ner nodes of the AND/OR tree represent only the conjunctions and
disjunctions and do not have any costs or probabilities of success.
Moreover, the theorem was proven only for the special case of trees
not for directed acyclic graphs. We generalize the SCT to handle
the more general case that we need for our attack graphs.

Actions a,b ∈ A belong to the same OR-sibling class iff they
have the exact same effects. Actions α ⊆ A belong to the same
AND-sibling class iff there is a “grandchild” action g ∈ A that can
be executed iff all of the actions in α are successful and none of the
actions has an effect that would help enable other actions, besides
g. We define the R-ratio of actions in sibling classes as R(a) = pa

ca

if a belongs to an OR-sibling class; and R(a) = 1−pa
ca

if a belongs to
an AND-sibling class.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

9

Internet

(1,0,1)

(1,0,0)

(0,0,1) (0,0,1)

(a) Local+i network

Internet

(0,0,1) (1,0,0) (1,0,0)

(0,0,1) (1,0,0) (1,0,0)
(1,0,0)

(b) Chain-i network

Internet

Server
(1,0,0)

Firewall

VPN
(1,0,0)

Database
(1,0,0)

20x
(1,0,1)

4x
(1,0,1) ...

4x
(1,0,1)

(c) Main-i network

Figure 2: Network topologies used in the experiment section.

THEOREM 1 (SIBLING CLASS THEOREM). Let ξ be the op-
timal attack policy for the attack graph AG. Then for any actions
x,y from the same sibling class, such that R(y) > R(x), x is never
performed before y in ξ .

Intuitively, in OR-sibling class, it is reasonable to start with the
high-probability low-cost actions. In AND-sibling class, it is rea-
sonable to start with cheap actions that have low success probabil-
ity to fail fast and avoid paying unnecessary costs. The theorem is
formally proven in the extended paper. 5

Unfortunately, actions that can interact with honeypots violate
the monotonicity property assumed in the proof of SCT. These ac-
tions cannot be pruned neither preferred to other actions. Thus, we
prune only actions that do not interact with honeypots, belong to
exactly one sibling class and there is another action in the same
sibling class with higher R-ratio.

4.0.2 Branch and Bound
We compute lower and upper bounds of the expected reward in

each MDP state. Consequently, we use them to prune the MDP
subtrees if they are provably suboptimal.

Lower bounds (LB) are computed from the values of the previ-
ously computed MDP subtrees and bound the future MDP subtrees.
First, we present necessary properties of the optimal attack policy.

PROPOSITION 1. Let ξ be the optimal attack policy in state s
starting with action a, ξ+ and ξ− be its (sub)policies if action a
succeeds or fails, respectively, and E[ξ] be the value of the policy.
Then, (i) E[ξ+] + ρ − ca/pa ≥ E[ξ−], where ρ = ∑ f :eff(a)\φ r f is
an immediate reward and (ii) E[ξ]≥ E[ξ−].

In Fig. 1d is the first decision point for the attack graph in Fig. 1a,
where the attacker decides among three available actions: (Exploit-
Firewall, Send-MW-Email or Create-Dictionary). In every deci-
sion point of the MDP’s depth-first search tree we explore each
of its subtrees one by one and use maximal value M of the pre-
vious actions as a lower bound value for next action. Since ev-
ery action’s outcome (success or fails) is explored separately, we
bound them individually. Action a’s successful branch is bounded
by M−ρ +ca/pa, which results from Prop. 1(i). Its false branch is
bounded by M+ca−pa(E[a+]+ρ)

1−pa
, where E[a+] is the action a’s suc-

cessful branch’s expected reward, which results from Prop. 1(ii).
We compute the upper bound (UB) as the expected reward of

the optimal policy in an attack graph relaxed in two ways. First, we
ignore the action costs (ca = 0) and the probabilities of touching
HPs (h = 0). This only improves the expected utility of the attack
and causes the optimal strategy to always use all available actions.
Therefore, we can compute the expected reward of the policy by
computing the probability that each fact is achieved if the attacker
5available at http://goo.gl/j1y9Lv.

attempts all actions. In order to compute this probability efficiently,
we run a depth first search in the attack graph from each fact which
provides a reward, traversing edges only in the opposite direction.
Moreover, to avoid complications caused by cycles, we disregard
edges leading to AND nodes from already traversed parts of the
attack graph. Removing edges to AND nodes can always only in-
crease the probability of reaching the reward fact.

5. EXPERIMENTS
The experiments analyze the algorithm for optimal attack pol-

icy computation and evaluate game models for network hardening
problems. All experiments were run in single thread on 8-core In-
tel i7 3.5GHz processor with 10GB memory limit. Attack graphs
for the experiments were generated with MulVAL [25] tool, aug-
mented with additional cost and probability information.

5.1 Optimal Attack Planning
In the following experiments we examine the optimal attack pol-

icy computation algorithm on following three network topologies:
(i) Local-i network depicted in Fig. 1c, (ii) Local+i network de-
picted in Fig. 2a and (iii) Chain-i network depicted in Fig. 2b. Pa-
rameter i scales each networks topology in a different dimension:
(i) in Local-i network, parameter i denotes the number of client
vulnerabilities in a workstation, (ii) in Local+i network, parameter
i denotes the number of workstations with same connectivity but
different vulnerability and (iii) in the Chain-i network, parameter i
denotes the number of pair workstations, where each pair has dif-
ferent both, the connection in the network and a vulnerability. Host
types are labeled with (r, l,c), where r,l,c denotes the numbers of
remote, local and client vulnerabilities of that type. The topology
of the network and the number and type of vulnerabilities deter-
mines the number of actions in the attack graph.

5.1.1 Pruning Techniques

10^0

10^1

10^2

10^3

10^4

10^5

 2 4 6 8 10 12 14 16

ti
m

e
 [

m
s
]

problem number

none
-LB
-UB
-ST

all

(a) Local-i

10^0

10^1

10^2

10^3

10^4

10^5

 1 2 3 4 5 6 7

ti
m

e
 [

m
s
]

problem number

none
-LB
-UB
-ST

all

(b) Local+i

Figure 3: Time comparison of the pruning techniques. Legend:
none - no pruning technique, (-LB) - all but lower bound, (-UB)
- all but upper bound, (-ST) - all but Sibling Theorem, (all) - all
pruning techniques.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

10

In this section we evaluate contribution of the pruning techniques:
Sibling Theorem (ST), lower bound (LB), and upper bound (UB)
for the branch and bound. Since techniques may prune the same
branches, we measure each technique’s contribution by measuring
the algorithms slowdown after disabling it. Thus, we compare 5
settings: none (no techniques is used), all (all techniques are used),
-ST (all but ST), -LB (all but LB) and -UB (all but UB). Fig. 3
shows optimal attack policy computation times of networks Local-
i and Loca+i using each technique setting. In Local-i network we
add vulnerabilities to a workstation which creates large decision
points. However, since all vulnerabilities have the same effect, to
compromise the workstation, they belong to the same OR-sibling
class which is effectively pruned by the sibling-theorem and the op-
timal action is selected without computation (compare all to -ST).
In Local+i network the branch and bound helps the most (-LB and
-UB). The results for the Chain-i network were very similar to
the results for the Local+i network, thus, we did not include them
here. In the remaining of experiments, we use all techniques since
they do not have negative impact and can dramatically speed up the
computation. We refer to the proposed attack planning algorithm
as DP (dynamic-programing) algorithm.

5.1.2 Comparison with Other Algorithms
We compare DP to other two approaches that can compute the

optimal policy for an attack graph. The first method converts the
AG it to an Unconstrained Influence Diagram (UID) as described
in [16] and uses GUIDO [15] to solve it. The second approach
translates AG to a probabilistic planning domain problem, which
is then solved by SPUDD [11]. It uses iterative value computa-
tion and was 3rd best planner in 2011 at the International Planning
Competition (IPC) in the MDP track. We chose SPUDD because it
guarantees to return an optimal contingency policy, while the first
two planners from IPC do not. In Tab. 1(a) we present computation
times of the algorithms. Our algorithm dramatically outperforms
the other two approaches, where the hardest network Local+8 was
solved 5x faster than using SPUDD planner.

Problem # A DP UID SPUDD
Local-3 9 <1 <1 <1

Local-11 25 <1 (OoM) 3
Local-19 41 <1 (OoM) 3348
Local+3 16 <1 71 1
Local+6 28 3 (OoM) 125
Local+8 36 406 (OoM) 1951
Chain-3 20 <1 21,68 7
Chain-5 32 <1 (OoM) 2646
Chain-7 44 <1 (OoM) Err

host 1 2 3 5
db 0 0 1 2
srv 1 1 1 2
vpn 0 1 1 1
1grp 0 0 0 0
2grp 0 0 0 1

(a) (b)

Table 1: (a) Computation times (in seconds) of computing optimal
attack policies by DP, GUIDO and SPUDD. (OoM) - Out of Mem-
ory, (Err) - planner exited with segmentation error. (b) Optimal
allocation of different number of HPs (columns) to the host types
(rows) in the Main-7 network.

5.2 Network Hardening Game Analysis
In this section we evaluate the network hardening game. We fo-

cus on a typical small business network topology Main-i depicted
in Fig. 2c, where parameter i denotes the total number of host types
in the network. Main-i network consists of a Server (srv), a Fire-
wall (fw), a Database (db), a vpn, a group of 20 workstations (1grp)
and it is extended by an additional 4 workstation host types (ngrp)
restricted by parameter i. On this network we find the honeypot
deployment that minimizes the defender’s loss and analyse the re-
sults. Attacker’s actions costs in AG are set randomly between 1

and 100. The rewards for gaining the root privileges (ra) to the host
types are 1000 for workstations (ws), 2000 for vpn, 2500 for server
(srv) and 5000 for database (db). For simplicity, we assume that the
defender’s loss (lt) is equals to the attacker reward. However, this
payoff restriction is not required in our model. The defender pays
c(t) = γlt for adding honeypot of type t, where γ ∈ R+ is parame-
ter we alter. It corresponds to the fact that more valuable hosts are
generally more costly to imitate by honeypots.

Scalability Experiment.
We analyze the scalability of our game model to determine the

size of the networks that can reasonably be solved using our algo-
rithms. For each network Main-i, we create a game model and find
Stackelberg equilibrium. First, we present computation time com-
parison for solving a game with and without use of cached within
a game in Fig. 4a. When MDP trees are computed with various
HP allocation settings, often the same MDP subtrees are reached;
caching and reusing their values avoids the unnecessary repeated
computation. Next, in Fig. 4b we present computation times (note
log-scale y-axis) to solve networks Main-6 through Main-8 (indi-
vidual plots), given the number of HPs that the defender can deploy.
The algorithm scales exponentially with both parameters. How-
ever, we note that typical real-world cases will have few honeypots.

5.2.1 Case-Study
In this section we examine in detail the network Main-7 with

γ = 0.02. We analyze the defender’s loss dependence on the num-
ber of honeypots and his relative regret for modeling the attack
graph inaccurately (e.g., if he estimates the action costs, action
probabilities or rewards incorrectly).

Defender’s loss.
Using a large number of HPs is not necessarily beneficial for the

defender as they may cost more than they contribute to protecting
the network. The defender’s expected loss using different number
of the HPs is shown in Fig. 4c (see “optimal, γ = 0.02”), where it is
optimal to deploy 6 HPs for γ = 0.02 and for 9 HPs for the cheaper
γ = 0.01 setting. In the same figure, we also present the defender’s
loss for deploying random honeypots instead the optimal suggested
by our model, which is roughly twice as bad. We also note how
dramatically merely 3 HPs can decrease the expected loss using
the game-theoretic approach.

In Fig. 4d are separate parts of the defender’s loss: the expected
loss for having the hosts attacked and the costs for deploying the
HPs. This kind of analysis is useful if other restrictions are posed
on the defender, e.g., limited budget expenses on hardening the
network. For instance, in our case it shows that purchasing the
deploying fourth honeypot will not increase the network security
compared to deployment of three honeypots.

In Tab. 1(b) we present the defender’s optimal HP types alloca-
tions (rows) for a given total number of deployable HPs (columns).
I.e., with one HP, it is best to duplicate the server (srv). The server is
not the most valuable type (2500 while the database is worth 5000).
However, it is a bottleneck of the network; protecting the server
partially defends both the server and the database, rather than only
database. With two HPs it is best to duplicate the server and VPN
(again, the bottlenecks). Only with the 3rd HP does the defender
duplicate the database.

Sensitivity Analysis.
Computing the defender’s optimal strategy heavily relies on the

Attack Graph structure and knowledge of the action costs, proba-
bilities and rewards, which the defender can only approximate in

ACySE 2015: Second International Workshop on Agents and CyberSecurity

11

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14

ti
m

e
 [
s
]

of honeypots

no cache
with cache

(a) Cache vs no-cache

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

c
u
m

u
la

ti
v
e
 t
im

e
 [
s
]

of honeypots

6 Types
7 Types
8 Types

(b) Scalability

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20

de
fe

nd
er

 e
xp

ec
te

d
lo

ss

of honeypots

optimal,γ=0.01
optimal,γ=0.02
random,γ=0.02

(c) Defender’s loss

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2 4 6 8 10 12 14 16 18 20

de
fe

nd
er

 e
xp

ec
te

d
lo

ss

of honeypots

Attack cost
Honeypot cost

(d) Defender’s costs

Figure 4: (a) With and without cache computation times comparison. (b) Time comparison of solving the game for various networks and the
number of HPs; (c) Defender’s expected loss given the γ and allocating HPs optimally and randomly. (d) Individual parts of the defender’s
loss: the expected cost of having the network attacked (Attack cost) and cost of deploying the HPs (Honeypot cost).

a real-world scenarios. In the following experiments we analyze
the sensitivity of the defender’s strategy and utility to inaccurate
approximation of the attack graphs.

We use the following notation: defender’s strategy d̄ (resp. loss
l̄d̄) is computed from the attack graph known to the defender, which
imprecisely approximates the attack graph truly describing attacker’s
behavior; d (resp. loss ld) is the optimal strategy based on the true
attack graph according which the attacker really behaves; and ld̄ is
the defender’s loss when strategy d̄ is used against the real attack
graph.

In the sensitivity analysis we compute the relative regret as |ld̄−
ld |/l̄d̄ , which is the defender’s relative loss ratio for not knowing
the attacker’s real attack graph. In other words, if the defender
knew the true attack graph model and acted optimally, this is how
much he would gain. Thus, regret = 0 means he has no regret and
regret = 1 means that his loss is by 100% greater than it could have
been.

In this experiments the attack graph action probabilities and costs
were chosen randomly from the intervals pa ∈ [0,1], ca ∈ [0,200] in
order not to depend on the specific initial attack graph values pro-
vided by MulVAL. To generate the imprecise attack graph available
to the defender, we perturbed the generated attack graph based on
values (δp,δc,δr)∈ [0,1]3, where each value represents the limit on
the size of the perturbation on action probabilities (δp), costs (δc)
and fact rewards (δr). The perturbed attack graph is obtained as fol-
lows: for each action a ∈ A the perturbed probability p̄a is chosen
from an interval [pa− δp, pa + δp] restricted to [0.05,0.95] to pre-
vent them becoming impossible (p̄a = 0) or infallible (p̄a = 1); per-
turbed cost c̄a is chosen from [ca(1−δc),ca(1+δc)]; and for each
fact f ∈ F , the perturbed fact reward is r̄ f ∈ [r f (1−δr),r f (1+δr)],
where the values are selected uniformly within the given inter-
vals. Action probabilities are perturbed absolutely (by ±δp), but
the costs and rewards are perturbed relative to their original value
(by ±δcca and ±δrr f). The intuition behind this is that the higher

the cost or reward values the larger the errors the defender could
have made while modeling them, which cannot be assumed for
probabilities.

