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Overview

I Goals:
I Explain what it means for two markets to be isomorphic.
I Explain how automorphisms of markets correspond to mutual

fund theorems.
I Give some classification theorems for markets - i.e. identify the

isomorphism classes.

I Part 1: Category theory - the abstract notion of isomorphism

I Part 2: One period markets - classifications of Markowitz
markets and complete markets.

I Part 3: Continuous time markets.

I Example consequence: Given a diffusion model you can
change the drift to obtain a market isomorphic to a
Black–Scholes–Merton model.



Part I

Category Theory



Category theory

Definition
A category C consists of the following data:

(i) a class ob(C ) of objects.

(ii) a class hom(C ) of morphisms. To each morphism f are
associated a source a ∈ ob(C ) and target b ∈ ob(C ). We
write

f : a→ b

hom(a, b) is the class of all morphisms from a to b.

(iii) for all a, b, c ∈ obC a binary operation called composition

hom(a, b)× hom(b, c)→ hom(a, c).

If f : a→ b, g : b → c we write g ◦ f or just gf for the
composition.

The composition satisfies the properties associativity and the
existence of an identity morphism 1x : x → x for all x ∈ ob(C ).



Examples of categories
Object Morphisms

Vector Space Linear Transformations
Group Homomorphisms
Topological Space Homeomorphism
Metric Space Isometry
Banach Space Bounded Linear Transformation
Markowitz Market Markowitz isomorphism

I Two objects are isomorphic if they are “identical as far as your
category is concerned”.

I Example: A sphere and a cube are isomorphic topologically,
but not as metric spaces.

I “Interesting” properties of an object should be invariant under
isomorphisms

I Example: Two five pound notes are isomorphic. Their serial
numbers are not interesting, only their purchasing power. (A
five pound note is also isomorphic to five pound coins.)



Duality

I The definition of a category does not require that morphisms
f : a→ b are represented by functions. They are simply
“arrows” starting at a and ending at b.

I Given a category you can obtain a new category by reversing
the arrows. This is called the opposite category.



Classification Theorems

I Isomorphism = morphism with two-sided inverse

I Automorphism = isomorphism of an object two itself

I Classification = identify the isomorphism classes

1. Finite dimensional real vector spaces are classified by their
dimension.

2. Matrices are classified up to similarity by Jordan normal form.

3. Möbius (1861)–Brahana (1921): Closed surfaces are classified
topologically by their Euler characteristic and whether they
are orientable.

4. Finite simple groups: “The proof consists of tens of thousands
of pages in several hundred journal articles written by about
100 authors, published mostly between 1955 and 2004.”

5. Perelman (2006): Completed the classification of compact
3-manifolds.



Example: the category of probability spaces

I The objects consist of probability spaces (Ω,F ,P).

I The morphisms consist of almost-sure equivalence classes of
measurable functions, f which preserve the measure P, i.e.
P(U) = P(f −1(U)) for measurable U.

I Discrete probability spaces are classified by a decreasing
sequence of non-negative numbers p1 ≥ p2 ≥ p3 ≥ . . . with∑

pi = 1.

I The probability spaces [0, 1] and [0, 1]× [0, 1] equipped with
the Lebesgue measure are isomorphic, and they are isomorphic
to the probablity space generated by Brownian motion!

I A standard probability space is isomorphic to the union of
[0, 1] and a discrete probability space. Henceforth all
probability spaces are assumed standard.















Invariants

A first step to classification theorems is to define invariants

1. The dimension of a vector space is invariant under linear
bijections.

2. The characteristic polynomial of a matrix is invariant under
similarities.

3. The Euler characteristic of a surface is invariant under
homeomorphisms.

4. The Gaussian curvature of a surface is an invariant under
isometries. But what does invariant mean exactly here?



Covariant Functor

A covariant functor is a mapping between categories and their
morphisms that respects composition and identities.

Definition
A covariant functor F from a category C to a category D is a
mapping which

(i) associates to each object x ∈ ob(C ) an object in
F (x) ∈ ob(D).

(ii) associates to a morphism f : x → y in hom(C ) a morphism
F (f ) : F (x)→ F (y) in hom(D).

and which satisfies

(i) For all x ∈ ob(C ), F (1x) = 1F (x)

(ii) If f : a→ b and g : b → c then F (g ◦ f ) = F (g) ◦ F (f ).