In our experiments we perturbed the each component from 0.05
to 0.95 by 0.05 steps and measured the defender’s loss. The re-
sults presented are mean values computed from 100 runs. In Fig. 5
we present the defender’s relative regret for increasing error per-
turbations of each component individually in Fig. 5a-c and alto-
gether in Fig. 5d for deploying 1, 3 and 6 HPs. In our experimental
setting, the defender’s strategy was the least sensitive to the ac-
tion cost perturbations (Fig. 5c), where the relative regret reaches
only 0.002 for δc = 0.95 for 6 HPs. Sensitivity to reward perturba-
tions (Fig. 5b) reached relative regret about 0.3 for the worst case
δr = 0.95. Finally, the most sensitive it is to the probability pertur-
bation (Fig. 5c), where relative regret reached almost value 0.8 for
δp = 0.95. Fig. 5d depicts relative regret for perturbing all three
components, reaching about 1.2 for the worst case. Overall, results
show that within a reasonable perturbation boundaries, the algo-
rithm is robust. I.e., assuming that the defender models all compo-
nents imprecisely by at most 30% (δc = δp = δr = 0.3 in Fig. 5d)
in scenario with 6 HPs, his HP deployment choice could have been
bettered off by only 17%. While imprecision of 30% is quite large
in our perturbation definition, the results in a quite little regret.

Finally, note that with an increasing number of HPs, the de-
fender’s relative regret grows (e.g., Fig. 5), however, this can be
misleading. Further data analysis revealed that the actual absolute
regrets |ld̄ − ld | for 3 HPs (318) and 6 HPs (340) are very similar.
The reason why relative regret seem to grow with the increasing
number of HPs is due to the decrease of the observed loss l̄d̄ (de-
nominator it relative regret formula). The observed loss l̄d̄ for 3
HPs is 1994, while for 6 HPs 1049, which shows that the relative
regret does not seem to depend on the number of HPs.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
fe

nd
er

s
re

la
tiv

e
re

gr
et

δc

1 HP
3 HPs
6 HPs

95%ile of 6 HPs

(a) Defender’s loss

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
fe

nd
er

s
re

la
tiv

e
re

gr
et

δr

1 HP
3 HPs
6 HPs

95%ile of 6 HPs

(b) Defender’s costs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
fe

nd
er

s
re

la
tiv

e
re

gr
et

δp

1 HP
3 HPs
6 HPs

95%ile of 6 HPs

(c) Scalability

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

de
fe

nd
er

s
re

la
tiv

e
re

gr
et

δc,δp,δr

1 HP
3 HPs
6 HPs

95%ile of 6 HPs

(d) Sensitivity

Figure 5: Defender relative regret from perturbation only action costs (a), only action probabilities (b), only action rewards (c) or all three
components (d) in networks with 1, 3 and 6 HP, and 95th percentile for 6 HPs.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

12

6. DISCUSSION
Lately, the game theoretic approaches are becoming more and

more used in the security domains as they presents a powerful
tool to the model adversaries counter-strategies to the defender’s
actions. Although, the assumption that the adversary acts fully
rationally—as assumed in this paper—might be too strong, the pro-
posed framework can be used to model a whole variety of the more
realistic adversaries.

Bounded rationality is often used to model a more human-like
deciding agents that do not act fully rationally. One of the bounded
rationality concepts is used in a quantal response [17] equilibrium,
where players are assumed to make errors in choosing the strategy.
However, they are likely to make error that cost them little, while
very costly errors are unlikely. Cognitive Hierarchy Theory [6]
grasps the human thinking approach differently. It has inductively
defined strategic categories as follows: 0-level players randomize
uniformly, 1-level players play best response assuming that other
players are of 0-level, etc., n-level players play best response as-
suming the other players are of (n−1)-level. It imitates the player
recursive reasoning about the other players reasonings and has been
shown to be consistent with observations of human behavior.

Natural extension of this work is to relax the assumption that the
attacker learns the honeypot types before he attacks. It leads to im-
perfect information games where the attacker observes a network,
however, he does not know the original network topology before
introducing honeypots neither the defender’s honeypot allocation
action. In this game both player’s might have a prior knowledge
about the typicality network topologies that defender hardens and
attacker attacks (typical networks in an organization, companies,
etc.). It is a type of deception game, where defender acts to conceal
the information of the honeypot location for the adversary as much
as possible.

Finally, Bayesian games are often used in domains, where player’s
do not know exactly the other player’s payoffs (their types). It can
be used to model adversaries with different target hosts they want
to compromise. The defender knows only the probability distribu-
tion over the attacker types and he acts to maximize his expected
utility.

7. CONCLUSION
We introduce a game-theoretic model for the network hardening

problem. The defender seeks an optimal deployment of honey-
pots into the network, while the attacker tries to attack the network
and avoid the interaction with the honeypots. Our model provides a
novel combination of using compact representation of the strategies
of the attacker in the form of attack graphs, and using deception
by the defender. By translating the attack graphs into MDPs and
employing a number of pruning techniques, we are able to solve
problems of realistic size and analyze the results for realistic case
studies. Moreover, we showed that our model produces robust so-
lutions even if the input data are imprecise.

Our work has significant potential for further research. Since the
majority of the required input data can be automatically acquired
by standard network scanning tools, or extracted from existing vul-
nerability databases, the proposed model can be deployed in real-
world networks and evaluated in practice. Secondly, our model
can be further extended from the game-theoretical perspective and
use additional uncertainty about the knowledge of the attacker, or
model multiple types of the attacker using Bayesian variants of
Stackelberg games.

Acknowledgments
This research was supported by the Office of Naval Research Global
(grant no. N62909-13-1-N256) and Danish National Research Foun-
dation and The National Science Foundation of China (under the
grant 61361136003) for the Sino-Danish Center for the Theory of
Interactive Computation. Access to computing and storage facil-
ities owned by parties and projects contributing to the National
Grid Infrastructure MetaCentrum, provided under the programme
"Projects of Large Infrastructure for Research, Development, and
Innovations" (LM2010005), is greatly appreciated. Viliam Lisý is
a member of the Czech Chapter of The Honeynet Project.

8. REFERENCES
[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable,

graph-based network vulnerability analysis. In CCS, pages
217–224, 2002.

[2] E. Bacic, M. Froh, and G. Henderson. Mulval extensions for
dynamic asset protection. Technical report, DTIC Document,
2006.

[3] R. Bellman. Dynamic programming and lagrange
multipliers. PNAS, 42(10):767, 1956.

[4] M. S. Boddy, J. Gohde, T. Haigh, and S. A. Harp. Course of
action generation for cyber security using classical planning.
In ICAPS, pages 12–21, 2005.

[5] A. Buldas and R. Stepanenko. Upper bounds for adversaries’
utility in attack trees. In GameSec, pages 98–117. 2012.

[6] C. F. Camerer, T.-H. Ho, and J.-K. Chong. A cognitive
hierarchy model of games. The Quarterly Journal of
Economics, pages 861–898, 2004.

[7] G. Cohen, M. Meiseles, and E. Reshef. System and method
for risk detection and analysis in a computer network, Jan. 17
2012. US Patent 8,099,760.

[8] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In EC, pages 82–90, 2006.

[9] R. Greiner, R. Hayward, M. Jankowska, and M. Molloy.
Finding optimal satisficing strategies for and-or trees.
Artificial Intelligence, pages 19–58, 2006.

[10] R. A. Grimes, A. Nepomnjashiy, and J. Tunnissen.
Honeypots for windows. 2005.

[11] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. Spudd:
Stochastic planning using decision diagrams. In UAI, pages
279–288, 1999.

[12] J. Homer, X. Ou, and D. Schmidt. A sound and practical
approach to quantifying security risk in enterprise networks.
Kansas State University Technical Report, pages 1–15, 2009.

[13] J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S. R.
Rajagopalan, and A. Singhal. Aggregating vulnerability
metrics in enterprise networks using attack graphs. Journal
of Computer Security, pages 561–597, 2013.

[14] K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack
graph generation for network defense. In ACSAC, pages
121–130, 2006.

[15] J. Isa, V. Lisy, Z. Reitermanova, and O. Sykora.
Unconstrained influence diagram solver: Guido. In IEEE
ICTAI, pages 24–27, 2007.

[16] V. Lisý and R. Píbil. Computing optimal attack strategies
using unconstrained influence diagrams. In PAISI, pages
38–46. 2013.

[17] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for extensive form games. Experimental
economics, 1(1):9–41, 1998.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

13

[18] P. Mell, K. Scarfone, and S. Romanosky. Common
vulnerability scoring system. Security & Privacy, pages
85–89, 2006.

[19] S. Noel and S. Jajodia. Managing attack graph complexity
through visual hierarchical aggregation. In Proceedings of
the 2004 ACM workshop on Visualization and data mining
for computer security, pages 109–118. ACM, 2004.

[20] S. Noel and S. Jajodia. Optimal ids sensor placement and
alert prioritization using attack graphs. Journal of Network
and Systems Management, pages 259–275, 2008.

[21] S. Noel, S. Jajodia, L. Wang, and A. Singhal. Measuring
security risk of networks using attack graphs. International
Journal of Next-Generation Computing, 1(1):135–147, 2010.

[22] J. Obes, C. Yamada, and G. Richarte. System and method for
extending automated penetration testing to develop an
intelligent and cost efficient security strategy, July 16 2013.
US Patent 8,490,196.

[23] J. L. Obes, C. Sarraute, and G. Richarte. Attack planning in
the real world. arXiv preprint arXiv:1306.4044, 2013.

[24] X. Ou, W. F. Boyer, and M. A. McQueen. A scalable
approach to attack graph generation. In CCS, pages 336–345,
2006.

[25] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A
logic-based network security analyzer. In USENIX Security,
2005.

[26] N. Provos. A virtual honeypot framework. In USENIX
Security Symposium, volume 173, 2004.

[27] M. T. Qassrawi and Z. Hongli. Deception methodology in
virtual honeypots. In Networks Security Wireless
Communications and Trusted Computing (NSWCTC), 2010
Second International Conference on, volume 2, pages
462–467. IEEE, 2010.

[28] E. Rasmusen and B. Blackwell. Games and information.
Cambridge, MA, 15, 1994.

[29] A. Rubinstein. Modeling bounded rationality, volume 1.
MIT press, 1998.

[30] R. E. Sawilla and X. Ou. Identifying critical attack assets in
dependency attack graphs. In S. Jajodia and J. Lopez, editors,
Computer Security - ESORICS 2008, volume 5283 of
Lecture Notes in Computer Science, pages 18–34. Springer
Berlin Heidelberg, 2008.

[31] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated generation and analysis of attack graphs. In IEEE
S&P, pages 273–284, 2002.

[32] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[33] M. Tambe. Security and game theory: Algorithms, deployed
systems, lessons learned. Cambridge University Press, 2011.

APPENDIX
A. PROOFS

A.1 Propositions and Lower Bounds
In this section we proof used propositions and lower bounds. We

begin with the necessary propositions.

PROPOSITION 2. Let ξ be an optimal attack policy starting
with action a, E[ξ] be the expected cost of the policy ξ and E[ξ+]
(resp. E[ξ−]) be the expected cost of subpolicy ξ after action a
succeeds (resp. fails). Then E[ξ]≥ E[ξ−].

PROOF. The first part we prove by contradiction. Assume that
E[ξ]< E[ξ−]. Then, due to the monotonicity property the attacker
could have followed the (sub)policy ξ− before performing action
a, which would have saved him the cost of the action ca. This new
policy would have had higher expected value than the policy ξ ,
which contradict the optimality of ξ .

PROPOSITION 3. Let ξ be the optimal attack policy starting
with action a, E[ξ] be the expected cost of the policy ξ and E[ξ+]
(resp. E[ξ−]) be the expected cost of subpolicy ξ after action a
succeeds (resp. fails). Then E[ξ+] + ρ − ca/pa ≥ E[ξ−], where
ρ = ∑ f : fa\φ r f is an pure immediate reward received if action a
succeeds.

PROOF. For convenience, we denote p̄a = 1− pa.

E[ξ] =−ca + pa(E[ξ+]+ρ)+ p̄aE[ξ−]
Prop. 2⇒ E[ξ−]≤−ca + pa(E[ξ+]+ρ)+ p̄aE[ξ−]

paE[ξ−]≤−ca + pa(E[ξ+]+ρ)
E[ξ−]≤−ca/pa +E[ξ+]+ρ.

A.1.1 Lower Bounds
In a decision point, the MDP search explores subtrees of all ap-

plicable actions one by one. As each action subtree’s expected re-
ward is computed, we can their results to bound the future actions’
subtrees.

PROPOSITION 4. Assume the actions a1, . . . ,ak+1 ∈ A to be in
the same decision point in state s=(α,φ ,τ) of the depth-first search
tree for MDP from which the subtrees of actions a1, . . . ,ak have
been explored with their maximal expected reward M. Let ξ be
the optimal attack policy starting with action ak+1, E[ξ] be the ex-
pected cost of the policy ξ and E[ξ+] (resp. E[ξ−]) be the expected
cost of subpolicy ξ after action a succeeds (resp. fails).

Strategy ξ starting with action ak+1 and followed optimally has
higher expected reward then strategies starting with actions a1, . . . ,
ak+1 (and followed optimally) iff

E[ξ+]> M−ρ +
cak+1

pak+1

and

E[ξ−]>
M+cak+1−pak+1 (E[ξ+]+ρ)

1−pak+1
.

The proof of the first inequality:
PROOF.

E[ξ] =−cak+1 + pak+1(E[ξ+]+ρ)+ p̄aE[ξ−]> M

−cak+1 + pak+1(E[ξ+]+ρ)+ ¯pak+1(E[ξ+]+ρ− cak+1

pak+1

)> M

E[ξ+]> M−ρ +
cak+1

pak+1

.

The proof of the second inequality:
PROOF.

E[ξ]> M

−ca + pa(E[ξ+]+ρ)+ ¯pak+1E[ξ−]> M

E[ξ−]>
M+cak+1−pak+1 (E[ξ

+]+ρ)
¯pak+1

.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

14

ENGMAS – Understanding Sanction under Variable
Observability in a Secure Environment

Hongying Du
NC State University

Raleigh, NC, United States
hdu2@ncsu.edu

Bennett Narron
NC State University

Raleigh, NC, United States
bynarron@ncsu.edu

Nirav Ajmeri
NC State University

Raleigh, NC, United States
najmeri@ncsu.edu

Emily Berglund
NC State University

Raleigh, NC, United States
emily_berglund@ncsu.edu

Jon Doyle
NC State University

Raleigh, NC, United States
jon_doyle@ncsu.edu

Munindar P. Singh
NC State University

Raleigh, NC, United States
mpsingh@ncsu.edu

ABSTRACT
Norms are a promising basis for governance in secure, col-
laborative environments—systems in which multiple princi-
pals interact. Yet, many aspects of norm-governance remain
poorly understood, inhibiting adoption in real-life collabo-
rative systems. This work focuses on the combined effects
of sanction and observability of the sanctioner in a secure,
collaborative environment. We introduce ENGMAS (Ex-
ploratory Norm-Governed MultiAgent Simulation), a mul-
tiagent simulation of students performing research within
a university lab setting. ENGMAS enables us to explore
the combined effects of sanction (group or individual) with
the sanctioner’s variable observability on system resilience
and liveness. The simulation consists of agents maintaining
“compliance” to enforce security norms while also remain-
ing “motivated” as researchers. The results show with lower
observability, agents tend not to comply with security poli-
cies and have to leave the organization eventually. Group
sanction gives the agents more motive to comply with se-
curity policies and is a cost-effective approach comparing to
individual sanction in terms of sanction costs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems

General Terms
Security, Human Factors

Keywords
Norms, Resilience, Liveness, Safety, Observability, Multia-
gent System

1. INTRODUCTION
Secure, collaborative environments often suffer from ad

hoc implementations of policy developed by its governing
principal through careful scrutiny of secure practices and
reactionary measures to threat [5]. However, assessing the
security of an environment is costly, and while having the
clarity of hindsight, patching existing vulnerabilities does
not ameliorate the damages caused by an attack. To ad-
dress this issue, norm-based solutions for governance have

emerged to introduce a more pliable means of developing
policy [7, 14, 15]. While promising, attempts-to-date have
failed to fully capture a low-level interpretation of a norm-
governed system. Still, the pursuit of understanding the ap-
plication of norms to system security has revealed a promis-
ing frontier for research.

The ultimate goal of our research is to draw nearer to a
complete mathematical model of norms, so that we may un-
derstand their behavior as a form of governance in a system
of heterogeneous, autonomous principals. More specifically,
we are concerned with how these norms and policies may
influence a system’s liveness and resilience; however, we are
still posed with the question: Can one predict the liveness
and resilience of a system as a function of its norms and poli-
cies and the social environment? Further, do any trade-offs
exist between liveness and resilience that may be influenced
by norms and policies?

The answers to these questions are computationally hard
and are, therefore, outside of our ability to address using a
game-theoretic approach. As a result, we have designed and
implemented an exploratory multiagent simulation, called
ENGMAS, to address our questions. The simulation is a
centralized system wherein autonomous agents perform tasks
under the scrutiny of a governing principal. ENGMAS is
regulated by multiple, adjustable settings, many of which
may have profound effects on the outcome of the simula-
tion; however, the primary focus of this paper is to explore
the variable observability of the governing principal and the
type of sanction type (individual or group) applied to norm
violation.

We acknowledge two factors as possible influence on the
resilience and liveness of a system: (1) a sanctioning agent’s
observability of its environment and (2) the means of sanc-
tion applied (group or individual).

2. TERMINOLOGY
The variability in the literature regarding the terms we use

to describe our research warrants careful attention. Thus,
we devote this section to defining our interpretations of each
concept we intend to present.

2.1 Norms and Sanction
We recognize the term, norms, to describe “directed nor-

mative relationships between participants in the context of

ACySE 2015: Second International Workshop on Agents and CyberSecurity

15

an organization” [14]. For example, consider a university
setting in which there exist multiple research labs nested
within its various departments. Within each lab, there is a
finite set of graduate students assisting with departmental
research, utilizing security-critical artifacts (namely, PCs or
machines) connected to a shared network. The network may
be monitored by IT staff, whose role it is to ensure the safety
of the system. In doing so, the network administrator may
implement a directed set of agreements (including, but not
limited to, patching the operating system, updating pass-
words, and maintaining a firewall) which must be met by
each of the graduate student researchers in order to avoid
some consequence. Alternatively, graduate students are also
tasked with completing research in order to maintain grants,
earn credit hours, or other obligations. Each student’s ad-
visor has an expectation of motivation directed towards the
student.

Failure to comply with normative expectations is met with
sanction (consequence for norm violation applied to a prin-
cipal or group of principals) by a sanctioning agent (e.g.,
the IT staff in the previous example). A sanction may be
positive or negative and manifested in reprimand or reward,
respectively [11]; though, in the context of the university
research lab environment, norm violations would result in
negative sanction. When an individual principal is singled-
out and censured for defecting against a norm, we recognize
this as“individual” sanction. Alternatively, when sanction is
applied to a group of individuals for the actions of some sub-
set of that group, we recognize this as “group” (also known
as “collective”) sanction [8].

2.2 Safety and Liveness
Lamport is credited with the earliest acknowledgment of

the safety and liveness compromise [9]. Following from his
seminal work, we define safety as the stipulation that some
action (or inaction) does not cause the system to enter a bad
state. In our university lab example, we describe the safety
concerns of the system administrator as his or her desire to
maintain a secure system. The safety of the system is in di-
rect correlation with the magnitude of security compliance
by the graduate students in the lab. That is, if the stu-
dents forego the norms that describe the security measures
they are expected to perform, the system is likely to enter
a compromised state. In response, the administrator may
shut down some subset of network connections that he or
she deems responsible for the threat, an action that would
directly benefit the desires of the administrator but would
be devastating to the system’s liveness.

Liveness is characterized by maintaining a good state, or
more specifically, a state of production [2]. Counter to the
safety example, liveness can be inhibited by safety precau-
tions and serves the interest of the research advisers. Both
enacting safety measures and conducting research are costly
endeavors, and limitation of resources (i.e., time) will al-
most certainly result in the investment of one obstructing
the ability to perform the other. In the lab, we would wit-
ness students attempting to adhere to security policy at the
expense of research load, or vice versa.

2.3 System Resilience
Multidisciplinary interpretations of system resilience (in

Economics, Anthropology, Social-Ecology, and Resilience
Engineering, among others) abstract to several meaningful

definitions, each with respect to its own application (e.g.,
[1, 4, 6, 12, 13]). For the purpose of our research, we align
our understanding of resilience with Sheridan, who describes
it as the ability to “recover and restore the system to the
original state or, if need be, some acceptable state that is
different but still safe” [13]. We do not attempt to define the
notion of an “acceptable” state and further recognize it to be
an arbitrary factor. The acceptability of a state is subject to
the opinion of any active principal in the system, and more
often than not, these views are conflicting. If we consider
the dichotomy presented earlier between the expectations of
the system administrator and those of a graduate student
adviser, there is no guarantee that there is any satisfiable
union between any set of states that both parties would deem
“acceptable”. For this reason, our metric for resilience will
be determined by a variable dependent on both safety and
liveness, named load.

Load is defined by the ratio of the actual amount of work
completed against the total potential, aggregated over the
sum of the number of active, performing agents and the
number of the non-active agents in the system. It is rep-
resentative of the productivity of a system at a single time
step. Tasks performed by agents which contribute to the
safety of a system are not considered to be “productive”,
and thus, are not a component in the calculation of load.
However, such tasks do effectively assist in maintaining a
safe state and allow productive actions to occur. In our lab
analogy, performing research would qualify as a productive
task, while implementing security features would directly
promote the safety of the environment.

Given load, we calculate the resilience of a system by how
quickly it recovers from successive disturbances (more specif-
ically, norm violations). This phenomenon is best illustrated
by the waxing and waning of load over time. As active prin-
cipals neglect to fulfill expectations regarding the safety of
the system, the resulting downtime will likely quell the pro-
ductivity of the system. After agent behavior is modified via
sanction, a resilient system is likely to efficiently recover to
some arbitrarily acceptable state, while a rigid system most
likely will not.

2.4 Observability and Efficiency
The primary focus of this paper is to understand system

resilience as a result of the combined effects of the sanc-
tioner’s observability of his or her environment coupled with
the type of sanction applied to principals responsible for
norm violation. More explicitly, we are interested in the
scenarios of the sanctioner applying individual sanction on
identified defectors, or group sanction despite the identities
of the defectors under various observabilities.

Each of the aforementioned cases has underlying implica-
tions associated with it. For example, the system adminis-
trator (i.e, the sanctioner) for our university lab is tasked
with sanctioning an agent after he or she realizes that the
network has been compromised. If the administrator seeks
to identify the specific party that caused the vulnerability,
the influence of the individual sanction may not have much
affect on the rest of the group. Alternatively, group sanction
may lead to vigilance among agents, which could promote
whistle-blowing. Further, the more transparent the lab is to
surveillance, the more efficiently sanctions may be applied;
this may quell the amount of repeated norm violations by a
single agent, while partial observability may allow agents to

ACySE 2015: Second International Workshop on Agents and CyberSecurity

16

continually ignore normative expectations. We acknowledge
these factors as essential to understanding system resilience
and have designed a simulation to apply these conditions to
a university lab setting.

3. THE SCENARIO
To further investigate our proposed research, we extend

our lab scenario to a multiagent simulation, called ENG-
MAS. A more formal description of our scenario involves
a university graduate research lab (congruent to our run-
ning example) and its constituent student researchers, rep-
resented by agents. The system contains three types of en-
tities:

(1) A lab, or an organization, wherein student agents per-
form activities.

(2) A set of Student Agents, each representing a student
researcher who controls a PC in the lab. Each agent must
respond to the tasks assigned to it using its PC, and will be
sanctioned if it violates the norms of the system.

(3) A special, centralized agent named Carlos, who is re-
sponsible for applying sanctions to the agents in the lab.

3.1 Carlos
Agents have different duties and, therefore, play different

roles within the system. Carlos is in charge of sanctions,
thus his responsibilities are to:

• Observe, or monitor the lab’s network for any visible
norm violations. Observability (O) varies on a scale,
ranging from 0% (inability to observe norm violations)
to 100% (ability to observe all norm violations). For
example, if Carlos has observability of 80%, then at
each time step there is an 80% chance he will discover
a norm violation, independently, given a set of student
agents who have failed to comply with security norms.

• Perform sanctions as soon as a norm violation is caught.
We represent sanctions as shutting off network access
of PCs in the lab for a certain amount of time, which
prevents threats to PCs from spreading. After sanc-
tion, each student agent whose PC health is below a
threshold has to fix its PC. Carlos could perform one
of the following two kinds of sanctions:

– Individual Sanction, the PCs controlled by agents
who violate norms are disconnected from network
for a constant period of time.

– Group Sanction, all PCs in the lab are discon-
nected from network for a constant period of time,
despite the identity of defecting agent.

There are expenses for Carlos to discover norm viola-
tions, which are different for the two kinds of sanctions.
For individual sanction, Carlos needs to find out who
are the defectors, which costs more than simple ob-
servation of norm violations without figuring out the
defectors in group sanction.

3.2 Student Agents
Student agents could perform the following actions:

• Domain-related actions, which includes research re-
lated actions to fulfill their research responsibility, and
security related actions to ensure the security of their

PCs and thus to protect the integrity of the lab en-
vironment. Security related actions include: patching
the operating system, turning the firewall on and off,
updating passwords, installing, turning on or off, and
updating the anti-virus software.

• Observe, or monitor other student agents’ actions. Ag-
ents in the lab have the ability to observe the actions
of others, though not particularly well. For example,
under the constraints of low observability, Carlos may
not be capable of observing all activity on the network;
thus he may rely on student agents to report norm
violations to him. In this case, student agents must be
able to observe other agents’ or their neighbors’ (i.e.,
agents within close proximity) actions.

• Communication. To report a norm violation to Carlos
in the above case, student agents have a channel for
communication with Carlos. They may send messages
reporting other students for norm violation.

There are two types of tasks (actions that agents are ob-
ligated to perform) that may be assigned to student agents:

• A research task represents the research work that a stu-
dent must finish (for example, writing a paper, reading
papers, etc) in order to fulfill the expectations of his
or her adviser.

• A security task represents the security precautions a
student must take to ensure that his or her PC is safe.
It could be one of the security-related actions or any
combination of them.

Each task type has two attributes:

• Duration, or the amount of time it takes for a student
agent to complete a task. Compared to a research
task, a security task is much less time-consuming for an
agent, as represented in reality (e.g., doing homework
takes much longer than changing a password).

• Deadline, or the amount of time a student agent is
allowed to complete a particular task. If it is unable to
complete a task by the deadline, the agent’s health (for
failure of a research task) or PC health (for failure of
a security task) will decrease. For each task, deadlines
are allotted with ample time for a student to complete
it. For research tasks, we determine the deadline by
applying a fixed coefficient, c, to the task duration.
For example, if a research task consists of five time
steps, theoretically an agent is given 5∗ c time steps to
complete it. We consider a time step as the smallest
time unit and round decimals to the nearest integer
when calculating deadlines.

Each student agent has five attributes:

• Agent Health represents a student agent’s health and
is influenced by the completion status of research tasks
assigned to the agent. Agent health is subject to change
during the simulation for the following reasons: (1) If
an agent finishes a research task before the deadline, its
agent health is increased accordingly. (2) If an agent
is unable to finish a research task before the deadline,
its agent health is reduced accordingly. If an agent’s

ACySE 2015: Second International Workshop on Agents and CyberSecurity

17

health reaches a fixed low value, it must leave the or-
ganization or lab. If an agent leaves, it is no longer
able to perform any action and will never return to
the simulation and we consider it as non-active.

• PC Health represents the PC’s health and is influenced
by the completion status of security tasks assigned to
the agent: (1) If an agent finishes a security task before
its deadline, its PC health is increased accordingly. (2)
If an agent is unable to finish a security task before its
deadline, the agent has committed a norm violation,
and its PC health is reduced accordingly. If the PC
health drops under a fixed value, the PC has been
compromised and is unusable until it is sanctioned by
Carlos and starts to fix his PC.

• Preference is the probability that an agent will choose
to begin working on a research task first, under the
condition that it has both a research task and a secu-
rity task to perform. For example, if an agent’s prefer-
ence is 80% and it has both a research task and a secu-
rity task on its task list, it will have an 80% chance of
considering the research task and 20% chance of con-
sidering the security task. Note that by “considering”,
the agent does not start working on the task. It merely
implies that the agent has decided which task to at-
tempt. The probability that an agent begins working
on a task is dependent upon one of the following two
attributes.

• Research Motivation is the probability that an agent
will choose to start a research task, given that the
agent with both tasks has considered it, or the agent
only has a research task. After an agent fails to fin-
ish a research task, its research motivation increases,
indicating that it is motivated to start a research task
early next time.

• Security Compliance is the probability that an agent
will choose to start a security task, given that the agent
with both tasks has considered it, or the agent only has
a security task.

Preference, research motivation, and security compliance to-
gether dictate which tasks are being started, if any, during
a given time step. The initial values of preference, research
motivation and security compliance for each student agent
are generated via normal distributions.

4. SIMULATION AND EVALUATION

4.1 Assumptions and Settings
Due to the complexity of real-world scenarios, we have

made several assumptions in our experiment. We do not
trivialize the significance of these variables, nor do we rec-
ognize them as arbitrary. In future work, we intend to de-
termine valid replacements through further research, exper-
imentation, and data collection. However, as the nature of
our simulation is exploratory, we have intuitively assigned
values to these variables, which are held constant through-
out all treatments and runs of the simulation. Further, we
will use the term, “tick”, to denote a single time step or the
smallest time unit defined by users. One tick could be of
different time length in different applications.

Initial values of agent health and PC health are both 100.
Research tasks are assigned every three ticks; security tasks
are assigned every seven ticks.

Research tasks are assigned only to active agents (i.e.,
agents whose agent health are greater than zero), regardless
of whether their PCs are down (PC health is zero) or not.
For any research task, we generate a number from a normal
distribution as its duration. Its deadline is decided by the
coefficient and duration as explained before. If an agent’s
PC is down, it will not be able to perform tasks and its
PC health cannot decrease any further. If an agent leaves
the lab, its research tasks are cleared, i.e., no more research
tasks are on its list.

Security tasks are assigned to active agents with PCs not
down. To simplify the simulation, we treat security-related
actions all as abstract security tasks and do not distinguish
between different security-related actions. For a security
task, since it takes relatively less time to finish, we assume
each security task actually takes only one tick. We allot the
agents a static seven ticks for a security task, since it only
takes one tick to complete a security task and assignment is
less frequent than research tasks.

For simplicity, we treat all the student agents in the lab
as one group, and ignore the implementation of their ob-
servation and communication actions. Appendix shows a
summary of the parameter values not presented here.