Covariant and contravariant functors
Covariant functor
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Example

I Vector space duality defines a contravariant functor, F from
the category of vector spaces to itself.

F (V ) = V ∗

if T : V →W then

F (T ) : W ∗ → V ∗

by
F (T ) = T ∗

I Vector space double duality defines a covariant functor F from
the category of vector spaces to itself.



Example: L0

Let L0 be the functor mapping the category of probability spaces
to the category of vector spaces by:

L0(Ω) = L0(Ω;R)

If f : Ω1 → Ω2 is measurable, define

L0(f ) : L0(Ω2;R)→ L0(Ω1;R)

by
L0(f )(X ) = X ◦ f .

Ω1 Ω2

L0(Ω1;R) L0(Ω2;R)

f

L0 L0

L0(f )



Invariantly defined element

Let F : C → D be a covariant functor and let D be a category of
sets. A function

φ : C → Set

is an invariantly defined element for F if

φ(x) ∈ F (x)

for all x ∈ ob(C ) and φ(fx) = F (f )φ(x) for all isomorphisms f .
If F is a contravariant functor we instead require
φ(fx) = F (f −1)φ(x).



Example: the Theorema Egregium

Gauss proved that the Gaussian curvature of a surface is an
invariantly defined element for C∞ the contravariant functor
mapping the category of surfaces up to isometry to the category of
rings by sending a surface to the ring of smooth functions on that
surface.

We will see that the absolute value of the market price of risk is an
invariantly defined element for the functor L0 acting on continuous
time markets.



Part II

One period markets



Definition
A one period financial market ((Ω,F ,P), c) consists of: a
probability space (Ω,F ,P); a function c : L0(Ω;R)→ R ∪ {±∞}.
We call c−1(R ∪ {−∞}) the domain of c , denoted dom c .

I A random variable X ∈ L0(Ω;R) represents the final payout of
a financial instrument X . c(X ) is the cost of X . If its cost is
infinite, it cannot be purchased.

Definition
A morphism of markets M1 = ((Ω1,F1,P1), c1) and
M2 = ((Ω2,F2,P2), c2) is a Prob morphism φ : Ω1 → Ω2

satisfying c2(X ) ≥ c1(X ◦ φ) for all X ∈ L0(Ω2;R).

I A morphism φ : M1 → M2 represents an inclusion of M2 in
M1. Any financial product can be purchased for the same or a
lower price in market M1.



Mutual fund theorems and automorphisms
Suppose we have a financially interesting problem whose solution is
a set of financial products X ⊆ L0(Ω,R).

If f : Ω→ Ω is an automorphism, then the problem will remain
unchanged if we apply f . Hence L0(f )(X ) = X . So X is invariant
under automorphisms.

If X is non-empty and convex, G is a compact group of
automorphisms, then X must contain an invariant element for G .
The solution to our problem can be taken to lie in
dom c ∪ L0G (Ω;R) which may be very small.

Figure:



Example: Markowitz markets

Definition
We define the category Markowitz1 to have objects given by
markets where

I c is linear — i.e. prices are linear so no bid-ask spread are
quantity constraints

I dom c is finite dimensional — i.e. there are only a finite
number of basic assets

I The market is arbitrage free

I All assets X with finite cost have a Gaussian distribution

the morphisms are given by market morphisms.



Duality theorem for Markowitz markets

Definition
We define the category Markowitz2 to have objects (V , b, p,C )
where V is a finite dimensional vector space, b is a positive definite
bilinear form on V , p and C are linearly independent linear
functionals. Morphisms are linear maps φ : V1 → V2 satisfying

b2(φ(v1), φ(v2) = b1(v1, v2)

p2(φ(v1)) = p1(v1)

C2(φ(v1)) = C1(v1)

I Elements of V represent portfolios

I b measures the covariance of two portfolios

I p measures the expected payoff of a portfolio

I C measures the initial cost

We say that two categories C and D are dual if C is equivalent to
the opposite category of D.



Duality theorem for Markowitz markets

Theorem
Markowitz1 and Markowitz2 are dual.

Sketch.
Given an object M = (Ω,F ,P, c) in Markowitz1 define:

V (M) = dom c , C (M)(X ) = c(X )

p(M)(X ) = E(X ), b(X ,Y ) = Cov(X ,Y ).