4.2 Runtime Actions
At each tick, the following actions occur:

• New tasks are assigned to the agents in the lab, if pos-
sible. We assume a research task may only be assigned
to agents who do not already have assigned research
tasks with deadlines exceeding the current tick. For ex-
ample, an agent has a research task with deadline equal
to tick 9, then no research task will be assigned to it
until tick 10. In this way, we eliminate the possibilities
that agents are assigned too many tasks beyond their
capabilities. Half of all agents or all available agents,
whichever are lower in number, are assigned research
tasks. Every agent is eligible to be assigned a security
task. An agent may work on at most one task type
per tick.

• Student agents attempt to perform tasks. There are
two possible status at each tick: the agent is working
on an incomplete task or its deadline is not yet expired,
so he continues working on the task; or the agent is not
currently working on a task, so it must choose a task
to perform. In the latter case, there are four extended
possibilities:

(1) If the agent has no task on its list, then it will rest.

(2) If the agent has only a research task, it chooses
whether to do the assigned research task or not, de-
cided by its research motivation.

(3) If the agent has only a security task, it chooses
to do the assigned security task or not, decided by its
security compliance.

(4) If the agent has both the research task and the
security task, it makes the decision following this pro-
cedure: the agent chooses to consider which task, ac-
cording to the preference attribute. We call this chosen
task the “preferred task”. The agent will then choose

ACySE 2015: Second International Workshop on Agents and CyberSecurity

18

whether to start working on the preferred task accord-
ing to research motivation or security compliance, re-
spectively. If the agent chooses not to start the pre-
ferred task, then the agent rests.

If an agent chooses to begin working on a task, we
assume the agent will continue to work on it until it is
completed, unless the agent leaves the lab, it’s being
sanctioned, the agent’s PC is down, or trying to fix its
PC after being sanctioned.

• PC health decays daily proportional to the ratio of the
number of agents whose PC health is below 80 over the
total number of PCs in the lab. Maximum decrease for
a single day is limited to a value of five. This mimics
the viral influence of PCs in a bad state on other PCs
in the lab, as a network with PCs that have security
issues may be more vulnerable and thus influence other
PC’s health in the network, as well.

• Carlos may or may not observe norm violations, based
on observability. As long as he discovers norm vio-
lations, he issues a particular sanction depending on
his sanction type. We assume a sanction takes one
tick. After Carlos issues a sanction, the sanctioned
agents’ PCs are shut off network access for one tick.
After sanction, each agent’s security compliance is in-
creased by a fixed percentage (25% in our case), and
the agents are forced to begin restoring their PCs to
an acceptable state. PC restoration occurs incremen-
tally following sanction, with each agent’s PC health
increasing by 15% at each time tick until it reaches
80, at which point the agent may resume completing
tasks.

• The research motivation and security compliance at-
tributes of each agent decreases under certain condi-
tions in order to mimic the behavior of agent compla-
cency over time. In our simulation, if an agent is not
working on a research task and its health is above 60,
its research motivation decreases by 0.01 at that tick.
Also, if an agent has not been sanctioned for 45 ticks,
its security compliance decreases by 0.01. For exam-
ple, if tick 1 is the last time an agent gets sanctioned,
its security compliance starts to decrease at the end of
tick 47.

4.3 Metrics
The following metrics are measured over the course of the

simulation:

• Liveness, or System Research Motivation (M): Cal-
culated as the median value of the averages of all the
agents’ research motivation values at each tick of the
simulation.

• System Security Compliance (C): Similar to system
research motivation, calculated as the median value
of the averages of all the agents’ security compliance
values at each tick of the simulation.

• System Load : Load is calculated as the ratio of the
number of agents who are actively performing a re-
search task at each time tick over the sum of the num-
ber of agents who have research tasks on their lists
and the number of non-active agents. It measures the

percentage of research load by all agents capable of
production. We define “System Load” as the median
load over the entire simulation period.

• Resilience: Resilience is measured by how quickly the
system can recover after successive norm violations. In
our experiment, it is measured by the average time it
takes for the system to recover to an acceptable state
after falling into a bad state. We define a system with
load <= 0.4 as being in a bad state and recognize
it as recovered if load increases to a value >= 0.7.
The defined threshold is arbitrarily-assigned and is in-
tended to allow the simulation to capture the slope of
rebounding curves. We record all occurrences of this
phenomenon and average them over the course of the
entire simulation, regarding smaller values as more re-
silient than larger values.

• Total Research Tasks: The number of research tasks
that are completed in addition to those that are not
completed (and past deadline) by the end of the sim-
ulation.

• Completed Research Tasks: The number of completed
research tasks by all the agents throughout the simu-
lation.

• Total Security Tasks: The number of security tasks
that are completed in addition to those that are not
completed (and past deadline) by the end of the sim-
ulation.

• Completed Security Tasks: The number of completed
security tasks by all the agents throughout the simu-
lation.

• Violations: The total number of norm violations com-
mitted throughout the run of the simulation. Note
that if an agent didn’t complete a security task while
it’s fixing its PC after being sanctioned, it doesn’t
count towards a norm violation because the agent is
doing security measures. Thus, it is possible that the
“total security tasks” value may not be equivalent to
the sum of completed security tasks and violations.

• Sanctions: The total number of sanctions issued dur-
ing the simulation. For individual sanction (Si), it is
calculated by the total number of sanctions issued to
individual violators. For group sanction (Sg), it is cal-
culated by the total number of sanctions issued to the
group, despite the number of agents in the group.

4.4 Evaluation
We averaged results of each metric over 50 simulations,

each with 1000 ticks (or until all the agents leave the orga-
nization, whichever the earliest), under three agent popula-
tion sizes (100, 500, and 1,000). Tables 1–6 illustrate the
results of our treatments with metrics as defined above.

4.4.1 Network Sizes
We ran our simulation for three different network sizes:

small (100 agents), medium (500 agents), and large (1,000
agents). Results demonstrate that for variable observability
(from 0% to 100%), the size of the network has no quantifi-
able affect on system research motivation, system security
compliance, or system load.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

19

Table 1: Individual Sanction Results for 100 Agents over 50 Simulations
O – Observability, M – System research motivation, C – System security compliance,

Si – Sanctions in individual sanction, Sg – Sanctions in group sanction

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Si

0%* 0.68 0 0 1.73 3216 1330 2087 1137 950 0
20%* 0.63 0.28 0.43 1.73 3804 1767 2814 1829 974 194
40% 0.44 0.45 0.71 2.42 11487 8524 14243 9656 4587 1833
60% 0.43 0.56 0.72 2.33 11489 8619 14268 10752 3515 2111
80% 0.43 0.64 0.72 2.65 11497 8675 14271 11365 2907 2331
100% 0.42 0.7 0.73 2.51 11498 8716 14274 11741 2533 2533

* – Simulations stop at ticks between 300 – 450, # – A small portion of simulations stop before 1000 ticks

Table 2: Group Sanction Results for 100 Agents over 50 Simulations

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Sg

0%* 0.68 0 0 1.73 3207 1324 2074 1136 938 0

20%# 0.44 0.74 0.7 2.5 10510 7675 12603 10193 2400 26
40% 0.43 1 0.75 2.12 11501 8698 14282 12487 1795 56
60% 0.44 1 0.76 1.93 11490 8584 14281 12325 1956 86
80% 0.46 1 0.76 1.79 11493 8470 14279 12107 2172 115
100% 0.48 1 0.77 1.68 11504 8355 14277 11908 2369 142

Table 3: Individual Sanction Results for 500 Agents over 50 Simulations

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Si

0%* 0.71 0 0 1.52 16077 6651 10438 5677 4761 0
20%* 0.65 0.28 0.33 1.52 19009 8815 14021 9133 4835 969
40% 0.44 0.45 0.71 1.52 57454 42636 71227 48317 22911 9162
60% 0.43 0.56 0.72 1.52 57476 43123 71342 53773 17568 10545
80% 0.42 0.64 0.73 1.52 57471 43377 71362 56831 14531 11628
100% 0.42 0.7 0.73 1.55 57481 43552 71379 58746 12633 12633

Table 4: Group Sanction Results for 500 Agents over 50 Simulations

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Sg

0%* 0.71 0 0 1.52 16068 6642 10423 5683 4740 0

20%# 0.44 0.73 0.71 2.27 52151 37814 62148 50020 12108 25
40% 0.43 0.99 0.76 1.95 57480 43474 71405 62416 8989 56
60% 0.44 1 0.76 1.79 57484 42964 71403 61673 9730 85
80% 0.46 1 0.76 1.68 57461 42374 71392 60618 10774 113
100% 0.47 1 0.77 1.65 57466 41747 71386 59502 11884 142

Table 5: Individual Sanction Results for 1000 Agents over 50 Simulations

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Si

0%* 0.72 0 0 1.51 32125 13269 20917 11346 9571 0
20%* 0.65 0.28 0.26 1.51 37862 17514 27871 18140 9626 1924
40% 0.44 0.45 0.71 1.51 114867 85240 142467 96592 45875 18325
60% 0.43 0.56 0.72 1.51 114977 86257 142682 107523 35159 21093
80% 0.42 0.64 0.73 1.51 114968 86761 142730 113631 29099 23277
100% 0.42 0.7 0.73 1.51 114986 87125 142755 117479 25276 25276

Table 6: Group Sanction Results for 1000 Agents over 50 Simulations

O M C Load Resilience
Research Tasks Security Tasks

Total Completed Total Completed Violations Sg

0%* 0.71 0 0 1.51 32136 13277 20892 11351 9541 0

20%# 0.44 0.74 0.73 2.27 106019 78166 128307 104718 23531 26
40% 0.43 1 0.76 1.88 115006 86943 142823 124917 17905 56
60% 0.44 1 0.76 1.73 114953 85927 142805 123414 19391 84
80% 0.46 1 0.76 1.66 114995 84784 142785 121245 21540 114
100% 0.47 1 0.76 1.65 114947 83501 142773 119023 23750 142

ACySE 2015: Second International Workshop on Agents and CyberSecurity

20

For individual sanction, resilience has less meaning in our
setting. In a medium or large network, there are between
0 and 1 instances that the phenomenon occurs where sys-
tem load increases from the lower threshold, <= 0.4, to the
higher threshold, >= 0.7. The <= 0.4 value usually occurs
at the first tick of the simulation. For individual sanction
in a small network, load varies more than that in the other
two networks, exhibiting instances where there are 0 – 9 in-
stances where load increases from <= 0.4 to >= 0.7. For
group sanction, the number of intervals is almost equal to
the number of sanctions. Interestingly, resilience for group
sanction slightly decreases with increase in network size from
small to medium, and stabilizes as the network grows to
large.

4.4.2 Observability
For both sanction types, at lower observability agents have

a high system research motivation. However, at a higher ob-
servability (> 20% for Group Sanction and > 30% for Indi-
vidual Sanction), there is no significant difference in system
research motivation. Also, with increase in observability, the
system security compliance increases under any sanction in
a network of any size since larger observability leads to more
sanctions.

At lower observability (< 20% for Group Sanction and
< 30% for Individual Sanction), agents tend not to complete
security tasks due to less sanctions. As a result, their respec-
tive PC health values decrease to zero (PC health threshold
of compromising) eventually. Despite high research motiva-
tion, agents continually fail to complete research tasks due
to zero PC health. Later, agent health values of all agents
drop to zero (the agent health threshold for leaving the lab)
because of unfinished research tasks, and the simulation ends
before 1000 ticks, as indicated by * and # in the tables.

4.4.3 Sanction Types
Group sanction leads to slightly greater system research

motivation than individual sanction when observability >
40%. For smaller observability, many simulations stopped
before 1000 ticks, thus it is not meaningful to compare their
values to those with larger observability. Further, student
agents are more willing to comply with the security poli-
cies under group sanction, with violations occurring less fre-
quently when the sanctioner has higher observability and
more frequently with lower observability. It is also evident
that individual sanction leads to 6–20 times greater total
number of sanctions than group sanction, which suggests
that the cost of individual sanction is much higher than that
of group sanction. Thus group sanction may be adopted as
a cost-effective approach.

4.4.4 Tasks
In group sanction, student agents are driven to give more

priority to security tasks when sanctioned, thus leading to
more completed security tasks than in individual sanction.
During the period that the agents are trying to fix their
PCs after being sanctioned, they are behind schedule on
their research tasks, and as a result, less research tasks are
completed.

5. RELATED WORKS
Our interest in the costs related to sanction arose as a re-

sult of surveying literature concerning low-level representa-

tions of normative relationships. Dissatisfied with our find-
ings, we constructed an analogy (the research lab scenario)
that encapsulated the aspects of norms we were interesting
in investigating. While tuning the variables of our simula-
tion, we began to question the proper mode of sanction to
impose on the agents for norm violation, which lead us back
to the literature for answers. With no applicable response,
we were determined to formulate our own analysis.

Previous works in observability and cost-efficiency are pri-
marily concerned with decentralized systems (i.e., no admin-
istrating principal), where agents participate in a coopera-
tive game (see [3, 10, 16]). Mahmoud et al. impose a game
on a set of agents who are required to make binary decisions
to either comply or defect when presented with a norm.
Norm violations are met with punishment, a form of con-
sequence specifically targeted at destabilizing the economic
gain of the defector [16]. The agent’s decisions also affects
its reputation and sets precedence for how it is to be treated
later in the simulation by other agents. The ability for an
agent to judge another based on reputation is dictated by
that agent’s ability to observe its environment. Mahmoud
et al. conclude greater observability yields stronger norm
compliance via punishment, which motivated our interest in
performing similar analyses on sanction.

Villatoro et al. evaluate the cost-effectiveness of sanction
against punishment. Their simulation randomly pairs agents
as players of a Prisoner’s Dilemma game. The agents are,
again, allowed the binary option to comply or defect, and
the agent’s decision is persistent in subsequent rounds of
the game. Agents that comply are able to sanction others
in later stages to communicate norm compliance, whereas
those that defect must use punishment. Villatoro et al. con-
clude that sanction is a much more cost-efficient means of
garnering cooperation, which lends confidence to the rele-
vance of our study.

In contrast to the aforementioned studies, our simulation
recognizes sanction as the sole means for applying conse-
quence to norm violation. This follows from our structured
lab scenario where directed normative relationships exist
from an adviser to his or her graduate student and from
the network administrator to the students in the lab. Fur-
ther, our simulation is not decentralized, as there exists a
central authority who’s responsible for all sanctions.

6. CONCLUSIONS AND FUTURE WORK
Using ENGMAS, our exploration of system resilience and

liveness through variable observability and sanction type has
yielded some interesting conjectures. For example, if the
sanctioner has low observability, agents are less ”controlled”
and tend to violate security norms more frequently. As a
result, their respective PCs enter a critical state, decreasing
their utility in performing research tasks until they are let go
from the organization. Student agents perform better under
group sanction than under individual sanction in terms of
total norm violations. Considering the time-cost associated
with issuing sanctions, these results may suggest that it is
more cost-effective to govern with group sanction, as the
sanctioner may maintain security compliance with far fewer
sanctions.

In other future work, we plan to further develop our sce-
nario and its accompanying simulation in order to conduct
more in-depth research on norm-governance in multiagent
systems and we anticipate more variance on resilience. In-

ACySE 2015: Second International Workshop on Agents and CyberSecurity

21

corporation of multidisciplinary concepts from fields includ-
ing anthropology, sociology, and psychology, among others,
will help us to refine the behavior of our agents and increase
the potential for more evaluative studies on norms and their
properties. We further anticipate building a realistic model
of agents with rational choices based on rewards, sanctions,
and utilities, and their capabilities of observation and com-
munication, and including cost of applying sanctions and
the norm sanctioning capabilities of the governing principal
to better portray the reality of implementing such policies.

Acknowledgments
We gratefully acknowledge National Security Agency for sup-
port via the Science of Security Lablet at North Carolina
State University. We would like to thank Jon Stallings for
helpful comments on a previous version.

REFERENCES
[1] R. M. Adams. Strategies of maximization, stability,

and resilience in Mesopotamian society, settlement,
and agriculture. Proceedings of the American
Philosophical Society, 122(5):329–335, 1978.

[2] B. Alpern and F. B. Schneider. Defining liveness.
Information Processing Letters, 21(4):181–185, 1985.

[3] R. Axelrod. An evolutionary approach to norms.
American Political Science Review, 80(04):1095–1111,
1986.

[4] F. Berkes and N. Turner. Knowledge, learning and the
evolution of conservation practice for social-ecological
system resilience. Human Ecology, 34(4):479–494,
2006.

[5] M. Bishop. What is computer security? IEEE Security
Privacy, 1(1):67–69, Jan 2003.

[6] R. L. Boring. Reconciling resilience with reliability:
The complementary nature of resilience engineering
and human reliability analysis. In Proceedings of the
Human Factors and Ergonomics Society Annual
Meeting, volume 53, pages 1589–1593. Sage
Publications, 2009.

[7] G. Dhillon and J. Backhouse. Technical opinion:
Information system security management in the new
millennium. Communications of the ACM,
43(7):125–128, July 2000.

[8] D. D. Heckathorn. Collective sanctions and
compliance norms: A formal theory of group-mediated
social control. American Sociological Review,
55(3):366–384, 1990.

[9] L. Lamport. Proving the correctness of multiprocess
programs. IEEE Transactions on Software
Engineering, SE-3(2):125–143, March 1977.

[10] S. Mahmoud, D. Villatoro, J. Keppens, and M. Luck.
Optimised reputation-based adaptive punishment for
limited observability. In Self-Adaptive and
Self-Organizing Systems (SASO), 2012 IEEE Sixth
International Conference on, pages 129–138, Sept
2012.

[11] P. Noriega, A. K. Chopra, N. Fornara, H. L. Cardoso,
and M. P. Singh. Regulated MAS: Social Perspective.
In G. Andrighetto, G. Governatori, P. Noriega, and
L. W. N. van der Torre, editors, Normative
Multi-Agent Systems, volume 4 of Dagstuhl

Follow-Ups, pages 93–133. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2013.

[12] R. Plummer and D. Armitage. A resilience-based
framework for evaluating adaptive co-management:
Linking ecology, economics and society in a complex
world. Ecological Economics, 61(1):62–74, 2007.

[13] T. B. Sheridan. Risk, human error, and system
resilience: Fundamental ideas. (cover story). Human
Factors, 50(3):418–426, 2008.

[14] M. P. Singh. Norms as a basis for governing
sociotechnical systems. ACM Transactions on
Intelligent Systems and Technology (TIST),
5(1):21:1–21:23, Dec. 2013.

[15] W. Vasconcelos, M. Kollingbaum, and T. Norman.
Normative conflict resolution in multi-agent systems.
Autonomous Agents and Multi-Agent Systems,
19(2):124–152, 2009.

[16] D. Villatoro, G. Andrighetto, J. Sabater-Mir, and
R. Conte. Dynamic sanctioning for robust and
cost-efficient norm compliance. In International Joint
Conferences on Artificial Intelligence, volume 11,
pages 414–419, 2011.

APPENDIX

Table 7: Variables with Normal Distribution
Variable Value

µ of Preference 0.5
σ of Preference 0.3

Upper Limit of Preference 0.8
Lower Limit of Preference 0.4
µ of Research Motivation 0.7
σ of Research Motivation 0.15
µ of Security Compliance 0.7
σ of Security Compliance 0.15

µ of Research Task Duration 5
σ of Research Task Duration 3

Lower Limit of Research Task Duration 1

Table 8: Experiment Parameters
Experiment Parameter Value

Coefficient c for Research Task Duration 1.3
Naturally Decrease Rate of PC Health 0.1

Increase Rate of Agent Health 0.25
Decrease Rate of Agent Health 0.25

Increase Rate of PC Health 0.25
Decrease Rate of PC Health 0.25

Increase Rate of Research Motivation 0.25

ACySE 2015: Second International Workshop on Agents and CyberSecurity

22

Towards Implicit Contextual Integrity

(Position Paper)

Natalia Criado
School of Computer Science

Liverpool John Moores University
Liverpool, UK

n.criado@ljmu.ac.uk

Jose M. Such
School of Computing and Communications

Lancaster University
Lancaster, UK

j.such@lancaster.ac.uk

ABSTRACT
Many real incidents demonstrate that users of Online Social
Networks need mechanisms that help them manage their in-
teractions by increasing the awareness of the different con-
texts that coexist in Online Social Networks and preventing
users from exchanging inappropriate information in those
contexts or disseminating sensitive information from some
contexts to others. Contextual integrity is a privacy the-
ory that expresses the appropriateness of information shar-
ing based on the contexts in which this information is to
be shared. Computational models of Contextual Integrity
assume the existence of well-defined contexts, in which in-
dividuals enact pre-defined roles and information sharing is
governed by an explicit set of norms. However, contexts in
Online Social Networks are known to be implicit, unknown a
priori and ever changing; users’ relationships are constantly
evolving; and the norms for information sharing are implicit.
This makes current Contextual Integrity models not suitable
for Online Social Networks. This position paper highlights
the limitations of current research to tackle the problem of
exchanging inappropriate information and undesired dissem-
ination of information and outlines the desiderata for a new
vision that we call Implicit Contextual Integrity.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security

Keywords
Contextual Integrity, Privacy, Online Social Networks, Norms

1. INTRODUCTION
Online Social Networks (OSNs) have been a source of pri-

vacy concerns and issues since their early days [19]. These
privacy concerns have increased along the past decade due
to many real privacy incidents being echoed in the media
and users being more aware of potential privacy issues [11,
35]. Yet there is a lack of effective privacy controls that
allow users to satisfactorily manage their privacy in OSNs
[34]. In particular, the exchange of inappropriate informa-
tion and the undesired dissemination of sensitive information
across OSNs are very common and represent one of the ma-
jor concerns for users. These inappropriate exchanges and

undesired disseminations have not only caused serious pri-
vacy incidents — e.g., users have lost their jobs [28], have
been outed and faced threats to sever family ties [17], have
ended their marriages [32], etc. — but also facilitated other
activities such as social phishing [21], identity theft [3], cy-
berstalking [25], and cyberbullying [30].

Some voices argue that this is mainly due to the fact that
users are no longer able to share information differently for
different contexts or spheres of life (friends, work, etc.) in
the cyber world, as they would usually do in the physical
world [40]. There are many examples in which this is of cru-
cial importance: photos that depict users in embarrassing
situations, indecorous comments, events that reveal some
political affiliations, etc. In all these examples, the specific
context determines whether or not the exchange of informa-
tion is appropriate — e.g., one may be willing to share her
political affiliations with friends but not with workmates.

Contextual integrity [27] is a modern privacy theory that
expresses the appropriateness of information sharing based
on the contexts in which this information is to be shared.
In particular, contexts are defined considering a set of in-
dividuals playing particular roles and a number of norms
that govern information sharing among them. Contextual
integrity is said to be maintained — meaning that there
are no privacy breaches — whenever these norms for infor-
mation sharing are upheld. Norms for information sharing
have two main purposes: (i) determine what information is
appropriate to mention in a particular context, and (ii) dic-
tate what information can be transmitted from one party
to another or others according to the roles enacted by these
parties within and across different contexts.

Computational models of contextual integrity have been
recently proposed in the related literature [1, 24]. Follow-
ing contextual integrity theory, they assume the existence of
well-defined contexts, in which individuals enact pre-defined
roles and information sharing is governed by an explicit set
of norms. However, contexts in OSNs are “implicit, ever
changing and not a priori-known” [12]. In particular, norms
for information sharing are known to be implicit in OSNs
[29, 39], i.e., they define the behaviour that is consistent
with the most common behaviour. Moreover, roles are dy-
namic and may not be known a priori — i.e., relationships
among individuals in OSNs are constantly evolving [5]. All
of these reasons make explicit contextual integrity and the
computational models based on it not suitable for OSNs.

In this paper, we argue that a new computational paradigm
for Contextual Integrity is needed such that it supports im-
plicit norms for information sharing and contexts as well

ACySE 2015: Second International Workshop on Agents and CyberSecurity

23

as dynamic and not-a-priori-known roles. We call such an
approach Implicit Contextual Integrity.

2. PROBLEM STATEMENT
This paper tackles the following two privacy threats in

OSNs:

2.1 Inappropriate Information Exchange
Each context has its own appropriateness norms that de-

termine which information can be mentioned inside each
context. For example, one may not mention her political
views in a work context, but she may do so in a family con-
text [40]. New models of implicit contextual integrity can
use the information that users of OSNs exchange with other
users in one context (or community) to infer the appropri-
ateness norms of this context. Specifically, the information
that is frequently mentioned by the members of a context
can be considered as appropriate whereas information that
is never or rarely mentioned can be considered as inappro-
priate. For instance, if most people do not mention their
political views at work, it could be inferred this is not an
appropriate topic to exchange in a work context.

Besides the appropriateness norms of each context, there
are situations in which people decide to exchange informa-
tion that may be seen as inappropriate. One of the main
reasons that explain this is the creation and reciprocation of
close relationships [18]. Indeed, there are empirical studies
that demonstrate the fact that reciprocated communication
is the dominant form of interaction in OSNs [8]. Accord-
ingly, models of implicit contextual integrity can take into
account the appropriateness of the information that has been
exchanged with each user to determine when inappropriate
information is being exchanged to reciprocate a close friend
or to create a close relationship.

2.2 Undesired Information Dissemination
Dissemination occurs when information disclosed in one

context travels to another context. That is, dissemination is
inter-context disclosure while exchange (as stated above) is
intra-context disclosure. Obviously, if the information to be
disclosed is already known in the contexts were it may be dis-
closed, then the disclosure of this information in these con-
texts cannot entail any new privacy risk. However, dissem-
inations may potentially be undesired and hazardous when
they entail the disclosure of sensitive information that was
previously unknown in a context [33]. Indeed, studies on
regrets associated to users’ posts on OSNs highlight the fact
that revealing secrets of others is one of the main sources of
regret [40]. For instance, there was a recent case in which
the sexuality of a person was leaked from her friends context
to her family context where her sexuality was previously un-
known, causing her being outed and facing threats to sever
family ties [17].

A first-line defence against undesired disseminations may
be avoiding sharing sensitive information in contexts in which
there are people that could disseminate the information to
other contexts in which this information is previously un-
known. Whether these people decide to disseminate the in-
formation or not may depend on the relationship they have
to others. That is, people usually have confidence relation-
ships with others with whom they decide to share sensitive
information expecting them to keep it secret. One can share
some of her deepest secrets with her husband but this may

not mean her husband would disseminate this information
to other contexts. Thus, models of implicit contextual in-
tegrity could take into account the knowledge of the infor-
mation that has been exchanged with each user to determine
when sensitive information is being exchanged to reciprocate
a trusted friend or to create/maintain trust relationships.

3. LIMITATIONS OF RELATED WORK
In this section we discuss why current approaches are not

enough to deal with Inappropriate Information Exchange
and Undesired Information Dissemination in OSNs.

3.1 Contextual Integrity Modelling and Rea-
soning

Previous work on computational models of contextual in-
tegrity proposed mechanisms for modelling and reasoning
about contextual integrity principles. For example, Barth
et al. [1] formalized some aspects of contextual integrity as-
suming that there is a set of explicitly defined norms that
determine what is permitted and forbidden, that the inter-
actions take place in well-known contexts, and that interac-
tion participants play a specific role in each interaction. In
a more recent work, Krupa et al. [24] proposed a framework
to enforce norms for information sharing in an electronic
institution where norms, contexts and roles are explicitly
defined. While these approaches seem appropriate for the
kind of domains described in [1] and [24], in OSNs there are
not well-known contexts, there is not an explicit definition
of the roles played by users and the exchange of informa-
tion is governed by implicit norms for information sharing.
Note that these implicit norms for information sharing de-
fine the behaviour that is consistent with the most common
behaviour. In contrast, explicit norms for information shar-
ing define behaviour that is normative (i.e., moral).

3.2 Access Control Models for OSNs
The suitability of traditional access control models such

as role-based access control (RBAC) for OSNs has been re-
cently challenged on the basis that they cannot capture the
inherent social nature of OSNs, such as social relationships
and distance among users. To address this limitation, there
is a new paradigm that precisely emphasises the social as-
pects of OSNs. Access control models in this new paradigm
are commonly referred to as Relationship-based Access Con-
trol (ReBAC) [14, 16, 15, 4, 7, 6, 9]. ReBAC models utilise
a variety of features or aspects to characterise users’ rela-
tionships and define access control decisions based on them.
While ReBAC models represent a better framework than
other traditional access control approaches to develop tools
for defining and enforcing access control policies in OSNs,
access control on its own is unlikely to be the complete and
definitive solution for an appropriate privacy management
in OSNs, as users need awareness about access control de-
cisions to fully understand the consequences of their access
control policies [22, 26]. For instance, access control models
are known to fail to prevent unintended disclosures [2].

3.3 Disclosure Decision-Making Mechanisms
In the related literature, the use of software endowed with

disclosure decision-making mechanisms is not new. For ex-
ample, several authors [37, 23] proposed mechanisms for
computing the privacy-benefit trade-off of information dis-
closures in online interactions. The aim is to only disclose

ACySE 2015: Second International Workshop on Agents and CyberSecurity

24

information when this trade-off renders appropriate results,
i.e., where the utility of a particular disclosure is worth the
privacy risks/consequences involved by performing the dis-
closure. However, these mechanisms have difficulties to deal
with scenarios where the direct benefit of disclosing a piece of
information is a priori unknown or difficult to express in eco-
nomic terms, such as OSNs, in which disclosures are mostly
driven by social factors [20]. In a more recent work, Such
et al. [36] proposed a mechanism for entailing agents with
capabilities to select the personal attributes of their users
to be disclosed to other agents during interactions consid-
ering the increase on intimacy and privacy loss a disclosure
may cause. However, this mechanism does not consider that
the appropriateness of disclosures may vary from context to
context, nor does it consider information disseminations.

3.4 Norm Learning
Norm learning [13] is the process of learning how to be-

have in a specific situation. In case of OSNs, norms for
information sharing are implicit (i.e., there is not an ex-
plicit definition of what is sensitive or inappropriate), and
supervised machine learning algorithms cannot be used to
infer norms for information sharing. In the existing litera-
ture, social learning [10] of norms is defined as the process
of inferring implicit social norms concurrently over repeated
interactions with members of the social network. In most
of the proposals on social learning, norms are inferred by
analysing the outcomes of interactions and normative deci-
sions in terms of utility [31]. As previously mentioned, in
OSNs the benefit of exchanging information may be difficult
to be determined in economic terms. In other proposals,
norms are inferred by analysing explicit normative signals
such as punishments, sanctions and rewards [38]. These ap-
proaches cannot be used in OSNs since implicit norms for
information sharing are product of informal social control
that is rarely stated explicitly (e.g., sanctions) to unfriendly
individuals. Other approaches [13] use imitation as a mech-
anism for learning social norms. In these proposals, the
norms are inferred from the public behaviour exhibited by
the majority of the members of the social network (or the
majority of the members within an observation radius). A
main drawback of imitation approaches is that all members
are equally considered; i.e., they do not consider the exis-
tence of different social contexts with different social norms
and the fact that users engage in relationships of different
nature and strength. These unsupervised machine learning
approaches are unsuitable to be applied to ONS.