Given an object M ′ = (V , b, p,C ) in Markowitz2 define

Ω(M ′) = V ∗, c(M ′)(X ) =

{
C (X ) X ∈ V ∗∗

∞ otherwise

Let ∗∗ : V → V ∗∗ be the double duality isomorphism. P(M ′) is defined
to be the multivariate normal distribution on V ∗ with mean p ∈ V ∗ and
covariance

Cov(X ∗∗,Y ∗∗) = b(X ,Y )



Equivalence and duality

We must also map morphisms in one category to morphisms in the other.
This is a duality rather than an equivalence because a morphism

f : Ω2 → Ω1

is mapped to the dual map

L0(f ) : dom c1 ⊆ L0(R)→ dom c2 ⊆ L0(R)

The maps

M = (Ω,P, c)
φ→ (V (M), b(M), p(M),C (M))

and

M ′ = (V , b, p,C )
ψ→ (Ω(M ′),P(M ′), c(M ′))

are not inverses. However ψ ◦ φ(M ′) is the double dual of M ′ and so is
naturally isomorphic to it. Similarly φ ◦ ψ. The definition of equivalence
of categories is designed to ensure that this is enough to prove
equivalence of Markowitz1 and op(Markowitz1).



Classification of non-degenerate Markowitz markets

The classification of Markowitz markets is now easy

I All positive-definite bilinear forms are isomorphic to the
Euclidean inner product on Rn via the Gram-Schmidt process.

I Hence without loss of generality we may assume a Markowitz
market is given by (Rn, gE , v∗1 , v

∗
2 ) where gE is the Euclidean

inner product and ∗ : V → V ∗ by

v∗(x) = gE (v , x) ∀v ∈ V .

I A Markowitz market is therefore determined by two vectors v1
and v2 in Euclidean space.

I We may apply a rotation to ensure that v1 = (α, 0, 0, . . . , 0)
and v2 = (β, γ, 0, 0, ..., 0).



Corollary
Non degenerate Markowitz markets are classified by their efficient
frontier.

Return

Risk

m

i-1

gradient = g

Figure:



The two-mutual-fund theorem

Corollary

The only invariant portfolios lie in the span of v1, v2.

Proof.
(x1, x2, x3, . . . , xn)→ (x1, x2,−x3, . . . ,−xn) is a market
automorphism.

I The solution of any convex, financially interesting problem in
the Markowitz model can be assumed to lie in the span of
v1, v2.

I The solution of any convex problem using no data about the
market other than the covariance b, cost C and payoff p can
be assumed to lie in the span of v1, v2.

This is a substantial generalization of the classical two mutual fund
theorem. It applies to problems you haven’t thought of yet!



Example

Invariant input

Mathematical operations
without arbitrary choices

−→ Invariant output

I Let M = (V , b, p,C ) be a Markowitz market. Let u be a
concave increasing utility function.

I Let P(M) be the Gaussian measure on V ∗ found in the
previous theorem. It is invariantly defined.

I Let W denote all measures on V ∗ within a given Wasserstein
distance of the measure P(M). W is invariantly defined
because P(M) is invariantly defined.

I Consider the robust optimization problem

R = argmax
v∈V

inf
w∈W

Ew (u(v∗∗))

I R is invariantly defined and convex. Hence it contains an
invariant element.



The limits of mean-variance analysis

I How can we find a low-dimensional representation of the bond
market?

I Principal component analysis?



One period complete markets

Definition
A one period complete market has a cost function of the form

c(X ) = βE(QX )

for some pricing kernel Q ∈ L0(Ω) with Q > 0, EP(Q) = 1 and a
where β ∈ R>0 is a discount factor.

Example

The market obtained by pursuing an self-financing trading strategy
in the Black–Scholes market until a terminal time T .

Example

The market C with Ω = [0, 1] with the Lebesgue measure and
β = Q = 1 is called a Casino.

It is easy to check that Q may be recovered from c , hence Q is
invariantly defined for L0.



Classification of one period complete markets

Theorem
Let M1 and M2 be complete one period markets then M1 × C is
isomorphic to M2 × C if and only if the discount factors of M1 and
M2 are equal and their pricing kernels are equal in distribution.

Proof.
Apply Rohklin’s classification of homomorphisms between
probability spaces to Q.

(The full classification theorem without the casino is a little more
tedious to state)

If Q is absolutely continuous then we may take M1 = [0, 1] and
Q ∈ L0([0, 1];R) to be a decreasing function with integral 1.
Optimization problems can now be solved by calculus of variations.

Applications: Pensions, S-Shaped utility. . .