4. IMPLICIT CONTEXTUAL INTEGRITY
We propose that a new computational model of implicit

Contextual Integrity for OSNs should be built. To be appli-
cable in mainstream OSN infrastructures, this model should
only utilise the information that is currently available to
users of OSNs and their applications —e.g., the tweets posted
by users the following relationships, etc.

Our vision is to include such kind of model in what we
would call Information Assistant Agents (IAAs), which are
agents that act as proxies to access the OSN. IAAs should
be capable of learning contexts and their associated norms
for information sharing even if these are implicit or unknown
a priori with the aim of helping users to avoid inappropriate
information exchanges and undesired information dissemi-
nations. In particular, each IAA monitors the information

exchanges of its user and based on this it infers: (i) the dif-
ferent contexts in which information sharing is to happen;
(ii) the relationships between its user and the individuals
in each context; and (iii) the norms for information shar-
ing of each context. If IAAs detect a potential violation of
the norms for information sharing, they should alert their
users, who should have the last word on whether sharing
the information or not.

REFERENCES
[1] A. Barth, A. Datta, J. C. Mitchell, and

H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 184
– 198, 2006.

[2] M. S. Bernstein, E. Bakshy, M. Burke, and B. Karrer.
Quantifying the invisible audience in social networks.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 21–30, 2013.

[3] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All
your contacts are belong to us: automated identity
theft attacks on social networks. In Proceedings of the
International Conference on World Wide Web, pages
551–560, 2009.

[4] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth.
Relationship-based access control: Its expression and
enforcement through hybrid logic. In Proceedings of
the ACM Conference on Data and Application
Security and Privacy, pages 117–124. ACM, 2012.

[5] M. Burke and R. E. Kraut. Growing closer on
facebook: changes in tie strength through social
network site use. In Proceedings of the 32nd annual
ACM conference on Human factors in computing
systems, pages 4187–4196, 2014.

[6] B. Carminati, E. Ferrari, and A. Perego. Rule-based
access control for social networks. In R. Meersman,
Z. Tari, and P. Herrero, editors, On the Move to
Meaningful Internet Systems 2006: OTM 2006
Workshops, volume 4278 of Lecture Notes in
Computer Science, pages 1734–1744. Springer Berlin
Heidelberg, 2006.

[7] B. Carminati, E. Ferrari, and A. Perego. Enforcing
access control in web-based social networks. ACM
Transactions on Information and System Security,
13(1):6:1–6:38, Nov. 2009.

[8] J. Cheng, D. M. Romero, B. Meeder, and J. M.
Kleinberg. Predicting reciprocity in social networks. In
Privacy, Security, Risk and Trust, IEEE International
Conference on Social Computing, pages 49–56, 2011.

[9] Y. Cheng, J. Park, and R. Sandhu. A user-to-user
relationship-based access control model for online
social networks. In N. Cuppens-Boulahia, F. Cuppens,
and J. Garcia-Alfaro, editors, Data and Applications
Security and Privacy XXVI, volume 7371 of Lecture
Notes in Computer Science, pages 8–24. Springer
Berlin Heidelberg, 2012.

[10] N. Criado, E. Argente, and V. J. Botti. Open issues
for normative multi-agent systems. AI
Communications, 24(3):233–264, 2011.

[11] B. Danah and E. Hargittai. Facebook privacy settings:
Who cares? First Monday, 15(8), 2010.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

25

[12] G. Danezis. Inferring privacy policies for social
networking services. In Proceedings of the ACM
workshop on Security and artificial intelligence, pages
5–10, 2009.

[13] J. M. Epstein. Learning to be thoughtless: Social
norms and individual computation. Computational
Economics, 18(1):9–24, 2001.

[14] P. Fong, M. Anwar, and Z. Zhao. A privacy
preservation model for facebook-style social network
systems. In M. Backes and P. Ning, editors, Computer
Security âĂŞ ESORICS 2009, volume 5789 of Lecture
Notes in Computer Science, pages 303–320. Springer
Berlin Heidelberg, 2009.

[15] P. W. Fong. Preventing sybil attacks by privilege
attenuation: A design principle for social network
systems. In IEEE Symposium on Security and
Privacy, pages 263–278, 2011.

[16] P. W. Fong. Relationship-based access control:
Protection model and policy language. In Proceedings
of the ACM Conference on Data and Application
Security and Privacy, pages 191–202, 2011.

[17] G. A. Fowler. When the most personal secrets get
outed on facebook. http://online.wsj.com/
articles/SB10000872396390444165804578008740578200224,
Accessed: Nov, 2014.

[18] K. Greene, V. J. Derlega, and A. Mathews.
Self-disclosure in personal relationships. The
Cambridge handbook of personal relationships, pages
409–427, 2006.

[19] R. Gross and A. Acquisti. Information revelation and
privacy in online social networks. In Proceedings of the
ACM workshop on Privacy in the electronic society,
pages 71–80, 2005.

[20] D. J. Houghton and A. N. Joinson. Privacy, social
network sites, and social relations. Journal of
Technology in Human Services, 28(1-2):74–94, 2010.

[21] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Communications of the
ACM, 50(10):94–100, 2007.

[22] L. Kagal and H. Abelson. Access control is an
inadequate framework for privacy protection. In W3C
Privacy Workshop, pages 1–6, 2010.

[23] A. Krause and E. Horvitz. A utility-theoretic
approach to privacy and personalization. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 8, pages 1181–1188, 2008.

[24] Y. Krupa and L. Vercouter. Handling privacy as
contextuxal integrity in decentralized virtual
communities: The privacias framework. Web
Intelligence and Agent Systems, 10(1):105–116, 2012.

[25] A. Lyndon, J. Bonds-Raacke, and A. D. Cratty.
College students’ facebook stalking of ex-partners.
Cyberpsychology, Behavior, and Social Networking,
14(12):711–716, 2011.

[26] M. Mondal, P. Druschel, K. P. Gummadi, and
A. Mislove. Beyond Access Control: Managing Online
Privacy via Exposure. In Proceedings of the Workshop
on Useable Security, pages 1–6, 2014.

[27] H. Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79(1):119–158, 2004.

[28] G. H. Pike. Fired over facebook. Information Today,

28(4):26–26, 2011.

[29] K. Raynes-Goldie and D. Fono. Hyperfriends and
beyond: Friendship and social norms on livejournal.
Internet Research Annual, 4:8, 2006.

[30] M. C. Ruedy. Repercussions of a myspace teen suicide:
Should anti-cyberbullying laws be created. North
Carolina Journal of Law & Technology, 9:323–346,
2007.

[31] S. Sen and S. Airiau. Emergence of norms through
social learning. In Proceedings of the International
Joint Conference on Artifical Intelligence, pages
1507–1512, 2007.

[32] J. Stevens. The facebook divorces: Social network site
is cited in ’a third of splits’. http:
//www.dailymail.co.uk/femail/article-2080398/

Facebook-cited-THIRD-divorces.html, Accessed:
Nov, 2014.

[33] L. J. Strahilevitz. A social networks theory of privacy.
In American Law & Economics Association Annual
Meetings, pages 919–988, 2005.

[34] K. Strater and H. R. Lipford. Strategies and struggles
with privacy in an online social networking
community. In Proceedings of the HCI Group Annual
Conference on People and Computers: Culture,
Creativity, Interaction, pages 111–119, 2008.

[35] F. Stutzman, R. Gross, and A. Acquisti. Silent
listeners: The evolution of privacy and disclosure on
facebook. Journal of Privacy and Confidentiality, 4(2),
2013.

[36] J. M. Such, A. Espinosa, A. Garcia-Fornes, and
C. Sierra. Self-disclosure decision making based on
intimacy and privacy. Information Sciences, 211(0):93
– 111, 2012.

[37] S. van Otterloo. The value of privacy: optimal
strategies for privacy minded agents. In Proceedings of
the International Conference on Autonomous Agents
and Multiagent Systems, pages 1015–1022, 2005.

[38] D. Villatoro, G. Andrighetto, J. Sabater-Mir, and
R. Conte. Dynamic sanctioning for robust and
cost-efficient norm compliance. In Proceedings of the
International Joint Conference on Artificial
Intelligence, pages 414–419, 2011.

[39] M. Vorvoreanu. Perceptions of corporations on
facebook: An analysis of facebook social norms.
Journal of New Communications Research, 4(1):67–86,
2009.

[40] Y. Wang, G. Norcie, S. Komanduri, A. Acquisti, P. G.
Leon, and L. F. Cranor. I regretted the minute i
pressed share: A qualitative study of regrets on
facebook. In Proceedings of the Seventh Symposium on
Usable Privacy and Security, page 10, 2011.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

26

Towards scalable network host simulation

Jan Stiborek
Czech Technical University in

Prague, Czech Republic
CISCO Systems, Inc.

jastibor@cisco.com

Martin Rehák
CISCO Systems, Inc.

Tomáš Pevný
Czech Technical University in

Prague, Czech Republic

ABSTRACT
Anomaly detection techniques in network security face sig-
nificant challenges on configuration and evaluation, as col-
lecting data for accurate analysis is difficult or nearly im-
possible. One viable approach is to avoid live data collec-
tion and replace if by the agent-based simulation of the net-
work traffic with models of user’s behavior. In this paper
we propose three approaches differing by the level of de-
tail with which user behavior is modeled. They are well
suited for generating NetFlow/IPFIX data that can be used
for evaluation and optimal configuration of anomaly detec-
tion techniques. First two techniques use simple statistical
model that is easy to implement and does not require large
amount of training data. The third leverages sophisticated
model of the user’s behavior covering different aspects of the
network traffic not captured by the simpler models. In ex-
perimental evaluation it is demonstrated that the complex
model generates data indistinguishable for current state-of-
the-art anomaly detection methods from the real-world sam-
ples, which makes it well-suited for their evaluation and con-
figuration.

Categories and Subject Descriptors
[Network]: Network simulations; [Security and pri-
vacy]: Intrusion detection systems

General Terms
Security,Algorithms

Keywords
Net-Flow simulation,anomaly detection,evaluation

1. INTRODUCTION
This paper presents a user’s behavior models for agent-

based simulation network traffic that can be used for eval-
uation of an intrusion detection system (IDS) composed of
NetFlow-based anomaly detectors [1, 2]. The main reason
why researchers focus on the NetFlow data is that it cap-
tures only high level statistics which have been shown suf-
ficient [3] for detecting threats and thus allows to process
data from high speed backbone networks which cannot be
achieved with other techniques (e.g. deep packet inspec-
tion).

The main and prevalent problem is the lack of ground
truth data which is due to: (i) unrealistic properties of the
ground truth generated in the closed lab without real-world

background traffic; (ii) huge volumes of data to label in real
environments; and (iii) varying characteristics between dif-
ferent environments making model transfer difficult.

We show that a viable solution to the above problems is
to simulate the network traffic. Existing approaches can be
divided into following areas: (i) context-free packet genera-
tors that correctly capture properties of individual packets
but not the high level properties of user’s behavior [4–8];
(ii) testbed systems that can generate the network traffic
on packet level but are extremely difficult to setup [9]; (iii)
lightweight simulator generating only the NetFlow data [10–
13].

Our work belongs to the last category of lightweight sim-
ulators. Our goal is a realistic simulation of the background
traffic (NetFlow records) with correct high level properties,
for which we propose three techniques. The first two uses a
simple statistical model to generate training data. They are
both easy to implement but do not capture sophisticated as-
pects of user’s behavior, such as time variance of the user’s
behavior, dependency between inter-flow features, etc. The
third one, which we advocate, addresses these deficiencies
and based on our results is able to mimic the user’s traffic
in a way that even a combination of state-of-the-art detec-
tion algorithms is not able to distinguish.

2. RELATED WORK
Network simulation provides viable approach for ground

truth generation as discussed in [14,15]. Authors argue that
static data sets and manual labeling suffer serious problems
that network simulation can overcome (manual labeling does
not scale, bias in the labeled data, privacy issues with shar-
ing of labeled data, etc.).

First group of traffic generators are context-free packet
generators that generate full packet captures, such as NS-
2 and NS-3 simulators [4, 5], OMNET++ [6] or NeSSi [7]
and its ancestor NeSSi2 [8]. However, these tools were pri-
mary designed to test low level algorithms (e.g. routing
algorithms) and do not model the high level statistics neces-
sary for evaluation of an IDS system. Moreover, these tools
require precise configuration which drastically increases the
cost of their deployment.

Next option for generating ground truth data is the testbed
systems that emulate the behavior of the network. Such so-
lution was proposed in project LARIAT [9] where authors
used virtual machines with service that emulates user’s be-
havior. However, as authors argued, LARIAT requires care-
ful tuning which lowers the chance for practical deployment
(authors claim that it takes approximately four months to

ACySE 2015: Second International Workshop on Agents and CyberSecurity

27

setup LARIAT for evaluation of new IDS system). Our work
is inspired by the high level design of the LARIAT system.
However, the key difference between our work and LAR-
IAT system is that we simulate the user’s behavior with
statistical models trained from the data and LARIAT uses
emulation which requires manual setup.

Another approach is the flow-level simulation that mod-
els particular type of behavior, e.g. SSH brute-force attack,
which is mixed with background traffic and used for evalu-
ating an IDS system. Such approach is proposed in [10,11].

The most advanced and the most challenging approach
is to model set of users or the whole network and generate
the complete dataset (without the need to mix with back-
ground traffic). Such approach is well suited for evaluation
of an IDS system because the data (if generated correctly)
mimic the behavior of the whole network, can be arbitrar-
ily tuned (duration, volume of traffic, number of users, etc.)
and can be shared between researches without any privacy
concerns. In [13] authors propose host-agent based simulator
where single class of network behavior is represented by an
autonomous agent (trained from sample traces or malicious
traffic model). The traffic is then generated from interaction
between agents. In [12] authors propose approach based on
modified version of Traffic Dispersion Graphs which define
the connectivity patterns for given service. The port-based
TDGs augmented with additional statistics such as distri-
bution of packets, bytes or duration serve as a model that
is able to generate the traffic traces for the whole network.
Our solutions use similar statistics to describe the commu-
nication between single user and requested service but the
connectivity pattern is modeled by probability distributions
rather than TDGs. It is designed to precisely model the be-
havior of single user, not the whole network. However, we
can couple together multiple instances of models with dif-
ferent training data and simulate the behavior of the whole
network.

3. BASIC MODELS
The design of a simulation model needs to address the

common trade-off between complexity and performance. Be-
fore introducing our key model proposal in the next section
we first discuss two simpler models. We show that simpli-
fying assumptions about NetFlow traffic allow for models
of low complexity. At the same time we will show where
simplified models fail. The identified flaws then inspire the
definition of the improved model presented in the next sec-
tion.

3.1 Random sampling
The simplest approach to simulation of behavior of a sin-

gle user is to generate standard NetFlow fields (as listed
in Table 1) independently inspired by technique proposed
in [16] and technological solutions such as BreakingPoint1.
Such approach does not take into account any properties
of the NetFlow (e.g. distribution of bytes, distribution of
source ports, etc.), relation between fields of the NetFlow
(e.g. bytes/packet ratio) or relations between individual
NetFlows (e.g. request/responses relations). The only con-

1http://www.ixiacom.com/breakingpoint

Table 1: List of NetFlow fields.

Field name Description

Starting time Time stamp of the first packet
of the flow

Duration Length of the flow
Protocol TCP, UDP, ICMP, etc.
Source IP IP address of the source
Source port
Destination IP IP address of the target
Destination port
Bytes Number of bytes transferred in

the flow
Packets Number of packets transferred

in the flow
TCP flags Not used for non-TCP protocols

dition that has to be satisfied is the validity of NetFlow, i.e.
all fields have to be in their allowed ranges and the following
condition must be met

0 < number of bytes ≤ number of packets× 65535. (1)

Note that the only parameter of this algorithm that has to
be specified in advance is the IP address of the simulated
user.

The random sampling algorithm generates all but two in-
dividual NetFlow features randomly with respect to the con-
dition of validity of the generated NetFlow. The two excep-
tions are the thinking time and source and destination IP
addresses. Instead of generating the starting time directly
we generate the user’s thinking time—time delay between
two consequential NetFlows. The new starting time is then
computed as sum last starting time and the current think-
ing time. This approach allows us to generate infinite stream
of NetFlows. Similarly to the thinking time, the source and
destination IP addresses are not generated directly. Instead,
we randomly choose whether given flow is request or re-
sponse. If the flow is generated as request the source IP
field is set the value of user’s IP address and the destination
IP is chosen randomly. In the case of response it is vice
versa.

The main benefit of this algorithm is its independence
on any training data or manual tuning, because the only
parameter that has to be set in advance is the user’s IP ad-
dress. However at the same time, the complete randomness
is the main disadvantage because it can generate completely
unrealistic data. Therefore, we use this approach only for
syntax testing and as a baseline for the comparison to more
sophisticated methods.

3.2 Sampling with independent intra-flow
relations—marginal model

The marginal model provides different approach to Net-
Flow simulation. It uses training data of a single user in
order to train the statistical model of individual NetFlow
features (e.g. distribution of bytes or distribution of user’s
thinking times, etc). Unlike the random sampling discussed
above, the marginal model considers NetFlows in request/res-
ponse pairs2. Therefore it is able to partially model inter-

2The model focus on the modeling of user’s behavior and
thus we consider outgoing flow as request and incoming flow

ACySE 2015: Second International Workshop on Agents and CyberSecurity

28

Table 2: List of NetFlow features to be modeled
in order to create NetFlow data that correctly re-
flect requests and responses. Note that TCP flags
for request and response are empty for all non-TCP
NetFlows.

Feature name Description

Client’s thinking time Time difference between two
consequential client’s requests

Client port Source port of the request
Request bytes Number of bytes in request
Request packets Number of packets in request
Request protocol TCP, UDP, ICMP, etc.
Request flags TCP flags in request
Request length Duration of request
Server thinking time Time difference between request

and response
Server IP IP address of server
Server port Port number of service used by

user
Response bytes Number of bytes in response
Response packets Number of packets in response
Response length Duration of response
Response flags TCP flags in response
Has response Is there corresponding response

to the request?

flow relations (the relation between individual flows) as well
because it captures request/response relations but not the
sequential character of the user’s behavior. For example, it
is able to model the HTTP request/response pairs but not
the download of the whole Google home page. Next, this
model assumes that the modeled features are independent
and thus it does not take into the account intra-flow rela-
tions (e.g. bytes/packets ratio, etc.). The full list of modeled
features is listed in Table 2. This assumption is a limitation
that affects the variance of the internal model and can cause
serious sampling artifacts (see Figure 1).

Marginal models are created as follows. The first step
of the sampling algorithm is the preprocessing of the train-
ing data during which we pair the requests with the corre-
sponding responses. We assume that the user behaves only
as a client and thus every NetFlow with user’s IP address
as source IP is considered as a request. The corresponding
response is matched as NetFlow with following properties:

source IPresponse = destination IPrequest,

source portresponse = destination portrequest,

destination IPresponse = user’s IP,

destination portresponse = source portresponse,

protocolresponse = protocolrequest. (2)

Note that there is a maximal delay τ between request and
response in order to avoid incorrectly paired flows. In cur-
rent settings the τ is set to 2 seconds.

After the data preprocessing the model estimates the dis-
tributions of all individual features using non-parametric es-
timates (histogram for continuous features or relative fre-
quencies for categorical features).

Once model training is finished, request/response pairs

as response.

0

0.5

1

1.5

2

2.5

x 106
0500010000 0 0.5 1 1.5 2 2.5 3

x 104

0

0.5

1

1.5

2

2.5
x 106

#Bytes

#P
ac

ke
ts

Original data
Marginal sampling
Join model sampling

0 0.5 1 1.5 2 2.5 3
x 104

0

5000

10000

Figure 1: Artifacts of marginal sampling in real-
life example. This figure shows that marginal sam-
pling (red crosses) is not able to mimic the data cor-
rectly and thus creates serious sampling artifacts—
it creates data that did not appear in the original
data—whereas the joint model sampling that re-
spects the dependency between features generates
the data correctly.

are sampled as follows. At first we randomly choose whether
there will be a response or it will be only request (the feature
Has response). Next, values of individual fields are sampled
from distributions of corresponding features estimated from
the training data. Note that starting times of the request
and response are not generated in the same manner. The
starting time of the request is generated as sum of the last
starting time and the user’s thinking time (estimated from
the training data) and the response starting time is com-
puted as sum of starting time of the request and thinking
time of the server (again, estimated from the training data).
This approach is similar to the Random sampling discussed
in Section 3.1. The source address in the request/destination
IP in the response is set to the user’s IP address (param-
eter of the algorithm) and the destination address in the
request/source address in the response is sampled from the
distribution estimated from the training data.

4. TIME VARIANT JOIN PROBABILITY
MODEL

In this section we will discuss the main contribution of this
paper. In previous sections we have described the simulation
techniques that uses simple statistical model and thus miss
more complicated aspects of the user’s behavior which leads
to following issues:

• no intra-flow relations—single HTTP connection will
not likely transfer 60GB in 2 seconds,

• no time variant restrictions—user activity differs dur-
ing the night and day,

• no reflection of sequential character of the user—HTTP
request precedes a DNS request

The main problem of such approaches is the inability to
model relations between individual features. The sampling

ACySE 2015: Second International Workshop on Agents and CyberSecurity

29

User model

Service modelSystem model

Thinking
time

Service Target

Client portInstalled
apps

Transfers
up/down

Req/Resp
durations

Server
delay

Content
typeURL

User
identity

TCP flags

Figure 2: The schema of the proposed model. The
figure shows three main components and their rela-
tions. The separation of user model and underlying
system and service model is inspired by LARIAT
project [9] which uses model of the user’s behav-
ior on top of the real emulated operating system
and services. Note that the dashed boxes are omit-
ted from our implementation in order to reduce the
complexity of the current implementation.

with marginal model assumes that NetFlow features are in-
dependent, which if not satisfied leads to serious sampling
artifacts (see Figure 1).

Next problem is caused by changes of the user’s behav-
ior. Usually during the night there is no network traffic
generated by the user’s machine or the volume of the traffic
is very low (only the automated behavior of the machine,
e.g. periodic updates). However, during the working hours
its network activity increases rapidly and it fluctuates dur-
ing the working hours. For example during the lunch break
there is a drop in the volume of the network traffic followed
by a spike when users return to work. Note that the pro-
file of the user’s behavior changes through the day as user
uses different services at different time of day. The model
described in previous section does not reflect such changes
and thus the quality of the generated data is lower.

Third problem that we have to consider is the sequential
character of the user’s behavior. The typical example is the
e-mail usage. At first, user’s e-mail client has to resolve
the domain name of the IMAP server which will be seen in
NetFlows as communication with the DNS server on port
53 over UDP protocol. Next, it synchronizes the e-mails
in user’s folders—it is represented as opening connection to
the IMAP server on port 143 over TCP protocol. In the
received e-mails there can be an interesting link that the
user clicks to visit. This will appear as request to the DNS
server that resolves the domain name from the link followed
by a number of different connections to port 80 over TCP
protocol to the HTTP server. From this example we can see
that users exhibit sequential behavior and thus probability
of two consequential services is not independent.

4.1 Model structure
In order to address all the problems discussed above, we

propose a model (see Figure 2) composed from three com-
ponents, all parametrized by day time.

The first component—user model—describes different as-
pects of the user’s behavior, such as the timings between re-
quests (thinking time), which service will he use and which
server/target will he contact, its identity, etc. Note that the
user does not necessary have to be human but some auto-
mated agent in the operating system as well (e.g. automatic
updates).

The second component—the system model—models the
automatic behavior of the user’s operating system. This
component models the process of assigning client ports.

The last component—service model—models the behavior
of the remote service contacted by the user. This includes
the amount of data transferred between client and server
(bytes and packets as well), the duration of the response,
the delay of the server and TCP flags (if the connection
uses TCP protocol).

In order to simplify interactions between components and
its internal models we adopt following assumptions:

a) The thinking time (T) depends only on the daytime
and not on other aspects of user’s behavior,

b) the client port (cPort) depends only on the service
and day time—source ports for the outgoing connec-
tions are assigned by the operating system without any
user’ interaction. However, most operating systems
simply increment the last used port until the range is
depleted and thus for different daytime different range
of ephemeral ports is used. The dependency on ser-
vice is caused mainly by long persistent connections
that are split by the NetFlow probe into several Net-
Flow records. All these flows have the same client port
and in the statistics it appears as the service prefers
single source port.

The negative impact of the assumption is that proposed
model is not able to correctly capture the periodical behavior
of particular service, however, it is outweighed by the benefit
of the simplification of relations and internal models of indi-
vidual components. The relaxation of adopted assumptions
is left to future work.

4.2 Individual model components
The simplified interactions between internal models are

following:

• Thinking time: Thinking time does not have any in-
teraction or dependency on other components (see As-
sumption a)).

• Service and target : Target contacted by the user de-
pends on the service requested by the user. This cor-
responds to the fact that there are specialized servers
that serves only some (or even a single) services (HTTP
server, database server, etc).

• Client port : Client port depends only on the service
requested by the user (see Assumption b)).

• Remote service model : Model of remote depends on
the service and target contacted by the user. For ex-
ample different services on different servers has differ-
ent profile (volume of the network traffic, server delay,
content type, etc.)

In the following we will discuss internal models of each
component separately.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

30

Table 3: Set of features that describe the behavior
of a service. Note that TCP flags for request and
response are empty for all non-TCP connections.

Feature name Description

Request bytes Number of bytes in request
Request packets Number of packets in request
Request protocol TCP, UDP, ICMP, etc.
Request flags TCP flags in request
Request length Duration of request
Server thinking time Time difference between request

and response
Response bytes Number of bytes in response
Response packets Number of packets in response
Response length Duration of response
Response flags TCP flags in response
Has response Is there corresponding response

to the request?

4.2.1 Thinking time
The approach with marginal model we have proposed,

models the starting time of the request as a sum of the
starting time of the previous request and the thinking time
of the client. However, such approach cannot be directly
adopted in this model due to the fact that if we parametrize
the thinking time with the daytime, it does not capture the
time intervals when the activity of the user is very low. This
causes artifacts that results in unrealistic data. For exam-
ple, when first request occurs at 09:35 and next occurs at
11:20 we cannot compute the thinking time of flows between
10:00 and 11:00.

To avoid this issue, we do not estimate the thinking time
directly. Instead we model the number of request n gener-
ated by user in given time interval3. The thinking time is
then computed as follows

T =
L

n
(3)

where L is the duration of usual time interval in seconds.
To denoise the input data—number of requests [n1, . . . , ni, . . .]

in five minute time window—we smooth the data with slid-
ing window as follows

nt =
1

l

t+ l
2∑

i=t− l
2

ni, (4)

where l is the width of the sliding window. It controls the
smoothness of the estimate—if the window is too long, the
value does not follow the trends in the data, and if it is too
short the estimated value is too noisy.

Next, we divide the list of the number of requests N =
[n1, . . . , ni, . . .] into one-day long sets forming matrix N ′ de-
fined in Equation 5. For every time interval t ∈ [1, . . . , 288],
that is represented by a row in matrix N ′, we have k samples

3The length of the time interval is 5 minutes—the usual
length of the batch in anomaly detection [17,18].

where k is the length of the training data in days.

N ′ =

n1 n289 · · ·
n2 n290 · · ·
...

...
n288 n576 · · ·

︸ ︷︷ ︸
k

(5)

We estimate the distribution of number of requests for in-
terval t with histogramHt with non-linearly distributed bins
[1, 11), [11, 21), [21, 41), [41, 81), [81, 201), [201,∞). Further-
more, for every bin of the histogram Ht we define distribu-
tion of values. If the number of samples that fit into this bin
is 1, we assume uniform distribution of values in this par-
ticular bin. If there is more samples, we assume normal dis-
tribution with parameters estimated from the samples that
fit into the bin. This setup helps us to overcome the lack of
data as we have only k samples.

The sampling procedure of the thinking time for given
time interval is listed in Algorithm 1.

Algorithm 1 Sampling of thinking time

1: procedure thinkingTime(t). Sampling thinking time
2: for time interval t
3: b ∼ Ht . Select bin with respect to distribution Ht

4: if |b| = 1 then. If there is only one training sample
5: that fits in the bin b
6: nt ∼ U(ba, bb) . Sample from uniform dist.
7: defined by boundaries
8: ba and bb of the bin b
9: else

10: nt ∼ N (µ, σ) . Sample from normal distribution
11: with parameters estimated

from
12: training samples
13: end if
14: T = L/nt . Compute thinking time, L is the length
15: of the time interval (in our case L =

300)
16: return T
17: end procedure

4.2.2 Service and target
One of the problems of the models described in previous

sections was the inability to precisely model the sequential
character of the user’s behavior. To address this issue we
separate the probability of the service defined by following
equation

p(s|t) (6)

where s ∈ S represents the service (the server port and
protocol tuple) requested by the user and h is the day time.
The sequential character is naturally modeled by Markov
chain [19].

Next, we have to discuss model that describes which target
will be contacted by the user. In Section 4 we have defined
that the target contacted by the user depends on requested
service and the day time. This is summarized into following
probability

p(dIP|s, t) (7)

where dIP is the destination IP of contacted server (target),
s is the requested service and t is the day time.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

31

4.2.3 Client port
As we have discussed above, in order to generate NetFlow

data we can simplify the operating system model to model
only the client ports. In assumption b) we stated that client
port depends on the service and the daytime. Using this
assumption we can model the assigning of the ephemeral
ports by the probability defined as follows

p(cPort|s, t) (8)

where cPort represents the client port assigned by the op-
erating system and service s. This model captures the long
term connections to a service that appear in the data as
different NetFlows with the same client port (connection to
e-mail server, long term SSH connection, etc.) as well as
different strategies used by operating system to assign the
ephemeral source port to outgoing connections.

4.2.4 Remote service model
Internal models that we have discussed in previous para-

graphs addressed only single feature of the component. How-
ever in order to capture the relations between individual
NetFlow features we model the whole component together
by single joint probability defined as follows

p(xs|dIP, s, t) (9)

where xs ∈ Xs represents the space defined by features of the
service listed in Table 3, dIP is the contacted server, s is the
requested service and t is the day time. Using this model we
can precisely capture the behavior of the service. However,
such model captures precisely the behavior that appeared in
the data and it is not able to generate completely new values.
To overcome this issue we can add the gaussian noise to the
Equation 9 and thus generate new previously unseen data.
The strength of the noise λ is the parameter of the model
and allows us to control how ”realistic” the generated data
should be.

Before we generate new flows we train the model as de-
scribed in Sections 4.2.1, 4.2.2 and 4.2.4. Next, we simulate
the data as described in Algorithm 2.