Part III

Continuous Time Markets



Multiperiod markets

Definition
A multi-period market consists of

(i) A filtered probability space (Ω,Ft ,P) where t ∈ T ⊆ [0,T ]
for some index set T containing both 0 and T . We write
F = FT . We require F0 = {∅,Ω}.

(ii) For each X ∈ L0(Ω;R), an Ft adapted process ct(X ) defined
for t in T \ T .

Random variables X ∈ L0(Ω,FT ;R) are interpreted as contracts
which have payoff X at time T . The cost of this contract at time
t is ct(X ).

Definition
A filtration isomorphism of filtered spaces (Ω,F ,Ft ,P) where
t ∈ T for some index set T is a mod 0 isomorphism for F which is
also a mod 0 isomorphism for each Fp. An isomorphism of
multi-period markets is a filtration isomorphism that preserves the
cost functions.



Continuous time complete markets

Definition
A continuous time market (Ω,Ft ,P), ct) on [0,T ] is called a
continuous time complete market with risk free rate r if there
exists a measure Q equivalent to P with

ct(X ) = e−r(T−t)EQ(X | Ft)

for Q-integrable random variables X and equal to ∞ otherwise.



Example: Diffusion models

Consider a multi-dimensional diffusion model

dXt = µ(Xt , t) dt + σ(Xt , t) dWt .

subject to modest conditions, we can find a unique equivalent
Martingale measure Q such that

ct(X ) = e−r(T−t)EQ(X | Ft).

for any contingent claim X .



Theorema Egregium?

Definition
The absolute market price of risk in a diffusion market is the
element of L0(Ω× [0,T ],P) defined by

AMPRt = |σ−1(rXt − µ)|.

Theorem
The absolute market price of risk is an invariantly defined element
for L0.

Proof.
Let q = dQ

dP then one can show∫ t

0

1

q2s
d[q, q]s =

∫ t

0
AMPR2

s ds.



The Test Case

Theorem
Let M be a continuous time complete market with risk free rate r ,
time period T based on a Wiener space of dimension n and with
AMPR given by

AMPRt = A(t) ≥ 0

for a bounded measurable function of time A(t). Suppose that the
process qt is continuous. In these circumstances M is isomorphic
to the diffusion market with

µ = rXt + A(t) e1

σ = idn

and X0 = 0 where {ei} is the standard basis for Ri and idn is the
identity matrix.



Sketch proof

Define

Z̃t = log qt +
1

2

∫ t

0
A(s)2ds.

Then define

W̃ 1
t = −

∫ t

0

1

A(s)
dZ̃s .

Show that W̃ 1
t is a Martingale and then compute

[W̃ 1, W̃ 1]t = t.

Apply Levy’s characterisation of Brownian motion to deduce that
W̃ 1 is a Brownian motion. Now extend W 1 to an n-dimensional
Brownian motion.



Financial consequences

I All Black–Scholes–Merton models are isomorphic to an
“essentially 1-dimensional” Bachelier market

I The equation
|σ−1(rXt − µ)| = A(t)

is underdetermined. Hence any diffusion model is equivalent
to a Black–Scholes–Merton model after a change of drift.

I Note that the drift is hard to measure from statistics and the
form of the drift is chosen for parsimony.

I Rather than attempt to model assets, should we model the
invariants such as AMPR?



Mutual fund theorem

Corollary (Continuous time one-mutual-fund theorem)

In diffusion markets with absolute market price of risk, any
invariant, non-empty, convex set of martingales contains an
element which can be replicated using only the risk-free-asset and
the portfolio with components given by

(σσ>)−1(rXt − µ).

Example

Consider optimal pension investment for a collective of individuals
whose mortality is independent of the market. Even though you
don’t know the meaning of optimal investment for a collective, you
know that however this is operationalized the optimal investment
strategy will follow the one-mutual-fund theorem.



Selected references

I Armstrong, J (2018), ”Classifying markets up to
isomorphism”, arxiv:1810.03546

I Armstrong, J (2018), ”The Markowitz Category”, SIAM
Journal on Financial Mathematics

I Eilenberg, S.; MacLane, S. (1945). ”General theory of natural
equivalences”. Transactions of the American Mathematical
Society. 58: 247

I Rokhlin, V. A. (1949) “On the fundamental ideas of measure
theory.” Matematicheskii Sbornik, 67(1):107–150.


	Category Theory
	One period markets
	Continuous Time Markets