Algorithm 2 Sampling of the NetFlow data

1: procedure sampleFlow(length) . Sampling single
flow

2: F ← ∅
3: t← 0 . Set current time to 0
4: repeat
5: T ← thinkingT ime(t) . Sample thinking time
6: s← p(s|t) . Sample service
7: dIP← p(dIP|s, t) . Sample target
8: cPort← p(cPort|s, t) . Sample client port
9: xs ← p(xs|dIP, s, t) . Sample remaining features

10: flow← t, s, dIP, cPort, xs . Build flow
11: F ← F ∪ {flow}
12: t← t+ T . Increment current time
13: until t ≤ length
14: return F
15: end procedure

4.3 Possible extensions
In previous paragraphs we have discussed complex so-

lution for generating NetFlow data. However, the general

Table 4: Capabilities of presented models. The ta-
ble summarizes capabilities of individual models. It
shows wheter given property of the traffic can be
(3), can not be (7) or can be with specific settings
(1
2
) captured by given model. Note that Time vari-

ant joint probability model is able to capture the
sequential character of the user’s behavior when the
service model is replaced by Markov chain.

Random
sampling
(Sec-
tion 3.1)

Sampling
with
marginal
model
(Sec-
tion 3.2)

Time vari-
ant joint
model
(Sec-
tion 4)

Properties of fields of
NetFlows (e.g. dis-
tribution of bytes,
source ports, etc.)

7 3 3

Intraflow relations
(e.g. Packet/Bytes
ration, etc.)

7 7 3

Interflow rela-
tions (e.g. re-
quest/response
ration)

7 3 3

Changes in the user’s
behavior

7 7 3

Sequential character
of the user’s behavior

7 7 1
2

ACySE 2015: Second International Workshop on Agents and CyberSecurity

32

schema of the proposed model can be extended to capture
not only NetFlow data but different types of communica-
tion as well. Note also that the the system model can be
extended to model installed applications. It can affect the
number of connection to the server, duration of the request
and the thinking time of the server (different versions of an
internet browser uses different number of concurrent con-
nections). Another component that can be extended is the
service model. As it controls the behavior of the remote
service it is natural to extend it with application specific
features such as URL or content type. However, these ex-
tensions, though beneficial, are out of the scope of this paper
and will be considered in future work.

5. EVALUATION
In this section we evaluate the quality of the data gener-

ated by individual sampling approaches defined in Section 3.
We have implemented a set of state-of-the-art detection al-
gorithms to evaluate the simulated data and compared this
data with real-world traffic. Using the Jensen-Shannon di-
vergence (JSD) [20] we then measure the distance between
distribution of anomaly values of real-world and artificially
generated data.

5.1 Selected anomaly detection algorithms
The goal of presented model is to generate data for evalua-

tion of an anomaly detection algorithm. Therefore, we have
implemented various types of algorithms based on different
detection paradigms. This allows us to measure the quality
of the generated data under different conditions.

Algorithms proposed by Pevný et al. [21] and Lakhina et al. [22,
23] use the principal component analysis to detect anomalies
in the traffic. However, there are several key differences be-
tween these methods. First difference is in the features that
are used for the definition of the model of the individual de-
tectors. Second difference is the measure used for assigning
the anomaly value (Lakhina proposes to use reconstruction
error and Pevný uses mahalanobis distance in sub-spaces).
Note that we have implemented four different versions of al-
gorithm proposed by Pevný denoted in the results as Pevný-
f-dIP, Pevný-f-sIP, Pevný-f⊥-dIP and Pevný-f⊥-sIP (all
described in [21]), and two versions of Lakhina’s algorithm
where version listed in the results as Lak.Vol.-sIP models
the traffic with respect to a source IP and version denoted
as Lak.Vol.-dIP models the traffic with respect to a destina-
tion IP.

Second type of algorithm that we have implemented is a
modified version of Minnesota Intrusion Detection System–
MINDS [24]. It uses an internal model of the network traffic
but unlike the algorithms proposed by Pevný and Lakhina it
does not uses the PCA but measures the difference between
last and current time window. In order to overcome the
performance issues we have modified the algorithm from the
originally proposed version. The modifications are described
in [25].

The last group of algorithms does not use any internal
model of the network traffic. Method originally published
by Kuai Xu et. al. [26] uses basic assumption that all net-
work traffic could be classified into several categories using
set of static thresholds. In addition to the original algorithm
(denoted as Xu-sIP in out evaluation) we have implemented
modified version (denoted as Xu-dIP) that uses complemen-
tary features relating to the destination IP.

5.2 Training and evaluation data
To evaluate the quality of the simulated traffic we have

used the data recorded on university campus during the one
week in April 2013 (further denoted as Dorig). From the
recorded data we have selected a set of full-time employees
with various user profiles (developers, scientists, managers
and administrative staff). We have separated their traffic
based on the IP address of selected users and use it as train-
ing data for two models defined in Sections 3.2 and 4. The
remaining traffic formed the reduced dataset Dred and was
used as background that was mixed with the simulated traf-
fic.

The evaluation of quality of the generated data was sep-
arated into two stages. During the first stage we processed
the original data Dorig separately by all anomaly detection
methods and for every detection method we estimated the
distribution of anomaly values of selected users. These dis-
tributions then served in the comparison as a baseline.

In the second stage we simulated the user’s behavior us-
ing four approaches proposed in this paper: (1) the random
sampling (referred as Random, see Section 3.1), (2) sampling
with marginal model (Marginal, see Section 3.2), (3) sam-
pling with time variant joint probability model (Model, see
Section 4) and (4) sampling with time variant joint proba-
bility model with additional noise that affected the sampled
data (ModelN, strength of the noise λ = 10−5). The gen-
erated data were mixed with the reduced dataset Dred and
separately processed by all anomaly detection algorithms.
Next, for every detection algorithm we have again estimated
the distribution of the anomaly values of the simulated traf-
fic and measure the value of JSD between the distribution
of the simulated traffic and real traffic. This process was
repeated 20 times. Next we have used Kruskal-Wallis statis-
tical test on significance level α = 0.05 to detect whether the
results for different simulation approaches are significantly
different or not. The test proved that the results for differ-
ent simulation approaches are different enough to compare
only the mean values.

5.3 Quality of the generated data
The results are summarized in Table 5. It shows that

the random sampling generates the least realistic data. The
value of JSD is by order of magnitude larger compared to the
two remaining models. This confirms the expectations that
the random sampling can be used only for syntax testing as
we have discussed in Section 3.1. The second approach, the
sampling with marginal model, provides significantly better
results compared to the random sampling. The results show
that correct estimation of the marginal distribution of indi-
vidual features improves the results by order of magnitude.
However, assumptions that (1) all inter-flow features are in-
dependent and (2) user’s behavior does not depend on the
day time clearly do not hold. Therefore, the most advanced
approach, the sampling from the time variant joint probabil-
ity model, provides the results on average 2.3× better than
sampling with marginal model. The last approach shows
that by adding the low volume of Gaussian noise into the
model we can generate data that are completely new but
still follow the original user profiles. Such approach is im-
portant for testing the detection boundaries of the detection
algorithms.

The last results shown in Figures 3 and 4 visualize the
distributions of anomaly value of real data and data sim-

ACySE 2015: Second International Workshop on Agents and CyberSecurity

33

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Anomaly score

P
D

F
simulated data

real data

Figure 3: Distribution of anomaly values of Pevný-f-
dIP method for the real traffic and traffic simulated
by the time variant joint probability model.

Table 5: Jensen-Shannon divergence between dis-
tribution of anomaly values of real and simulated
traffic.

Detection alg. Model Marginal Random ModelN

Pevný-f -dIP [21] 0.0133 0.0324 0.4596 0.0128
Pevný-f -sIP [21] 0.0146 0.0312 0.4780 0.0122
Pevný-f⊥-dIP [21] 0.0167 0.0322 0.4675 0.0138
Pevný-f⊥-sIP [21] 0.0175 0.0320 0.4519 0.0130
Lak.Ent. [23] 0.0413 0.0906 0.1198 0.0414
Lak.Vol.-sIP [22] 0.0199 0.0756 0.1076 0.0211
Lak.Vol.-dIP [22] 0.0241 0.0670 0.0938 0.0250
MINDS [24] 0.0184 0.0557 0.1703 0.0170
Xu-sIP [26] 0.0172 0.0188 0.0908 0.0172
Xu-dIP [26] 0.0193 0.0405 0.2507 0.0183

Average 0.0202 0.0476 0.2690 0.0192

ulated by time variant joint probability model. Note that
anomaly score 1.1 represents the flows where the particular
detector provided no results (due to its limitations). These
figures show that our model generates traffic that triggers
response of anomaly detection algorithms practically indis-
tinguishable from the response to real traffic.

6. CONCLUSION
We proposed a solution for generating realistic NetFlow

data that can be used for evaluation and configuration of
anomaly detectors. We introduced the time variant joint
probability model that is able to capture inter- and intra-flow
relations as well as sequential character of user’s behavior.
We compared the proposed solution with two other sim-
pler models (random sampling and sampling with marginal
model) and have shown that our solution provides more than
2.3× better.

In future work we will focus on relaxing the assumptions
adopted in this paper that limits the quality of the generated
data. We will extend the general schema to capture the ap-
plication specific aspects of the network traffic. The second

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Anomaly score

P
D

F

simulated data

real data

Figure 4: Distribution of anomaly values of Pevný-
f⊥-dIP method for the real traffic and traffic simu-
lated by the time variant joint probability model.

issue that we will address is the modeling of the whole ac-
tions and not individual flows that will enable us to correctly
model for example the full load of the HTML page.

7. ACKNOWLEDGMENT
The work presented in this paper was supported by Min-

istry of the Interior project VG20122014079. The work of
T. Pevný was also supported by the Grant Agency of Czech
Republic under the project P103/12/P514.

REFERENCES
[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly

detection,” ACM Computing Surveys, vol. 41, no. 3,
pp. 1–58, Jul. 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1541880.1541882
http://portal.acm.org/citation.cfm?doid=1541880.1541882

[2] A. Patcha and J.-M. Park, “An overview of anomaly
detection techniques: Existing solutions and latest
technological trends,” Computer Networks, vol. 51,
no. 12, pp. 3448–3470, Aug. 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912860700062X

[3] P. Barford and D. Plonka, “Characteristics of network
traffic flow anomalies,” Proceedings of the 1st ACM
SIGCOMM Workshop . . . , 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=505211

[4] “The network simulatorâĂŞNS-2,”
http://nsnam.isi.edu/nsnam, [Online; accessed June
20th, 2012].

[5] T. Henderson and M. Lacage, “Network simulations
with the ns-3 simulator,” SIGCOMM, p. 2006, 2008.
[Online]. Available:
http://conferences.sigcomm.org/sigcomm/2008/papers/p527-
hendersonA.pdf

[6] A. Varga and R. Hornig, “AN OVERVIEW OF THE
OMNeT++ SIMULATION ENVIRONMENT,”
Proceedings of the First International ICST
Conference on Simulation Tools and Techniques for
Communications Networks and Systems, 2008.

ACySE 2015: Second International Workshop on Agents and CyberSecurity

34

[Online]. Available:
http://eudl.eu/doi/10.4108/ICST.SIMUTOOLS2008.3027

[7] R. Bye, S. Schmidt, K. Luther, and S. Albayrak,
“Application-level simulation for network security,”
Proceedings of the First International ICST
Conference on Simulation Tools and Techniques for
Communications, Networks and Systems, 2008.
[Online]. Available: http://eudl.eu/?id=2961

[8] D. Grunewald, R. Bye, K. Bsufka, and S. Albayrak,
“Agent-based Network Security Simulation
(Demonstration),” AAMAS, pp. 1325–1326, 2011.

[9] L. M. Rossey, J. C. Rabek, R. K. Cunningham, D. J.
Fried, R. P. Lippmann, and M. A. Zissman, “LARIAT
: Lincoln Adaptable Real-time Information Assurance
Testbed,” pp. 1–27, 2001.

[10] A. Sperotto, R. Sadre, P.-t. D. Boer, and A. Pras,
“Hidden Markov Model modeling of SSH brute-force
attacks,” 9th IEEE International Workshop on IP
Operations and Management (IPOM 09), p. 13, 2009.

[11] D. Brauckhoff and A. Wagner, “FLAME: a flow-level
anomaly modeling engine,” in The conference on Cyber
security, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496663

[12] P. Siska, M. P. Stoecklin, A. Kind, and T. Braun, “A
flow trace generator using graph-based traffic
classification techniques,” Proceedings of the 6th
International Wireless Communications and Mobile
Computing Conference
on ZZZ - IWCMC ’10, p. 457, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1815396.1815503

[13] J. Sonchack and A. Aviv, “LESS Is More: Host-Agent
Based Simulator for Large-Scale Evaluation of
Security Systems,” Computer Security-ESORICS 2014,
pp. 365–382, 2014. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-
11212-1 21

[14] S. Floyd and V. Paxson, “Difficulties in simulating the
Internet,” IEEE/ACM Transactions on Networking
(TON), vol. 9, no. 4, pp. 392–403, 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=504642

[15] H. Ringberg, M. Roughan, and J. Rexford, “The need
for simulation in evaluating anomaly detectors,” ACM
SIGCOMM Computer Communication Re-
view, vol. 38, no. 1, p. 55, Jan. 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1341431.1341443

[16] J. Sommers, H. Kim, and P. Barford, “Harpoon: a
flow-level traffic generator for router and network
tests,” ACM SIGMETRICS Performance . . . , pp.
392–393, 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1005733

[17] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan,
“Network anomography,” p. 30, Oct. 2005. [Online].
Available:
http://dl.acm.org/citation.cfm?id=1251086.1251116

[18] F. Silveira, C. Diot, N. Taft, and R. Govindan,
“ASTUTE: Detecting a different class of traffic
anomalies,” ACM SIGCOMM Computer . . . , 2010.
[Online]. Available:
http://dl.acm.org/citation.cfm?id=1851215

[19] K. Murphy, Machine Learning: a Probabilistic
Perspective, 2012.

[20] D. Endres and J. Schindelin, “A new metric for

probability distributions,” IEEE Transactions on
Information Theory, vol. 49, no. 7, pp. 1858–1860, Jul.
2003. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1207388

[21] T. Pevny, M. Rehak, and M. Grill, “Detecting
anomalous network hosts by means of PCA,” in 2012
IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE, Dec. 2012,
pp. 103–108. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6412633

[22] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing
network-wide traffic anomalies,” Proceedings of the
2004 conference on Applications, technologies,
architectures, and protocols for computer communica-
tions - SIGCOMM ’04, p. 219, 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1015467.1015492

[23] ——, “Mining anomalies using traffic feature
distributions,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 4, p. 217, Oct.
2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1090191.1080118
http://dl.acm.org/citation.cfm?id=1080118

[24] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan,
V. Kumar, J. Srivastava, and P. Dokas,
“Minds-minnesota intrusion detection system,” Next
Generation Data Mining, 2004. [Online]. Available:
http://www.it.iitb.ac.in/ deepak/deepak/courses/mtp/papers/minds-
minnesota intrusion detection
system.pdf

[25] M. Rehak, M. Pechoucek, K. Bartos, M. Grill, and
P. Celeda, “Network Intrusion Detection by Means of
Community of Trusting Agents,” 2007
IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT’07), pp. 498–504,
Nov. 2007. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4407334

[26] K. Xu, Z. Zhang, and S. Bhattacharyya, “Reducing
unwanted traffic in a backbone network,” Usenix
Workshop on Steps to Reduce Un- wanted Traffic in
the Internet (SRUTI 05), 2005. [Online]. Available:
https://www.usenix.org/event/sruti05/tech/talks/xu.pdf

ACySE 2015: Second International Workshop on Agents and CyberSecurity

35

